English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1201-1211 DOI: 10.7536/PC200756 前一篇   后一篇

• 综述 •

高价锰、铁去除水中新兴有机污染物

张静1,2,*(), 王定祥1, 张宏龙1   

  1. 1 重庆大学环境与生态学院 重庆 400045
    2 重庆大学三峡库区生态环境教育部重点实验室 重庆 400045
  • 收稿日期:2020-07-28 修回日期:2020-09-29 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 张静
  • 基金资助:
    国家重点研发计划(2019YFD1100101); 国家自然科学基金面上项目(51878095)

Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron

Jing Zhang1,2,*(), Dingxiang Wang1, Honglong Zhang1   

  1. 1 College of Environment and Ecology, Chongqing University, Chongqing 400045, China
    2 Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, Chongqing 400045, China
  • Received:2020-07-28 Revised:2020-09-29 Online:2021-07-20 Published:2020-12-28
  • Contact: Jing Zhang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key R&D Program of China(2019YFD1100101); General Program of National Natural Science Foundation of China(51878095)

新兴有机污染物在水环境中广泛存在,对生态环境和人体健康都有潜在危害,如何去除水环境中的新兴有机污染物成为研究人员日益关心的问题。高价锰、铁,主要指高锰酸钾(Mn(Ⅶ), KMnO4)、高铁酸钾(Fe(Ⅵ),K2FeO4),是两类高效且环境友好的无机水处理药剂,可以高效地去除新兴有机污染物,因而备受人们关注。同时,高价锰、铁在降解新兴有机污染物过程中具有相同或者相近的化学性质和相近的化学行为。当前,关于高价锰、铁氧化降解新兴有机污染物的研究主要集中在构建动力学模型,解析中间价态的锰、铁的作用,阐述与其他物质或工艺联用时可能产生的自由基的作用及其在实际水体中的应用。本文综述并比较了高价锰、铁氧化降解新兴有机污染物的动力学模型、中间价态离子的作用、自由基的作用和在实际水体中的氧化特性。

Emerging organic contaminants are widely present in the waters and have potential threat to the ecosystem and human health. How to remove the emerging organic contaminants has become a growing concern for researchers. High valent manganese and iron, i.e. potassium permanganate (Mn(Ⅶ), KMnO4) and potassium ferrate (Fe(Ⅵ), K2FeO4), are two effective inorganic chemicals for decomposing emerging organic contaminants in water treatment. Permanganate and ferrate are environmentally friendly, and have been drawing more and more attention due to their high efficiency. Permanganate and ferrate have similar chemical properties and close behavior in the removal of emerging organic contaminants. Recent studies on the oxidative degradation of emerging organic contaminants by permanganate and ferrate mainly focus on the kinetic models, the role of manganese- and iron-intermediates, the role of free radicals generated when permanganate and ferrate are combined with other chemicals or processes, and their application in real waters. Therefore, this paper summarizes the reaction kinetics of permanganate and ferrate, and compares the roles of permanganate- and ferrate-intermediates and free radicals, and their performance in real waters.

Contents

1 Introduction

2 Mechanism of permanganate and ferrate oxidation

3 Oxidation kinetics of organic pollutants by permanganate and ferrate

4 Formation and functions of permanganate- and ferrate-intermediates

5 Generation and function of free radicals

6 Performance in real waters

7 Conclusion and outlook

()
图1 不同pH值下高铁酸盐的形态分布[18]
Fig. 1 Speciation of ferrate(Ⅵ) at different pH[18]
表1 Mn(Ⅶ)、Fe(Ⅵ)、O3和H2O2在水中的氧化还原电位[17]
Table 1 Reduction potentials of Mn(Ⅶ), Fe(Ⅵ), O3 and H2O2in aqueous solutions[17]
图2 Mn(Ⅶ)和Fe(Ⅵ)氧化降解新兴有机污染物的二级反应速率常数(kapp)[15,22⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-33]
Fig. 2 The kapp for the reaction of Mn(Ⅶ) and Fe(Ⅵ) with emerging organic contaminants[15,22⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-33]
图3 高铁酸盐与BPS和BPAF的二级反应速率常数及其反应动力学模型拟合结果.实验条件:[BPS]0 =5 μmol/L,[BPAF] 0 = 5 μmol/L,[ferrate] 0=50 μmol/L, T= 25 ℃[24]
Fig. 3 Reaction kinetics model fitting result of the second-order reaction rate constant of ferrate with BPS or BPAF. Experimental conditions: [BPS]0 =5 μmol/L, [BPAF] 0 = 5 μmol/L, [ferrate] 0 =50 μmol/L, T= 25 ℃[24]
图4 pH对高锰酸钾和高铁酸钾氧化降解双酚A的二级反应速率常数的影响[22,23]
Fig. 4 Effect of pH on second-order rate constants of bisphenol A oxidation by permanganate and ferrate[22,23]
图5 可能的电子转移途径(a) Mn(Ⅶ)/NaHSO3体系[69];(b) Mn(Ⅶ)/NaHSO3体系[70];(c)Mn(Ⅶ)/NaHSO3体系[48];(d) Fe(Ⅵ)/ Na2S2O3体系[73];(e) Fe(Ⅵ)/ Na2SO3体系[74];(f) Fe(Ⅵ)/ Na2SO3体系[75]
Fig. 5 Possible reaction mechanisms of (a) Mn(Ⅶ)/NaHSO3[69] ; (b) Mn(Ⅶ)/NaHSO3[70]; (c)Mn(Ⅶ)/NaHSO3[48]; (d) Fe(Ⅵ)/ Na2S2O3[73]; (e) Fe(Ⅵ)/ Na2SO3[74]; and (f) Fe(Ⅵ)/ Na2SO3[75]
[1]
Field J A, Johnson C A, Rose J B. Environ. Sci. Technol., 2006, 40(23):7105.

doi: 10.1021/es062982z     URL    
[2]
Bao L J, Guo Y, Liu L Y, Zeng Y P. Prog. Chem., 2017, 29(09):943.
( 鲍恋君, 郭英, 刘良英, 曾永平. 化学进展, 2017, 29(09):943.)
[3]
Moreau M, Hadfield J, Hughey J, Sanders F, Lapworth D J, White D, Civil W. Sci. Total. Environ., 2019, 686:425.

doi: 10.1016/j.scitotenv.2019.05.210     URL    
[4]
Lapworth D J, Baran N, Stuart M E, Ward R S. Environ. Pollut., 2012, 163:287.

doi: 10.1016/j.envpol.2011.12.034     pmid: 22306910
[5]
Meffe R, de Bustamante I. Sci. Total. Environ., 2014, 481:280.

doi: 10.1016/j.scitotenv.2014.02.053     URL    
[6]
Gong J, Huang W, Yang J, Ran Y, Chen D Y, Yang Y, Wu C Q, Zhan Y G. China Environ. Sci., 2015, 35(2):617.
( 龚剑, 黄文, 杨娟, 冉勇, 陈迪云, 杨余, 吴翠琴, 占永革. 中国环境科学, 2015, 35(2):617.)
[7]
Jiang J. Doctoral Dissertation of Harbin Institute of Technology, 2009.
( 江进. 哈尔滨工业大学博士论文, 2009.)
[8]
Wang Q, Zhang M J, Chen H B. Water Purif. Technol., 2020, 39(1):43.
( 汪琪, 张梦佳, 陈洪斌. 净水技术, 2020, 39(1):43.)
[9]
Xu W J, Zhang G C, Zheng M X, Chen J, Wang K J. Prog. Chem., 2010, 22(05):1002.
( 徐武军, 张国臣, 郑明霞, 陈健, 王凯军. 化学进展, 2010, 22(05):1002.)
[10]
Heng L, Hui Z. Prog. Chem., 2015, 27(8):1123.

doi: 10.7536/PC141233    
( 林恒, 张晖. 化工进展, 2015, 27(8):1123.)
[11]
Lu L, Hu C. Prog. Chem., 2017, 29(09):981.
( 吕来, 胡春. 化学进展, 2017, 29(09):981.)
[12]
Liu Y, Wu Y H, Pang H W, Wang X X, Yu S J, Wang X K. Prog. Chem., 2019, 31(06):831.
( 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 化学进展, 2019, 31(06):831.)
[13]
Sharma V K. Coord. Chem. Rev., 2013, 257(2):495.

doi: 10.1016/j.ccr.2012.04.014     URL    
[14]
Jiang J, Pang S Y, Ma J, Liu H L. Environ. Sci. Technol., 2012, 46(3):1774.

doi: 10.1021/es2035587     pmid: 22208220
[15]
Guan X H, He D, Ma J, Chen G H. Front. Environ. Sci. Eng. China, 2010, 4(4):405.

doi: 10.1007/s11783-010-0252-8     URL    
[16]
Singh N, Lee D G. Org. Process Res. Dev., 2001, 5(6):599.

doi: 10.1021/op010015x     URL    
[17]
Sharma V K. Adv. Environ. Res., 2002, 6(2):143.

doi: 10.1016/S1093-0191(01)00119-8     URL    
[18]
Sharma V K. Coord. Chem. Rev., 2013, 257(2):495.

doi: 10.1016/j.ccr.2012.04.014     URL    
[19]
Wood R H. J. Am. Chem. Soc., 1958, 80(9):2038.

doi: 10.1021/ja01542a002     URL    
[20]
Shao B B, Qiao J L, Zhao Z W, Guan X H. Chin. Sci. Bull., 2019, 64(33):3401.
( 邵彬彬, 乔俊莲, 赵志伟, 关小红. 科学通报, 2019, 64(33):3401.)
[21]
Jiang Y J, Goodwill J E, Tobiason J E, Reckhow D A. Environ. Sci. Technol., 2015, 49(5):2841.

doi: 10.1021/es505516w     URL    
[22]
Zhang J, Sun B, Guan X H. Sep. Purif. Technol., 2013, 107:48.

doi: 10.1016/j.seppur.2013.01.023     URL    
[23]
Lee Y, Yoon J, von Gunten U. Environ. Sci. Technol., 2005, 39(22):8978.

doi: 10.1021/es051198w     URL    
[24]
Yang T. Doctoral Dissertation of Harbin Institute of Technology, 2019.
( 杨涛. 哈尔滨工业大学博士论文, 2019.)
[25]
Pang S Y, Jiang J, Gao Y, Zhou Y, Huangfu X L, Liu Y Z, Ma J. Environ. Sci. Technol., 2014, 48(1):615.

doi: 10.1021/es4041094     URL    
[26]
Hu L H, Martin H M, Arce-Bulted O, Sugihara M N, Keating K A, Strathmann T J. Environ. Sci. Technol., 2009, 43(2):509.

doi: 10.1021/es8023513     URL    
[27]
Anquandah G A K, Sharma V K, Panditi V R, Gardinali P R, Kim H, Oturan M A. Chemosphere, 2013, 91(1):105.

doi: 10.1016/j.chemosphere.2012.12.001     pmid: 23305748
[28]
Yang T, Liu Y L, Wang L, Jiang J, Huang Z S, Pang S Y, Cheng H J, Gao D W, Ma J. Water Res., 2018, 147:321.

doi: S0043-1354(18)30806-6     pmid: 30317041
[29]
Dong H Y, Qiang Z M, Liu S G, Li J, Yu J W, Qu J H. Water Res., 2018, 130:200.

doi: 10.1016/j.watres.2017.12.003     URL    
[30]
Liu Y L, Wang L, Huang Z S, Wang X S, Zhao X D, Ren Y Y, Sun S F, Xue M, Qi J Y, Ma J. Chem. Eng. J., 2018, 331:31.

doi: 10.1016/j.cej.2017.07.171     URL    
[31]
Pang S Y, Duan J B, Zhou Y, Gao Y, Jiang J. Chemosphere, 2019, 235:104.

doi: 10.1016/j.chemosphere.2019.06.156     URL    
[32]
Hu L H, Martin H M, Strathmann T J. Environ. Sci. Technol., 2010, 44(16):6416.

doi: 10.1021/es101331j     URL    
[33]
Yang B, Ying G G, Zhao J L, Liu Y S. Environ. Chem., 2013, 32(01):54.
( 杨滨, 应光国, 赵建亮, 刘有胜. 环境化学, 2013, 32(01):54.)
[34]
Stewart A, MacPhee R. J. Am. Chem. Soc., 1971, 17(93):4271.
[35]
Du J S, Sun B, Zhang J, Guan X H. Environ. Sci. Technol., 2012, 46(16):8860.

doi: 10.1021/es302076s     URL    
[36]
Jiang J, Gao Y, Pang S Y, Wang Q, Huangfu X L, Liu Y Z, Ma J. Environ. Sci. Technol., 2014, 48(18):10850.

doi: 10.1021/es5008577     pmid: 25136744
[37]
Du J S. Master Dissertation of Harbin Institute of Technology, 2012.
( 杜鹃山. 哈尔滨工业大学硕士论文, 2012.)
[38]
Lee Y, Kissner R, von Gunten U. Environ. Sci. Technol., 2014, 48(9):5154.

doi: 10.1021/es500804g     URL    
[39]
Manoli K, Nakhla G, Ray A K, Sharma V K. AIChE J., 2017, 63(11):4998.

doi: 10.1002/aic.v63.11     URL    
[40]
Chen J, Xu X X, Zeng X L, Feng M B, Qu R J, Wang Z Y, Nesnas N, Sharma V K. Water Res., 2018, 143:1.

doi: 10.1016/j.watres.2018.06.023     URL    
[41]
Kim C, Panditi V R, Gardinali P R, Varma R S, Kim H, Sharma V K. Chem. Eng. J., 2015, 279:307.

doi: 10.1016/j.cej.2015.04.139     URL    
[42]
Kamachi T, Miyanishi M, Yoshizawa K. DFT Study on the pH Dependence of the Reactivity of Ferrate(Ⅵ). Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, Washington D C:ACS Symposium Series, 2016.1238.
[43]
Lee D G, Chen T. J. Am. Chem. Soc., 1993, 115(24):11231.

doi: 10.1021/ja00077a023     URL    
[44]
Simándi L, Záhonyi-Budó É. Inorganica Chimica Acta, 1998, 281(2):235.

doi: 10.1016/S0020-1693(98)00181-9     URL    
[45]
Gao Y. Doctoral Dissertation of Harbin Insititute of Technology, 2019.
( 高源. 哈尔滨工业大学博士论文, 2019.)
[46]
Gao Y, Jiang J, Zhou Y, Pang S Y, Jiang C C, Guo Q, Duan J B. Environ. Sci. Technol., 2018, 52(8):4785.

doi: 10.1021/acs.est.8b00120     URL    
[47]
Jiang J, Pang S Y, Ma J. Environ. Sci. Technol., 2010, 44(11):4270.

doi: 10.1021/es100038d     pmid: 20429549
[48]
Gao Y, Zhou Y, Pang S Y, Jiang J, Yang Z F, Shen Y M, Wang Z, Wang P X, Wang L H. Environ. Sci. Technol., 2019, 53(7):3689.

doi: 10.1021/acs.est.8b05306     URL    
[49]
Pang S Y, Jiang J, Ma J, Ouyang F. Environ. Sci., 2010, 31(10):2331.

doi: 10.1021/es960944h     URL    
( 庞素艳, 江进, 马军, 欧阳峰. 环境科学, 2010, 31(10):2331.)
[50]
Sun B. Master Dissertation of Harbin Institute of Technology, 2013.
( 孙波. 哈尔滨工业大学硕士论文, 2013.)
[51]
Rao D D, Sun B, Qiao J L, Guan X H. Prog. Chem., 2017, 29(09):1142.
( 饶丹丹, 孙波, 乔俊莲, 关小红. 化学进展, 2017, 29(09):1142.)
[52]
Gao Y, Jiang J, Zhou Y, Pang S Y, Ma J, Jiang C C, Wang Z, Wang P X, Wang L H, Li J. Chem. Eng. J., 2017, 327:418.

doi: 10.1016/j.cej.2017.06.056     URL    
[53]
Sun B, Li D, Linghu W S, Guan X H. Chem. Eng. J., 2018, 339:144.

doi: 10.1016/j.cej.2018.01.131     URL    
[54]
Sun B, Dong H Y, He D, Rao D D, Guan X H. Environ. Sci. Technol., 2016, 50(3):1473.

doi: 10.1021/acs.est.5b05207     pmid: 26709670
[55]
Li W, Lou Y, Fang A R, Feng K, Xing D F. Chem. Eng. J., 2020, 394:124920.

doi: 10.1016/j.cej.2020.124920     URL    
[56]
Zhu J H, Yu F L, Meng J R, Shao B B, Dong H Y, Chu W H, Cao T C, Wei G F, Wang H J, Guan X H. Environ. Sci. Technol., 2020, 54(15):9702.

doi: 10.1021/acs.est.0c03212     URL    
[57]
Machala L, Procházka V, Miglierini M, Sharma V K, Marušák Z, Wille H C, Zbořil R. Phys. Chem. Chem. Phys., 2015, 17(34):21787.

doi: 10.1039/c5cp03784k     pmid: 26248056
[58]
Sharma V K. Radiat. Phys. Chem., 2002, 65(4/5):349.

doi: 10.1016/S0969-806X(02)00335-3     URL    
[59]
Manoli K, Nakhla G, Ray A K, Sharma V K. Chem. Eng. J., 2017, 307:513.

doi: 10.1016/j.cej.2016.08.109     URL    
[60]
Sharma V K, O’Connor D B, Cabelli D E. J. Phys. Chem. B, 2001, 105(46):11529.

doi: 10.1021/jp012223x     URL    
[61]
Terryn R J Ⅲ, Huerta-Aguilar C A, Baum J C, Sharma V K. Chem. Eng. J., 2017, 330:1272.

doi: 10.1016/j.cej.2017.08.080     URL    
[62]
Sun S F, Jiang J, Qiu L P, Pang S Y, Li J, Liu C H, Wang L H, Xue M, Ma J. Water Res., 2019, 156:1.

doi: 10.1016/j.watres.2019.02.057     URL    
[63]
Tian S Q, Wang L, Liu Y L, Ma J. Water Res., 2020, 183:116054.

doi: 10.1016/j.watres.2020.116054     URL    
[64]
Feng M B, Sharma V K. Chem. Eng. J., 2018, 341:137.

doi: 10.1016/j.cej.2018.01.112     URL    
[65]
Dong H Y, Qiang Z M, Lian J F, Qu J H. J. Hazard. Mater., 2017, 336:65.

doi: 10.1016/j.jhazmat.2017.04.056     URL    
[66]
Zhao J F, Liu Y Q, Wang Q, Fu Y S, Lu X H, Bai X F. Sep. Purif. Technol., 2018, 192:412.

doi: 10.1016/j.seppur.2017.10.030     URL    
[67]
Song Y, Jiang J, Ma J, Pang S Y, Liu Y Z, Yang Y, Luo C W, Zhang J Q, Gu J, Qin W. Environ. Sci. Technol., 2015, 49(19):11764.

doi: 10.1021/acs.est.5b03358     pmid: 26378975
[68]
Song J. Master Dissertation of Guangdong University of Technology, 2018.
( 宋健. 广东工业大学硕士论文, 2018.)
[69]
Sun B, Bao Q Q, Guan X H. J. Hazard. Mater., 2018, 352:157.

doi: S0304-3894(18)30176-6     pmid: 29605803
[70]
Shi Z Y, Jin C, Zhang J, Zhu L. Chem. Eng. J., 2019, 359:1463.

doi: 10.1016/j.cej.2018.11.030     URL    
[71]
Chow C H, Sze-Yin Leung K. Chemosphere, 2019, 237:124524.

doi: 10.1016/j.chemosphere.2019.124524     URL    
[72]
Chen J, Rao D D, Dong H Y, Sun B, Shao B B, Cao G M, Guan X H. J. Hazard. Mater., 2020, 388:121735.

doi: S0304-3894(19)31689-9     pmid: 31812477
[73]
Feng M B, Jinadatha C, McDonald T J, Sharma V K. Environ. Sci. Technol., 2018, 52(19):11319.

doi: 10.1021/acs.est.8b03770     URL    
[74]
Sun S F, Pang S Y, Jiang J, Ma J, Huang Z S, Zhang J M, Liu Y L, Xu C B, Liu Q L, Yuan Y X. Chem. Eng. J., 2018, 333:11.

doi: 10.1016/j.cej.2017.09.082     URL    
[75]
Shao B B, Dong H Y, Sun B, Guan X H. Environ. Sci. Technol., 2019, 53(2):894.

doi: 10.1021/acs.est.8b04990     URL    
[76]
Han Q, Dong W Y, Wang H J, Ma H, Gu Y R, Tian Y. RSC Adv., 2019, 9(71):41783.

doi: 10.1039/c9ra07774j    
[77]
Feng M B, Cizmas L, Wang Z Y, Sharma V K. Chemosphere, 2017, 177:144.

doi: 10.1016/j.chemosphere.2017.03.008     URL    
[78]
Wang Y C. Master Dissertation of Harbin Institute of Technology, 2019.
( 王亿承. 哈尔滨工业大学硕士论文, 2019.)
[79]
Sun S F, Pang S Y, Jiang J, Ma J, Huang Z S, Zhang J M, Liu Y L, Xu C B, Liu Q L, Yuan Y X. Chem. Eng. J., 2018, 333:11.

doi: 10.1016/j.cej.2017.09.082     URL    
[80]
Feng M B, Sharma V K. Chem. Eng. J., 2018, 341:137.

doi: 10.1016/j.cej.2018.01.112     URL    
[81]
Zhang J, Zhu L, Shi Z Y, Gao Y. Chemosphere, 2017, 186:576.

doi: S0045-6535(17)31154-2     pmid: 28810226
[82]
Xu K, Ben W W, Ling W C, Zhang Y, Qu J H, Qiang Z M. Water Res., 2017, 123:67.

doi: 10.1016/j.watres.2017.06.037     URL    
[83]
Zhang J. Doctoral Dissertation of Harbin Institute of Technology, 2014.
( 张静. 哈尔滨工业大学博士论文, 2014.)
[84]
Ding H. Master Dissertation of Harbin Institute of Technology, 2013.
( 丁浩. 哈尔滨工业大学硕士论文, 2013.)
[85]
Zhao J F. Doctoral Dissertation of Southwest Jiaotong University, 2018.
( 赵君凤. 西南交通大学博士论文, 2018.)
[86]
Fan J Y, Ding Z X, Zhao Z W, Liu J. Chem. Eng. J., 2018, 350:453.

doi: 10.1016/j.cej.2018.04.144     URL    
[87]
Anquandah G A K, Sharma V K, Knight D A, Batchu S R, Gardinali P R. Environ. Sci. Technol., 2011, 45(24):10575.

doi: 10.1021/es202237g     pmid: 22032699
[88]
Lee Y, von Gunten U. Water Res., 2010, 44(2):555.

doi: 10.1016/j.watres.2009.11.045     URL    
[89]
Jiang J, Pang S Y, Ma J. Environ. Sci. Technol., 2009, 43(21):8326.

doi: 10.1021/es901663d     pmid: 19924964
[1] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.