English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2081-2093 DOI: 10.7536/PC211102 前一篇   后一篇

• 综述 •

铁基材料改性零价铝的作用机制及应用

杨世迎1,2,3,*(), 李乾凤3, 吴随3, 张维银3   

  1. 1 海洋环境与生态教育部重点实验室 青岛 266100
    2 山东省海洋环境地质工程重点实验室 青岛 266100
    3 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2021-11-03 修回日期:2022-01-24 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    山东省自然科学基金项目(ZR2020MB093)

Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials

Shiying Yang1,2,3(), Qianfeng Li3, Sui Wu3, Weiyin Zhang3   

  1. 1 The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE),Qingdao 266100, China
    3 College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received:2021-11-03 Revised:2022-01-24 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: ysy@ouc.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2020MB093)

近年来,零价铝(Zero-Valent Aluminum,ZVAl)因其具有极低的氧化还原电位、是优良的电子供体等化学特性,已被广泛地用于水中污染物的去除;但因其表面致密的氧化膜会阻碍其活性释放,并且在反应中表面易形成(氢)氧化物而造成二次钝化,从而导致其反应寿命短。研究表明,零价铁、铁矿石、含铁黏土矿物等铁基材料与ZVAl复合后可克服ZVAl自身的弊端,除了可以改变ZVAl的硬度、磁性等物理性能外,更有意义的是,可以通过:1)加快反应速率、2)拓宽pH范围、3)延长反应持久性、4)增强反应选择性等化学作用机制实现提高其去除水中污染物效能的目的。因此,本文在系统总结不同方法下铁基材料对ZVAl的改性机制(即发生氧化还原反应、金属间的反应或是自蔓延反应)的基础上,重点对该改性作用在去除水中污染物时的增强机制,以及进一步的优化策略(引入第三金属、外加非金属单质、添加聚合物、投加配体和构建负载物等)进行了详细综述;并对铁基材料改性ZVAl后构筑的复合材料值得深入研究的方向进行了展望,以期推动ZVAl水处理新技术在环境领域更深入的研究和更广泛的应用。

In recent years, zero-valent Aluminum (ZVAl) has been widely used for contaminants removal in water due to its extremely low redox potential and being an excellent electron donor. However, the dense oxide film on its surface restrains the activity of ZVAl, and it is easy to form Al-(hydr)oxide on its surface during the reaction, resulting in a secondary passivation and a short reacting life for ZVAl. The research shows that ZVAl could overcome its own disadvantages after compounded with iron-based materials such as zero-valent iron, iron ore and iron-containing clay minerals. Besides changing the physical properties such as hardness and magnetism of ZVAl, it is more meaningful that its efficiency for pollutants removal from water through chemical mechanisms is improved, such as 1) speeding up the reaction rate, 2) broadening pH ranges, 3) promoting durability, and 4) enhancing reaction selectivity. Therefore, on the basis of systematically summarizing the combining mechanisms between iron-based materials and ZVAl (i.e., redox reaction, intermetallic reaction or self-propagating reaction) under different synthetic methods, this review mainly focuses on the enhancing mechanisms of ZVAl composites modified by iron-based materials for pollutants removal in water, and further on the optimization strategies such as introducing a third metal, adding non-metallic elements, polymer or ligand, and constructing a load in detail. Finally, the research direction of ZVAl composites modified by iron-based materials is prospected in order to promote further research and wider application in environmental field for the novel ZVAl based water or wastewater technology.

Contents

1 Introduction

2 Combining mechanism between iron-based materials and ZVAl

2.1 Redox reaction

2.2 Intermetallic reaction

2.3 Self-propagating reaction

3 Strengthening mechanism of ZVAl composites modified by iron-based materials in water treatment application

3.1 Speeding up the reaction rate

3.2 Widening pH ranges

3.3 Promoting durability

3.4 Enhancing reaction selectivity

4 Optimization strategies of ZVAl composites modified by iron-based materials for removing contaminants from water

4.1 Introducing a third metal

4.2 Adding non-metallic elements

4.3 Adding polymer

4.4 Adding ligand

4.5 Constructing a load

5 Conclusions and outlook

()
表1 基于不同反应机制合成铁改性ZVAl-复合材料的优缺点汇总
Table 1 Typical cases study on different synthesis reaction mechanisms of ZVAl composites modified by iron-based materials.
Reaction mechanism Methods Advantage Disadvantage ref
Redox reaction Chemical deposition/Co-reduction The nucleation and growth process of composites can be controlled by adjusting the reaction parameters
Controllable structure (core/shell, heterostructure, intermetallic compound or alloy), composition, size and morphology
Wasted chemical reagent
Secondary pollution
Non-uniform distribution of the second metal on the surface of the core metal
Weak combination of the two metals
29,38,43,44
Electroless plating
method
Uniform dispersion, good coating effect Poor density of the coating layer 41
Mechanical ball
milling
Mild reaction conditions
Simple process
Easily realized in projects
Uncontrollable structure and composition 45,46
Intermetallic reaction Mechanical ball
milling
Mild reaction conditions
Simple process
Easily realized in projects
Expensive and enormous energy consumption to maintain extreme reaction conditions
Lower production rate
30,47
Gas atomization To generate powders of circular form and good flowing properties Complicated apparatus and yields products in a small amount 48,49
Plasma technique Shortened catalyst preparation time
Low energy requirements
Highly distributed active species are produced
Production of uniform metal particle size
Complex methods cannot be applied on industrial scale
Catalyst deactivation problem
50,51
Melt method Iron oxide film is not easily formed on the surface of the material, and the alloy material remains active High-temperature heating and annealing for long periods of time
Difficult to obtain composites with high surface areas
52~54
Self-propagating reaction Mechanical ball
milling/Friction stir
processing
The generated frictional heat and severe plastic deformation to increase the extent and rate of in situ reactions Expensive and enormous energy consumption 55
图1 (a) ZVAl和 (b) Fe/Al双金属材料的SEM图以及EDS光谱[39]
Fig. 1 SEM images and EDS spectra of (a) ZVAl and (b) Fe/Al bimetallic particles[39]
图2 Fe2O3在Al颗粒上的涂层方案[42]
Fig. 2 Scheme of Fe2O3 coating on Al particles.[42]
图3 Al包Fe、Fe包Al双金属的示意图[23]
Fig. 3 Diagram of the Al/Fe and Fe/Al[23]
图4 mZVAl(a-a')及Fe-mZVAlbm(b-b')的SEM图及相应EDS分析[46]
Fig. 4 SEM images and respective EDS analyses of mZVAl (a-a″) and Fe-mZVAlbm (b-b″)[46]
图5 Al-Fe合金的XRD图[62]
Fig. 5 The XRD analysis of Al-Fe alloys.[62]
图6 Fe/Al去除Cr(VI)示意图[37]
Fig. 6 Schematic mechanisms of the Cr(VI) removal by Fe/Al[37]
图7 Fe/Al双金属颗粒去除亚砷酸盐和砷酸盐的机理[44]
Fig. 7 Arsenite and arsenate removal mechanism by Fe/Al bimetallic particles[44]
图8 铜催化的铝铁合金颗粒产生原子氢[76]
Fig. 8 The reduction of atomic hydrogen by Al-Fe alloy particles catalyzed by copper[76]
图9 EDTA在Al-Fe-O2体系中参与的反应方程式图[92]
Fig. 9 The main reaction equations of EDTA involved in the Al-Fe-O2[92]
[1]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016, 28(05): 754.
( 杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016, 28(05): 754.).
[2]
Zhang Y X, Yang S Y, Zhang Y Q, Wu S, Xin J. Chem. Eng. J., 2018, 353: 760.

doi: 10.1016/j.cej.2018.07.174     URL    
[3]
Yang S Y, Zheng D, Ren T F, Zhang Y X, Xin J. Water Res., 2017, 123: 704.

doi: 10.1016/j.watres.2017.07.013     URL    
[4]
Ren T F, Yang S Y, Jiang Y T, Sun X R, Zhang Y X. Chem. Eng. J., 2018, 348: 350.

doi: 10.1016/j.cej.2018.04.216     URL    
[5]
Ren T F, Yang S Y, Wu S, Wang M Q, Xue Y C. Chem. Eng. J., 2019, 374: 100.

doi: 10.1016/j.cej.2019.05.172     URL    
[6]
Wu S, Yang S Y, Liu S J, Zhang Y X, Ren T F, Zhang Y Q. J. Colloid Interface Sci., 2020, 560: 260.

doi: 10.1016/j.jcis.2019.10.075     URL    
[7]
Jiang Y T, Yang S Y, Liu J Q, Ren T F, Zhang Y X, Sun X R. Chemosphere, 2020, 244: 125536.

doi: 10.1016/j.chemosphere.2019.125536     URL    
[8]
Jiang Y T, Yang S Y, Wang M Q, Xue Y C, Liu J Q, Li Y, Zhao D Y. Chemosphere, 2021, 279: 130520.

doi: 10.1016/j.chemosphere.2021.130520     URL    
[9]
Li Y, Zhang Y Q, Yang S Y, Xue Y C, Liu J Q, Wang M Q, Liu S J, Chen Y Y. Sci. Total. Environ., 2021, 783: 146999.

doi: 10.1016/j.scitotenv.2021.146999     URL    
[10]
Jiang B, Xin S S, Gao L, Luo S Y, Xue J L, Wu M B. Chem. Eng. J., 2017, 308: 588.

doi: 10.1016/j.cej.2016.09.098     URL    
[11]
Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H, Lin C. Water Res., 2009, 43(20): 5015.

doi: 10.1016/j.watres.2009.08.015     pmid: 19729183
[12]
Liu Y, Guo J R, Chen Y, Tan N, Wang J L. Environ. Sci. Technol., 2020, 54(21): 14085.

doi: 10.1021/acs.est.0c05974     URL    
[13]
Liu Y, Tan N, Guo J R, Wang J L. J. Hazard. Mater., 2020, 396: 122751.

doi: 10.1016/j.jhazmat.2020.122751     URL    
[14]
Gong L, Qi J L, Lv N, Qiu X J, Gu Y W, Zhao J W, He F. J. Hazard. Mater., 2021, 403: 123844.

doi: 10.1016/j.jhazmat.2020.123844     URL    
[15]
Qin H J, Yin D Q, Bandstra J Z, Sun Y K, Cao G M, Guan X H. J. Hazard. Mater., 2020, 383: 121218.

doi: 10.1016/j.jhazmat.2019.121218     URL    
[16]
Fan P, Sun Y K, Zhou B X, Guan X H. Environ. Sci. Technol., 2019, 53(24): 14577.

doi: 10.1021/acs.est.9b04956     URL    
[17]
Liu Y, Wang J L. Sci. Total. Environ., 2019, 671: 388.

doi: 10.1016/j.scitotenv.2019.03.317     URL    
[18]
Luan F B, Liu Y, Griffin A M, Gorski C A, Burgos W D. Environ. Sci. Technol., 2015, 49(3): 1418.

doi: 10.1021/es504149y     URL    
[19]
Rahimi S, Moattari R M, Rajabi L, Derakhshan A A, Keyhani M. J. Ind. Eng. Chem., 2015, 23: 33.

doi: 10.1016/j.jiec.2014.07.039     URL    
[20]
Chen Y H, Li F A. J. Colloid Interface Sci., 2010, 347(2): 277.

doi: 10.1016/j.jcis.2010.03.050     URL    
[21]
Liu X X, Yuan S H, Zhang P, Zhu J, Tong M. J. Hazard. Mater., 2020, 386: 121945.

doi: 10.1016/j.jhazmat.2019.121945     URL    
[22]
Shen W J, Kang H L, Ai Z H. J. Hazard. Mater., 2018, 357: 408.

doi: 10.1016/j.jhazmat.2018.06.029     URL    
[23]
Ou J H, Sheu Y T, Tsang D C W, Sun Y J, Kao C M. Chemosphere, 2020, 256: 127158.

doi: 10.1016/j.chemosphere.2020.127158     URL    
[24]
Liu X, Fan J H, Ma L M. Chem. Eng. J., 2014, 236: 274.

doi: 10.1016/j.cej.2013.09.097     URL    
[25]
Meng C Q, Mao Q M, Luo L, Zhang J C, Wei J H, Yang Y, Tan M J, Peng Q H, Tang L, Zhou Y Y. Sep. Purif. Technol., 2018, 191: 314.

doi: 10.1016/j.seppur.2017.09.051     URL    
[26]
Ding Z C, Fu F L, Cheng Z H, Lu J W, Tang B. Chemosphere, 2017, 169: 297.

doi: 10.1016/j.chemosphere.2016.11.057     URL    
[27]
Ali I, Gupta V K, Khan T A, Asim M. Int. J. Electrochem. Sci., 2012, 7: 1898.
[28]
Nidheesh P V, Khatri J, Anantha Singh T S, Gandhimathi R, Ramesh S T. Chemosphere, 2018, 200: 621.

doi: S0045-6535(18)30367-9     pmid: 29510370
[29]
Xu F Y, Deng S B, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Environ. Sci. Technol., 2012, 46(8): 4576.

doi: 10.1021/es203876e     URL    
[30]
Wang C P, Yang T, Liu Y H, Ruan J J, Yang S Y, Liu X J. Int. J. Hydrog. Energy, 2014, 39(21): 10843.

doi: 10.1016/j.ijhydene.2014.05.047     URL    
[31]
Wang N, Meng H X, Dong Y M, Jia Z L, Gao L J, Chai Y J. Int. J. Hydrog. Energy, 2014, 39(30): 16936.

doi: 10.1016/j.ijhydene.2014.07.180     URL    
[32]
Zheng T, Li M C, Chao J B, Zhang J Q, Tang Y, Wan P Y, Hu Q, Coulon F, Bardos P, Yang X J. Mater. Chem. Phys., 2021, 270: 124789.

doi: 10.1016/j.matchemphys.2021.124789     URL    
[33]
Nayak S S, Wollgarten M, Banhart J, Pabi S K, Murty B S. Mater. Sci. Eng. A, 2010, 527(9): 2370.

doi: 10.1016/j.msea.2009.12.044     URL    
[34]
Mann D K, Wang Y X, Marks J D, Strouse G F, Shatruk M. Inorg. Chem., 2020, 59(17): 12625.

doi: 10.1021/acs.inorgchem.0c01731     URL    
[35]
Montoya Rangel M, Marín Ramírez J M, Tirado Mejía L, Medina Barreto M H, Cruz Muñoz B. J. Magn. Magn. Mater., 2021, 538: 168246.

doi: 10.1016/j.jmmm.2021.168246     URL    
[36]
Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73(5): 692.

doi: 10.1016/j.chemosphere.2008.07.005     pmid: 18701127
[37]
Fu F L, Cheng Z H, Dionysiou D D, Tang B. J. Hazard. Mater., 2015, 298: 261.

doi: 10.1016/j.jhazmat.2015.05.047     URL    
[38]
Wang D S, Li Y D. Adv. Mater., 2011, 23(9): 1044.

doi: 10.1002/adma.201003695     URL    
[39]
Xiang S H, Cheng W C, Nie X Q, Ding C C, Yi F C, Asiri A M, Marwani H M. J. Taiwan Inst. Chem. Eng., 2018, 85: 186.

doi: 10.1016/j.jtice.2018.01.039     URL    
[40]
Cheng Z P, Li F S, Yang Y, Wang Y, Chen W F. Mater. Lett., 2008, 62(12/13): 2003.

doi: 10.1016/j.matlet.2007.11.003     URL    
[41]
Liu H C, Zhang J D, Gou J Y, Ding C K. Mater. Sci. Technol., 2017, 33(10): 1180.

doi: 10.1080/02670836.2016.1271933     URL    
[42]
Liu H C, Zhang J D, Gou J Y, Sun Y Y. Adv. Powder Technol., 2017, 28(12): 3241.

doi: 10.1016/j.apt.2017.10.005     URL    
[43]
Lien H L, Yu C H, Kamali S, Sahu R S. Sci. Total. Environ., 2019, 673: 480.

doi: 10.1016/j.scitotenv.2019.04.116     URL    
[44]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.

doi: 10.1016/j.watres.2016.03.020     URL    
[45]
Yang R, Cai J, Yang H. Sci. Total Environ., 2021, 773: 145661.

doi: 10.1016/j.scitotenv.2021.145661     URL    
[46]
Wu S, Yang S Y, Li Q F, Wang M Q, Xue Y C, Zhao D Y. Chemosphere, 2021, 274: 129767.

doi: 10.1016/j.chemosphere.2021.129767     URL    
[47]
Suryanarayana C. Prog. Mater. Sci., 2001, 46(1/2): 1.

doi: 10.1016/S0079-6425(99)00010-9     URL    
[48]
Choi K D, Kim S H, Jang P W, Yoon W Y, Byun J Y. J. Alloys Compd., 2021, 854: 157241.

doi: 10.1016/j.jallcom.2020.157241     URL    
[49]
Binns C. Surf. Sci. Rep., 2001, 44(1/2): 1.

doi: 10.1016/S0167-5729(01)00015-2     URL    
[50]
Aluha J, Bere K, Abatzoglou N, Gitzhofer F. Plasma Chem. Plasma Process., 2016, 36(5): 1325.

doi: 10.1007/s11090-016-9734-1     URL    
[51]
Katoh R, Nonaka K, Sumiyama K, Peng D L, Hihara T. Mater. Trans., 2008, 49(8): 1830.

doi: 10.2320/matertrans.MRA2007280     URL    
[52]
Zhang J Q, Wu J, Chao J B, Shi N J, Li H F, Hu Q, Yang X J. J. Contam. Hydrol., 2019, 227: 103541.

doi: 10.1016/j.jconhyd.2019.103541     URL    
[53]
Xu J, Pu Y, Yang X J, Wan P Y, Wang R, Song P, Fisher A. Environ. Technol., 2018, 39(22): 2882.

doi: 10.1080/09593330.2017.1369577     URL    
[54]
Novet T, Johnson D C. J. Am. Chem. Soc., 1991, 113(9): 3398.

doi: 10.1021/ja00009a027     URL    
[55]
AzimiRoeen G, Kashani-Bozorg S F, Nosko M, Lotfian S. Met. Mater. Int., 2020, 26(9): 1441.

doi: 10.1007/s12540-019-00393-1     URL    
[56]
Ferrando R, Jellinek J, Johnston R L. Chem. Rev., 2008, 108(3): 845.

doi: 10.1021/cr040090g     URL    
[57]
Chen Z L, Mao Q J, Lu S Y, Buekens A, Xu S X, Wang X, Yan J H. Chemosphere, 2017, 180: 130.

doi: 10.1016/j.chemosphere.2017.04.004     URL    
[58]
Irankhah A, Fattahi S M S, Salem M. Int. J. Hydrog. Energy, 2018, 43(33): 15739.

doi: 10.1016/j.ijhydene.2018.07.014     URL    
[59]
Zhang Y F, Yang B, Fan J H, Ma L M. RSC Adv., 2016, 6(80): 76867.

doi: 10.1039/C6RA12889K     URL    
[60]
Yang R, Chang Q Q, Li N, Yang H. Chem. Eng. J., 2022, 433: 133682.

doi: 10.1016/j.cej.2021.133682     URL    
[61]
Weidlich T, Prokeš L, Pospíšilová D. Open Chem., 2013, 11(6): 979.

doi: 10.2478/s11532-013-0231-6     URL    
[62]
Xu J, Pu Y, Qi W K, Yang X J, Tang Y, Wan P Y, Fisher A. Chemosphere, 2017, 166: 197.

doi: 10.1016/j.chemosphere.2016.09.102     URL    
[63]
Yang Z, Ma X W, Shan C, Guan X H, Zhang W M, Lv L, Pan B C. J. Hazard. Mater., 2019, 368: 698.

doi: S0304-3894(19)30112-8     pmid: 30739022
[64]
LÓpez-Miranda J L, Rosas G. Int. J. Hydrog. Energy, 2016, 41(6): 4054.

doi: 10.1016/j.ijhydene.2016.01.012     URL    
[65]
Jiang W M, Li G Y, Jiang Z L, Wu Y, Fan Z T. Mater. Sci. Technol., 2018, 34(12): 1519.

doi: 10.1080/02670836.2018.1465620     URL    
[66]
Abul M R, Cochrane R F, Mullis A M. J. Mater. Sci. Technol., 2022, 104: 41.

doi: 10.1016/j.jmst.2021.05.085     URL    
[67]
Takacs L. Int. J Self-Propag. High-Temp. Synth., 2009, 18(4): 276.

doi: 10.3103/S1061386209040086     URL    
[68]
Takacs L. Prog. Mater. Sci., 2002, 47(4): 355.

doi: 10.1016/S0079-6425(01)00002-0     URL    
[69]
Akhgar B N, Pourghahramani P. Int. J. Miner. Process., 2017, 164: 1.

doi: 10.1016/j.minpro.2017.05.002     URL    
[70]
Akhgar B N, Pourghahramani P. J. Alloys Compd., 2016, 657: 144.

doi: 10.1016/j.jallcom.2015.10.014     URL    
[71]
He Y L, Sun H L, Liu W J, Yang W J, Lin A J. Environ. Technol., 2020, 41(14): 1867.

doi: 10.1080/09593330.2018.1551431     URL    
[72]
Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302: 437.

doi: 10.1016/j.jhazmat.2015.09.041     URL    
[73]
Samadi M T, Asgari G, Rahmani A R, Ghavami Z. Avicenna J. Environ. Heal. Eng., 2017, 4(2): 29.
[74]
Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16): 16686.

doi: 10.1007/s11356-016-6628-y     URL    
[75]
Raut S S, Shetty R, Raju N M, Kamble S P, Kulkarni P S. Chemosphere, 2020, 250: 126298.

doi: 10.1016/j.chemosphere.2020.126298     URL    
[76]
Hou M T, Tang Y, Xu J, Pu Y, Lin A J, Zhang L L, Xiong J P, Yang X J, Wan P Y. J. Environ. Chem. Eng., 2015, 3(4): 2401.

doi: 10.1016/j.jece.2015.08.014     URL    
[77]
Pacanowski S, Wachowiak M, Jabłoński B, Szymański B, Smardz L. Int. J. Hydrog. Energy, 2021, 46(1): 806.

doi: 10.1016/j.ijhydene.2020.09.175     URL    
[78]
Raso R, García L, Ruiz J, Oliva M, Arauzo J. Appl. Catal. B Environ., 2021, 283: 119598.

doi: 10.1016/j.apcatb.2020.119598     URL    
[79]
Wan H Y, Islam M S, Qian D, Ormsbee L, Bhattacharyya D. Chem. Eng. J., 2020, 394: 125013.

doi: 10.1016/j.cej.2020.125013     URL    
[80]
Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1/2): 76.

doi: 10.1016/j.jhazmat.2011.02.001     URL    
[81]
Huang C C, Lien H L. Water Sci. Technol., 2010, 62(1): 202.

doi: 10.2166/wst.2010.303     URL    
[82]
Gui L, Gillham R W, Odziemkowski M S. Environ. Sci. Technol., 2000, 34(16): 3489.

doi: 10.1021/es9909778     URL    
[83]
Lin C J, Lo S L, Liou Y H. J. Hazard. Mater., 2004, 116(3): 219.

doi: 10.1016/j.jhazmat.2004.09.005     URL    
[84]
Zhao W R, Zhu X, Wang Y, Ai Z Y, Zhao D Y. Chem. Eng. J., 2014, 254: 410.

doi: 10.1016/j.cej.2014.05.144     URL    
[85]
Zhang Q. Environ. Technol., 2015, 36(4): 515.

doi: 10.1080/09593330.2014.952678     URL    
[86]
Yang Z, Gong X B, Peng L, Yang D, Liu Y. Chemosphere, 2018, 208: 665.

doi: 10.1016/j.chemosphere.2018.06.016     URL    
[87]
Chen Y, Hu L, Tan N, Yang X Y, Ceng H W, Liu Y. China Environ. Sci., 2021, 41(10): 4645.
( 陈勇, 胡鹭, 谭旎, 杨昕昱, 曾泓文, 刘咏. 中国环境科学, 2021, 41(10): 4645.).
[88]
Liu Y, Yang Z, Gong X B, Tan N, Wang Z R. CN 107552052B, 2020.
( 刘咏, 杨照, 龚小波, 谭妮, 王真然. CN 107552052B, 2020.).
[89]
Jin X Y, Zhuang Z C, Yu B, Chen Z X, Chen Z L. Carbohydr. Polym., 2016, 136: 1085.

doi: 10.1016/j.carbpol.2015.10.002     URL    
[90]
Wang K X, Ma H, Pu S Y, Yan C, Wang M T, Yu J, Wang X K, Chu W, Zinchenko A. J. Hazard. Mater., 2019, 362: 160.

doi: 10.1016/j.jhazmat.2018.08.067     URL    
[91]
Cheng H M, Zhu Q, Wang A W, Weng M M, Xing Z P. Environ. Res., 2020, 184: 109336.

doi: 10.1016/j.envres.2020.109336     URL    
[92]
Fan J H, Liu X, Ma L M. Chem. Eng. J., 2015, 263: 71.

doi: 10.1016/j.cej.2014.10.082     URL    
[93]
Fu F L, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194.

doi: 10.1016/j.jhazmat.2013.12.062     URL    
[94]
Ismadji S, Tong D S, Soetaredjo F E, Ayucitra A, Yu W H, Zhou C H. Appl. Clay Sci., 2016, 119: 146.

doi: 10.1016/j.clay.2015.08.022     URL    
[95]
Zhou S W, Zhang C B, Hu X F, Wang Y H, Xu R, Xia C H, Zhang H, Song Z G. Appl. Clay. Sci., 2014, 95: 275.

doi: 10.1016/j.clay.2014.04.024     URL    
[96]
Liu Y, Chen Y, Da Y F, Xie F, Wang J L. Appl. Catal. B Environ., 2022, 304: 121003.

doi: 10.1016/j.apcatb.2021.121003     URL    
[97]
Agstam-Norlin O, Lannergård E E, Rydin E, Futter M N, Huser B J. Water Res., 2021, 200: 117267.

doi: 10.1016/j.watres.2021.117267     URL    
[98]
Yu Z Y, Yu H W, Zhao G J, Wang L Y, Sun R F, Inorg. Chem. Ind., 2021, 1.
( 于子扬, 于贺伟, 赵改菊, 王鲁元, 孙荣峰, 无机盐工业, 2021, 1.).
[1] 李怡宁, 隋铭皓. 基于过氧乙酸的高级氧化技术及在水处理消毒中的应用[J]. 化学进展, 2023, 35(8): 1258-1265.
[2] 杨世迎, 杨震. 零价铝表面物相转变及影响污染物去除的作用机制[J]. 化学进展, 2023, 35(7): 1030-1039.
[3] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[4] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[5] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[8] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[12] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[13] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[14] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[15] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.