English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1258-1265 DOI: 10.7536/PC221214 前一篇   后一篇

• 综述 •

基于过氧乙酸的高级氧化技术及在水处理消毒中的应用

李怡宁, 隋铭皓*()   

  1. 同济大学环境科学与工程学院 上海 200092
  • 收稿日期:2022-12-28 修回日期:2023-03-27 出版日期:2023-08-24 发布日期:2023-05-10
  • 作者简介:

    隋铭皓 同济大学环境科学与工程学院教授、博士生导师。主要研究方向包括高级氧化水处理技术和微生物消毒技术研究。主持国家自然科学基金、重点研发计划课题等省部级课题11项,发表学术论文近百篇,其中SCI论文40 篇。

  • 基金资助:
    国家自然科学基金项目(2019YFC0408801)

Peracetic Acid-Based Advanced Oxidation Processes and Its Applications in Water Disinfection

Yining Li, Minghao Sui()   

  1. College of Environment Science and Engineering, Tongji University,Shanghai 200092, China
  • Received:2022-12-28 Revised:2023-03-27 Online:2023-08-24 Published:2023-05-10
  • Contact: *e-mail: minghaosui@tongji.edu.cn
  • Supported by:
    National Natural Science Foundation of China(2019YFC0408801)

近年来有研究发现基于过氧乙酸(PAA)的高级氧化技术(AOP)不仅可以降解水中新兴的微污染物,还比单独PAA有更好的消毒效果。本文总结了PAA的高级氧化技术活化机理,阐述了PAA的AOP在水消毒中的应用研究进展。基于目前的研究,发现UV/PAA在水消毒的前沿问题中,如藻类及藻毒素的去除、真菌及抗生素耐药菌灭活等方面都有良好的处理效果,有待更进一步的探索,其他方式活化PAA的AOP在水消毒领域的研究数量不多,拥有广阔的研究潜力,除此之外,对PAA的AOP中可能存在的消毒副产物进行识别也可能是未来的研究热点。

Recent research has revealed that PAA-based advanced oxidation processes (AOP) can simultaneously destroy developing micropollutants in water while having a greater disinfection efficacy than PAA alone. This paper summarizes the activation mechanism of PAA-based AOP and its use in water disinfection. According to recent study, UV/PAA has a good treatment effect in the cutting-edge problems of water disinfection, such as the removal of algae and algal toxins, the inactivation of fungus and antibiotic-resistant bacteria, etc. It is awaiting more investigation. There are few AOPs in the realm of water disinfection that activate PAA in other ways, but they have significant research promise. Identification of potential disinfection by-products found in AOP of PAA may also become a focus of future research.

Contents

1 Introduction

2 Peracetic acid-based advanced oxidation processes and activation mechanism

2.1 Radiation activation

2.2 Metal catalysts activation

2.3 Activated carbon catalysts activation

3 Recent advances of peracetic acid-based advanced oxidation processes in water disinfection

3.1 Recent advances of bacterial inactivation

3.2 Recent advances of fungus and algae inactivation

3.3 Recent advances of virus inactivation

3.4 Recent advances of DBPs

4 Conclusion and outlook

()
图1 UV活化PAA机理[23]
Fig.1 Mechanism of Ultraviolet Activation of PAA[23].Copyright 2020, American Chemical Society
图2 热活化PAA机理[17]
Fig.2 Mechanism of Thermal Activation of PAA[17].Copyright 2020, American Chemical Society
表1 基于PAA的AOP降解有机污染物的研究概述
Table 1 Overview of studies employing PAA-based AOPs for removing organic compounds
[1]
Chen Y X, Cheng M, Lai C, Wei Z, Zhang G X, Li L, Tang C S, Du L, Wang G F, Liu H D. Small, 2023, 19(14): 2205902.
[2]
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. ACS Catalysis, 2023, 13: 3.
[3]
Fu W H, Yi J, Cheng M, Liu Y, Zhang G X, Li L, Du L, Li B, Wang G F, Yang X F. J. Hazard. Mater., 2022, 424: 127419.
[4]
Shi Q K, Deng S, Zheng Y L, Du Y L, Li L, Yang S Z, Zhang G X, Du L, Wang G F, Cheng M, Liu Y. Environ. Res., 2022, 212: 113340.
[5]
Mezzanotte V, Antonelli M, Citterio S, Nurizzo C. Water Environ. Res., 2007, 79(12): 2373.

pmid: 18044353
[6]
Wang C H, Fang R S. Chinese Journal of Disinfection, 2006, (2): 100.
(王传虎, 方荣生. 中国消毒学杂志, 2006, (2) 100.).
[7]
Luukkonen T, Heyninck T, Rämö J, Lassi U. Water Res., 2015, 85: 275.

doi: 10.1016/j.watres.2015.08.037     pmid: 26342181
[8]
Tian Q L. Journal of Hubei University of Medicine, 1991, (1): 59.
(田秋霖. 湖北医学院学报, 1991, (1): 59.).
[9]
Ao X W, Eloranta J, Huang C H, Santoro D, Sun W J, Lu Z D, Li C. Water Res., 2021, 188: 116479.
[10]
Stampi S, De Luca G, Onorato M, Ambrogiani E, Zanetti F. J. Appl. Microbiol., 2002, 93(5): 725.

pmid: 12392516
[11]
Luukkonen T, Teeriniemi J, Prokkola H, Rämö J, Lassi U. Water SA, 2014, 40(1): 73.

doi: 10.4314/wsa.v40i1.9     URL    
[12]
Shah N S, He X X, Khan H M, Ali Khan J, O'Shea K E, Boccelli D L, Dionysiou D D. J. Hazard. Mater., 2013, 263: 584.

doi: 10.1016/j.jhazmat.2013.10.019     URL    
[13]
Matta R, Tlili S, Chiron S, Barbati S. Environ. Chem. Lett., 2011, 9(3): 347.

doi: 10.1007/s10311-010-0285-z     URL    
[14]
Shi C C,. Li Y, Wang J, Guo S, Barry Y, Zhang N. Marmier Water, 2022. 14, DOI: 10.3390/w14152309.

doi: 10.3390/w14152309    
[15]
Correa-Sanchez S, Peñuela G A. J. Water Process. Eng., 2022, 49: 102986.
[16]
Kiejza D, Kotowska U, Polińska W, Karpińska J. Sci. Total Environ., 2021, 790: 148195.
[17]
Wang J W Y, Wan J Q, Ding Z P, Wang J, Ma P C, Xie M, Wiesner R. Environmental Science Technology, 2020, 54: 22.
[18]
Luukkonen T, Pehkonen S O. Crit. Rev. Environ. Sci. Technol., 2017, 47(1): 1.

doi: 10.1080/10643389.2016.1272343     URL    
[19]
Zoschke K, Börnick H, Worch E. Water Res., 2014, 52: 131.

doi: 10.1016/j.watres.2013.12.034     URL    
[20]
Bai M D, Tian Y P, Yu Y X, Zheng Q L, Zhang X F, Zheng W, Zhang Z T. Chemosphere, 2018, 208: 541.

doi: 10.1016/j.chemosphere.2018.06.010     URL    
[21]
Yan T T, Ping Q, Zhang A, Wang L, Dou Y C, Li Y M. Chemosphere, 2021, 274: 129726.
[22]
Chateauneuf J, Lusztyk J, Ingold K U. J. Am. Chem. Soc., 1988, 110(9): 2877.

doi: 10.1021/ja00217a031     URL    
[23]
Zhang T Q, Huang C H. Environ. Sci. Technol., 2020, 54(12): 7579.

doi: 10.1021/acs.est.9b06826     URL    
[24]
Deng J, Liu S, Fu Y, Liu Y. Environmental Technology, 2022, 201, 117291.
[25]
Rokhina E V, Makarova K, Lahtinen M, Golovina E A, Van As H, Virkutyte J. Chem. Eng. J., 2013, 221: 476.

doi: 10.1016/j.cej.2013.02.018     URL    
[26]
Zhu T T, Liu B. Water Res., 2022, 220: 118705.
[27]
Wang J, Wang Z, Cheng Y, Cao L, Bai F, Yue S, Xie P, Ma J. Water Research, 2021, 201: 117291.
[28]
Kim J, Zhang T Q, Liu W, Du P H, Dobson J T, Huang C H. Environ. Sci. Technol., 2019, 53(22): 13312.

doi: 10.1021/acs.est.9b02991     URL    
[29]
Dias Carlos T, Bezerra L B, Vieira M M, Almeida Sarmento R, Pereira D H, Cavallini G S. J. Hazard. Mater., 2021, 403: 123949.
[30]
Wang J W, Wang Z P, Cheng Y J, Cao L S, Xie P C, Ma J. Sep. Purif. Technol., 2022, 281: 119854.
[31]
Zhang P Y, Zhang X F, Zhao X D, Jing G H, Zhou Z M. J. Hazard. Mater., 2022, 424: 127653.
[32]
He M F, Li W Q, Xie Z H, Yang S R, He C S, Xiong Z K, Du Y, Liu Y, Jiang F, Mu Y, Lai B. Water Research, 2022, 222, 118887.
[33]
Wen G, Wang S J, Ma J, Huang T L, Liu Z Q, Zhao L, Xu J L. J. Hazard. Mater., 2014, 275: 193.

doi: 10.1016/j.jhazmat.2014.05.002     URL    
[34]
Zhang L L, Chen J B, Zhang Y L, Xu Y, Zheng T L, Zhou X F. Water Res., 2022, 216: 118322.
[35]
Li Y F, Li K, Wan Q Q, Xu X Q, Cao R H, Wang J Y, Huang T L, Wen G. J. Hazard. Mater., 2022, 439: 129611.
[36]
Zhang L, Fu Y S, Wang Z R, Zhou G F, Zhou R Y, Liu Y Q. Sep. Purif. Technol., 2021, 276: 119319.
[37]
Wang Z R, Fu Y S, Peng Y L, Wang S X, Liu Y Q. Sep. Purif. Technol., 2021, 277: 119434.
[38]
Wang Z P, Wang J W, Xiong B, Bai F, Wang S L, Wan Y, Zhang L, Xie P C, Wiesner M R. Environ. Sci. Technol., 2020, 54(1): 464.

doi: 10.1021/acs.est.9b04528     URL    
[39]
Kim J, Du P H, Liu W, Luo C, Zhao H, Huang C H. Environ. Sci. Technol., 2020, 54(8): 5268.

doi: 10.1021/acs.est.0c00356     URL    
[40]
Wu W, Tian D, Liu T C, Chen J B, Huang T Y, Zhou X F, Zhang Y L. Chem. Eng. J., 2020, 394: 124938.
[41]
Wang J W, Xiong B, Miao L, Wang S L, Xie P C, Wang Z P, Ma J. Appl. Catal. B Environ., 2021, 280: 119422.
[42]
Rothbart S, Ember EE, R. van Eldik. New Journal of Chemistry, 2012, 36(3): 732.

doi: 10.1039/C2NJ20852K     URL    
[43]
Zhou R Y, Zhou G F, Liu Y Q, Liu S L, Wang S X, Fu Y S. Chemosphere, 2022, 306: 135506.
[44]
Li R B, Manoli K, Kim J, Feng M B, Huang C H, Sharma V K. Environ. Sci. Technol., 2021, 55(13): 9150.

doi: 10.1021/acs.est.0c06676     URL    
[45]
de Velásquez M T O, Yáñez-noguez I, JimÉnez-cisneros B, Luna Pabello V M. Environ. Technol., 2008, 29(11): 1209.

doi: 10.1080/09593330802270632     pmid: 18975853
[46]
Zhou F Y, Lu C, Yao Y Y, Sun L J, Gong F, Li D W, Pei K M, Lu W Y, Chen W X. Chem. Eng. J., 2015, 281: 953.

doi: 10.1016/j.cej.2015.07.034     URL    
[47]
Zhang T Q, Wang T, Mejia-Tickner B, Kissel J, Xie X, Huang C H. Environ. Sci. Technol., 2020, 54(15): 9652.

doi: 10.1021/acs.est.0c02424     URL    
[48]
Drosou C, Coz A, Xekoukoulotakis N P, Moya A, Vergara Y, Mantzavinos D. J. Chem. Technol. Biotechnol., 2010, 85(8): 1049.
[49]
Ghordouei Milan E, Mahvi A H, Nabizadeh R, Alimohammadi M. Environ. Evid., 2022, 11(1): 1.

doi: 10.1186/s13750-022-00257-z    
[50]
Ping Q, Yan T T, Wang L, Li Y M, Lin Y Q. Water Res., 2022, 210: 118019.
[51]
Zhang X F, Ma Y X, Tang T T, Xiong Y M, Dai R H. Sci. Total Environ., 2020, 720: 137653.
[52]
Almuhtaram H, Hofmann R. J. Hazard. Mater., 2022, 424: 127357.
[53]
Zhao H X, Zhang T Y, Wang H, Hu C Y, Tang Y L, Xu B. Sci. Total Environ., 2022, 853: 158626.
[54]
Cao L, Wang J, Wang Z, Yu S, Cheng Y, Ma J, Xie P. Water Research, 2022, 208(1): 117847.
[55]
Xu X Q, Zuo J, Wan Q Q, Cao R H, Xu H N, Li K, Huang T L, Wen G, Ma J. J. Hazard. Mater., 2022, 430: 128515.
[56]
Koivunen J, Heinonen-Tanski H. Water Res., 2005, 39(18): 4445.

pmid: 16221481
[57]
Wen G, Chen Z H, Wan Q Q, Zhao D, Xu X Q, Wang J Y, Li K, Huang T L. Chem. Eng. J., 2020, 382: 123003.
[58]
Hassaballah A H, Nyitrai J, Hart C H, Dai N, Sassoubre L M. Environ. Sci.: Water Res. Technol., 2019, 5(8): 1453.
[59]
Maffei F, Buschini A, Rossi C, Poli P L, Forti G C, Hrelia P. Environ. Mol. Mutagen., 2005, 46(2): 116.

doi: 10.1002/(ISSN)1098-2280     URL    
[60]
Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dörr A J M, Rizzoni M. Genet. Toxicol. Environ. Mutagen., 2004, 557(2): 119.

doi: 10.1016/j.mrgentox.2003.10.008     URL    
[61]
Guzzella L, Monarca S, Zani C, Feretti D, Zerbini I, Buschini A, Poli P L, Rossi C, Richardson S D. Genet. Toxicol. Environ. Mutagen., 2004, 564(2): 179.

doi: 10.1016/j.mrgentox.2004.08.006     URL    
[1] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[2] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[3] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.
[4] 王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(08): 1246-1259.
[5] 徐莹莹, 李钊, Maxim Borzov, 聂万丽*. 空间受阻型Lewis酸碱对在小分子活化中的应用[J]. 化学进展, 2012, 24(08): 1526-1532.
[6] 韩强, 杨世迎, 杨鑫, 邵雪停, 牛瑞, 王雷雷. 钴催化过一硫酸氢盐降解水中有机污染物:机理及应用研究[J]. 化学进展, 2012, 24(01): 144-156.
[7] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.