English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1030-1039 DOI: 10.7536/PC221123 前一篇   后一篇

• 综述 •

零价铝表面物相转变及影响污染物去除的作用机制

杨世迎1,2,3,*(), 杨震3   

  1. 1 海洋环境与生态教育部重点实验室 青岛 266100
    2 山东省海洋环境地质工程重点实验室 青岛 266100
    3 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2022-11-24 修回日期:2023-04-05 出版日期:2023-07-24 发布日期:2023-06-12
  • 基金资助:
    山东省自然科学基金项目(ZR2020MB093)

Mechanism of Phase Transition on Zero-Valent Aluminum Surface and Its Effect on Pollutant Removal

Shiying Yang1,2,3(), Zhen Yang3   

  1. 1 The Key Laboratory of Marine Environment & Ecology, Ministry of Education,Qingdao 266100, China
    2 Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE),Qingdao 266100, China
    3 College of Environmental Science and Engineering, Ocean University of China,Qingdao 266100, China
  • Received:2022-11-24 Revised:2023-04-05 Online:2023-07-24 Published:2023-06-12
  • Contact: * e-mail: ysy@ouc.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2020MB093)

零价铝(Zero-valent aluminum,ZVAl)在气相和液相介质中都容易被氧化,这会使得作为“电子库”的单质Al外部覆盖一层(氢)氧化物外壳。该外壳通常会由结构各异的Al2O3、AlOOH、Al(OH)3等物相组成。随着环境条件的改变,组成外壳的各物相间会发生转变,且同一物相的不同晶型间也会发生相变,最终皆会使得ZVAl整体性能改变。目前各领域学者对ZVAl的处理皆可看作是对ZVAl原表面成分进行的不同程度调控。在污染物降解领域中,虽已有研究证明ZVAl可凭借其强还原能力有效降解污染物,但目前研究仅仅关注于表面固有(氢)氧化物从而活化ZVAl,忽略了表面各物相间的转化与联系,这难以系统明确ZVAl在降解污染物过程中的表面氧化物转变对其还原性能的影响。然而,全面了解组成ZVAl表面物相的各类氧化物结构、性质特别是物相间的转变过程至关重要,可为ZVAl与污染物的界面反应过程和作用机制研究及ZVAl的定向调控提供理论基础。因此,本文首次从ZVAl表面物相的类型、结构、性质以及物相转变的作用机理角度出发,以目前国内外涉及ZVAl基材料的能源燃料、防腐涂料、亲疏水材料等相关应用为理论依据,对ZVAl基材料表面氧化物转变的作用机制进行综述、展望,以期促进污染物降解领域中ZVAl的研究,使其表面调控向目标性能方向发展。

Zero-valent aluminum (ZVAl) is susceptibly oxidized in both gas and liquid media, which makes the element Al, as an “electron reservoir”, surrounded by an oxide/oxyhydroxide shell. Typically, this shell is made up of Al2O3, AlOOH, Al(OH)3 and other phases with varying structures. Furthermore, as the environment changes, the shell’s phases may transform into each other, and even the transition between different crystalline forms of the same phase may take place, finally leading to changes in the general properties of ZVAl. It is believed that the treatment of ZVAl in a variety of fields can be regarded as different regulations of its surface composition. Although it has been demonstrated that ZVAl can efficiently degrade pollutants due to its strong reducing ability, current research only focuses on the removal of the inherent oxides/oxyhydroxides on the surface of ZVAl, ignoring the transition and connection between the various phases. As a result, it is challenging to systematically clarify the impact of surface phase transformation on the reduction performance of ZVAl in the process of pollutant degradation. To provide a theoretical foundation for the investigation of the interfacial reaction processes and mechanisms between ZVAl and pollutants as well as the directional regulation of ZVAl, it is necessary to have a thorough understanding of the structure and properties of the various phases that make up the ZVAl surface, particularly the transition processes between different phases. Hence, in this review, for the first time, the reaction mechanism of the surface phase transition of ZVAl-based materials is summarized and prospectively discussed from the perspective of the type, structure, and nature of ZVAl surface phases as well as the reaction mechanism of the phase transition.

Contents

1 Introduction

2 Structure and properties of oxidized ZVAl in medias

2.1 Structure and properties of surface phases in gas media

2.2 Structure and properties of surface phases in liquid media

3 Phase transition of oxide/oxyhydroxide shells of ZVAl

3.1 To form γ-Al2O3

3.2 To form α-Al2O3

4 The influence mechanism of phase transition

4.1 Transition mechanisms in gas media

4.2 Transition mechanisms in liquid media

5 Conclusions and outlook

()
图1 Al表面AlOOH向γ-Al2O3相变转化过程[37]
Fig.1 Transformation process of AlOOH to γ-Al2 O3[37]
图2 铝水反应的一种收缩核模型[61]
Fig.2 A shrinkage core model for ZVAl-H2O reaction[61]
图3 水滴在(a)裸露的铝箔上,(b)合成的薄水铝石膜上,(c)硬脂酸改性后的薄水铝石膜上[67]
Fig.3 Water droplets on (a) exposed ZVAl, (b) synthetic AlOOH film,(c) photographs of AlOOH films modified by stearic acid[67]
图4 基于表面氧化改性ZVAl去除溴酸盐研究模型[7]
Fig.4 Research model of bromate removal based on oxidation modification of ZVAl[7]
图5 AC@mZVAlbm/NaCl降解HBCD的机理[88]
Fig.5 The proposed reaction mechanism of HBCD degradation by AC@mZVAlbm/NaCl[88].
[1]
Dreizin E L, Schoenitz M. Prog. Energy Combust. Sci., 2015, 50: 81.

doi: 10.1016/j.pecs.2015.06.001     URL    
[2]
Shkolnikov E I, Zhuk A Z, Vlaskin M S. Renew. Sustain. Energy Rev., 2011, 15(9): 4611.

doi: 10.1016/j.rser.2011.07.091     URL    
[3]
DeLuca L T. Def. Technol., 2018, 14(5): 357.
[4]
Karlsson P, Palmqvist A E C, Holmberg K. Adv. Colloid Interface Sci., 2006, 128: 121.
[5]
Mwema F M, Oladijo O P, Akinlabi S A, Akinlabi E T. J. Alloys Compd., 2018, 747: 306.

doi: 10.1016/j.jallcom.2018.03.006     URL    
[6]
Yang Y, Gai W Z, Zhou J G, Deng Z Y. Chem. Eng. J., 2020, 395: 125140.

doi: 10.1016/j.cej.2020.125140     URL    
[7]
Zhou W, Yang Y, Gai W Z, Deng Z Y. Sci. Total Environ., 2021, 795: 148786.

doi: 10.1016/j.scitotenv.2021.148786     URL    
[8]
Xie S, Yang Y, Gai W Z, Deng Z Y. RSC Adv., 2021, 11(2): 867.

doi: 10.1039/D0RA09048D     URL    
[9]
Yang S Y, Zheng D, Ren T F, Zhang Y X, Xin J. Water Res., 2017, 123: 704.

doi: 10.1016/j.watres.2017.07.013     URL    
[10]
Yang S Y, Zhang Y X, Zheng D, Xin J. Progress in Chemistry, 2017, (08):879.
(杨世迎, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, (08):879.).
[11]
Peng T, Guo X H, Yang Y, Gai W Z, Deng Z Y. J. Clean. Prod., 2022, 365: 132901.

doi: 10.1016/j.jclepro.2022.132901     URL    
[12]
Levin I, Brandon D. J. Am. Ceram. Soc., 2005, 81(8): 1995.

doi: 10.1111/jace.1998.81.issue-8     URL    
[13]
Prabu S, Wang H W. Catal. Sci. Technol., 2021, 11(13): 4636.

doi: 10.1039/D1CY00534K     URL    
[14]
Xiao F, Yang R J, Liu Z H. Int. J. Hydrog. Energy, 2022, 47(1): 365.

doi: 10.1016/j.ijhydene.2021.09.241     URL    
[15]
Liu J, Gu T H, Wang W, Liu A R, Zhang W X. Acta Chimica Sinica, 2019, 77(02):121.

doi: 10.6023/A18100412     URL    
(刘静, 顾天航, 王伟, 刘爱荣, 张伟贤. 化学学报, 2019, 77(02):121.).
[16]
Liu J, Liu A R, Zhang W X. Environmental Chemistry, 2014, 33(04):576.
(刘静, 刘爱荣, 张伟贤. 环境化学, 2014, 33(04):576.).
[17]
Cai N, Zhou G W, Müller K, Starr D E. J. Phys. Chem. C, 2013, 117(1): 172.

doi: 10.1021/jp305740s     URL    
[18]
Deng Z Y, Tanaka Y, Sakka Y, Kagawa Y. J. Mater. Res., 2005, 20(3): 672.

doi: 10.1557/JMR.2005.0077     URL    
[19]
Gupta A, Sharma S, Joshi M R, Agarwal P, Balani K. Mater. Sci. Forum, 2010, 653: 87.

doi: 10.4028/www.scientific.net/MSF.653     URL    
[20]
Wang H Z, Leung D Y C, Leung M K H, Ni M. Renew. Sustain. Energy Rev., 2009, 13(4): 845.

doi: 10.1016/j.rser.2008.02.009     URL    
[21]
Kimura F, Yamaguchi E, Horie N, Suzuki G, Kajihara Y. Mater. Lett., 2020, 260: 126963.

doi: 10.1016/j.matlet.2019.126963     URL    
[22]
Godart P, Hart D. Appl. Energy, 2020, 275: 115316.

doi: 10.1016/j.apenergy.2020.115316     URL    
[23]
Razavi-Tousi S S, Ali Nematollahi G, Ebadzadeh T, Szpunar J A. Powder Technol., 2013, 241: 166.

doi: 10.1016/j.powtec.2013.03.025     URL    
[24]
Vlaskin M S, Shkolnikov E I, Lisicyn A V, Bersh A V, Zhuk A Z. Int. J. Hydrog. Energy, 2010, 35(5): 1888.

doi: 10.1016/j.ijhydene.2009.12.061     URL    
[25]
Gai W Z, Zhang X H, Yang Y, Deng Z Y. Int. J. Energy Res., 2020, 44(6): 4969.

doi: 10.1002/er.v44.6     URL    
[26]
Shumilov V, Kirilin A, Tokarev A, Boden S, Schubert M, Hampel U, Hupa leena, Salmi T, Murzin D Y. Catal. Today, 2022, 383: 64.

doi: 10.1016/j.cattod.2020.09.019     URL    
[27]
Yan X, Xu J Y, Cui Z R, Han B Y, Zhang C. Surf. Coat. Technol., 2022, 438: 128413.

doi: 10.1016/j.surfcoat.2022.128413     URL    
[28]
Akbarzadeh A, Ahmadlouydarab M, Niaei A. Renew. Energy, 2021, 173: 704.

doi: 10.1016/j.renene.2021.04.026     URL    
[29]
Pan X D, Li X C, Wang J L, Xu B C, Lyu Y M, Xu Y P, Zhao X L, Zhou H S, Luo G N. J. Nucl. Mater., 2023, 574: 154156.

doi: 10.1016/j.jnucmat.2022.154156     URL    
[30]
Ionescu A, Allouche A, Aycard J P, Rajzmann M, Hutschka F. J. Phys. Chem. B, 2002, 106(36): 9359.

doi: 10.1021/jp020145n     URL    
[31]
Shen L J, Zheng X H, Lei G C, Li X, Cao Y N, Jiang L L. Chem. Eng. J., 2018, 346: 238.

doi: 10.1016/j.cej.2018.03.157     URL    
[32]
Wang X B, Zhan C L, Kong B, Zhu X G, Liu J, Xu W Z, Cai W P, Wang H T. J. Colloid Interface Sci., 2015, 453: 244.

doi: 10.1016/j.jcis.2015.03.065     URL    
[33]
Gan D D. Master Dissertation of China University of Petroleum (Beijing), 2016.
(甘丹丹. 中国石油大学(北京)硕士论文, 2016.).
[34]
Shen H L, Liu B, Ekberg C, Zhang S G. Sci. Total Environ., 2021, 760: 143968.

doi: 10.1016/j.scitotenv.2020.143968     URL    
[35]
Wang Z Z, Wen G Y, Zhao L G, Zhao P L, Jiang R H, Zhuang Y L, Meng Q, Jia S F, Zheng H, Wang J B. Journal of Chinese Electron Microscopy Society, 2020, 39(05):487.
(王正洲, 文广玉, 赵立功, 赵培丽, 蒋仁辉, 庄园林, 孟琪, 贾双凤, 郑赫, 王建波. 电子显微学报, 2020, 39(05):487.).
[36]
Szczęśniak B, Choma J, Jaroniec M. Microporous Mesoporous Mater., 2021, 312: 110792.

doi: 10.1016/j.micromeso.2020.110792     URL    
[37]
Pigeon T, Chizallet C, Raybaud P. J. Catal., 2022, 405: 140.

doi: 10.1016/j.jcat.2021.11.011     URL    
[38]
Roy T, Corral-Valero M, Corre T, Delpoux O, Pirngruber G, Lefèvre G. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 634: 127923.

doi: 10.1016/j.colsurfa.2021.127923     URL    
[39]
Zhou B Y, He J, Zhou Q J, Guo H B. J. Mater. Sci. Technol., 2022, 109: 157.

doi: 10.1016/j.jmst.2021.09.028     URL    
[40]
Daraio D, Villoria J, Ingram A, Alexiadis A, Stitt E H, Munnoch A L, Marigo M. Miner. Eng., 2020, 155: 106374.

doi: 10.1016/j.mineng.2020.106374     URL    
[41]
Jang J, Yang D, Moon D, Choi D, Lim H J, Kang S G, Bae D, Han H N, Park Y, Yoon E. J. Cryst. Growth, 2018, 498: 130.

doi: 10.1016/j.jcrysgro.2018.06.012     URL    
[42]
Lin S M, Yu Y L, Zhong M F, Yang H, Zhang C Y, Zhang Z J, Xu W, Xie J Y, Qiu Y C. Ceram. Int., 2021, 47(19): 26869.

doi: 10.1016/j.ceramint.2021.06.096     URL    
[43]
HÉrisson de Beauvoir T, Estournès C. Scr. Mater., 2021, 194: 113650.

doi: 10.1016/j.scriptamat.2020.113650     URL    
[44]
Ma H R, Cen S X, Yu Z R, Xing X Y, Chen J J, Wang D J, Dong C L, Mao Z Y. Ceram. Int., 2022, 48(23): 35480.

doi: 10.1016/j.ceramint.2022.08.154     URL    
[45]
Trowell K A, Goroshin S, Frost D L, Bergthorson J M. Appl. Energy, 2020, 275: 115112.

doi: 10.1016/j.apenergy.2020.115112     URL    
[46]
Tappan B C, Dirmyer M R, Risha G A. Angew. Chem. Int. Ed., 2014, 53(35): 9218.

doi: 10.1002/anie.201404962     pmid: 24943658
[47]
Sharipov A, Titova N, Starik A. J. Phys. Chem. A, 2011, 115(17): 4476.

doi: 10.1021/jp111826y     URL    
[48]
Hu Y H, Hao D Y, Tao B W, Wang F, Wang D K, Fan R Q, Xia D B, Wang P, Yang Y L, Pang A M, Lin K F. Chem. Eng. J., 2020, 394: 124884.

doi: 10.1016/j.cej.2020.124884     URL    
[49]
Hu Y H, Tao B W, Hao D Y, Fan R Q, Xia D B, Lin K F, Pang A M, Yang Y L. Chem. Eng. Sci., 2020, 222: 115701.

doi: 10.1016/j.ces.2020.115701     URL    
[50]
Collard D N, Fleck T J, Rhoads J F, Son S F. Combust. Flame, 2021, 223: 110.

doi: 10.1016/j.combustflame.2020.09.016     URL    
[51]
Jin X, Li S J, Yang Y H, Huang X F. Combust. Sci. Technol., 2021, 193(2): 341.

doi: 10.1080/00102202.2020.1800659     URL    
[52]
Miller K K, Shancita I, Bhattacharia S K, Pantoya M L. Mater. Des., 2021, 210: 110119.

doi: 10.1016/j.matdes.2021.110119     URL    
[53]
Poges S, Jin J, Guild C, Li W N, Birnkrant M, Suib S L. Mater. Chem. Phys., 2018, 207: 303.

doi: 10.1016/j.matchemphys.2017.12.079     URL    
[54]
Ko C L, Kuo Y L, Chen S H, Chen S Y, Guo J Y, Wang Y J. Thin Solid Films, 2020, 709: 138151.

doi: 10.1016/j.tsf.2020.138151     URL    
[55]
Wagner J, Josse C, Gani L, Knittel S, Taberna P L, Ansart F. Results Mater., 2022, 13: 100259.
[56]
Wang K, Byeon S S, Jung Y G, Koo B H. Ceram. Int., 2012, 38: S669.

doi: 10.1016/j.ceramint.2011.05.132     URL    
[57]
Shockley J M, Descartes S, Vo P, Irissou E, Chromik R R. Surf. Coat. Technol., 2015, 270: 324.

doi: 10.1016/j.surfcoat.2015.01.057     URL    
[58]
Wang Z P, Sun Y B, Ding K Y, Liu J, Cai X. Transactions of the China Welding Institution, 2008, 29(12):74.
(王志平, 孙宇博, 丁坤英, 刘佳, 蔡珣. 焊接学报, 2008, 29(12):74.).
[59]
Bunker B C, Nelson G C, Zavadil K R, Barbour J C, Wall F D, Sullivan J P, Windisch C F, Engelhardt M H, Baer D R. J. Phys. Chem. B, 2002, 106(18): 4705.

doi: 10.1021/jp013246e     URL    
[60]
Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrog. Energy, 2012, 37(17): 13132.

doi: 10.1016/j.ijhydene.2012.04.025     URL    
[61]
Wang X Y, Li G, Eckhoff R K. Int. J. Hydrog. Energy, 2021, 46(67): 33635.

doi: 10.1016/j.ijhydene.2021.07.191     URL    
[62]
Chen X R, Wang C P, Liu Y H, Shen Y S, Zheng Q J, Yang S Y, Lu H M, Zou H W, Lin K R, Liu H X, Qiu H J, Wu J W, Zhang Q, Liu X J. Mater. Today Energy, 2021, 19: 100602.
[63]
Xhanari K, Finšgar M. Arab. J. Chem., 2019, 12(8): 4646.

doi: 10.1016/j.arabjc.2016.08.009     URL    
[64]
Savio L, Bhavitha K B, Bracco G, Luciano G, Cavallo D, Paolini G, Passaglia S, Carraro G, Vattuone L, Masini R, Smerieri M. Appl. Surf. Sci., 2021, 542: 148574.

doi: 10.1016/j.apsusc.2020.148574     URL    
[65]
Da Y F, Liu Y, Chen Y, Han R, Wang J L. Sep. Purif. Technol., 2023, 308: 122806.

doi: 10.1016/j.seppur.2022.122806     URL    
[66]
Zhang S M, Wang Y C, Li Y W, Wei M H, Wang K L. J. Power Sources, 2022, 545: 231907.

doi: 10.1016/j.jpowsour.2022.231907     URL    
[67]
Liu L J, Zhao J S, Zhang Y, Zhao F, Zhang Y B. J. Colloid Interface Sci., 2011, 358(1): 277.

doi: 10.1016/j.jcis.2011.02.036     URL    
[68]
Gabryelczyk A, Ivanov S, Bund A, Lota G. J. Energy Storage, 2021, 43: 103226.

doi: 10.1016/j.est.2021.103226     URL    
[69]
Zheng F, Hao L, Li J, Zhu H, Chen X, Shi Z, Wang S, Fan Y. International Journal of Electrochemical Science, 2019, 14(8):7303.

doi: 10.20964/2019.08.69     URL    
[70]
Ling L, Pan B C, Zhang W X. Water Res., 2015, 71: 274.

doi: 10.1016/j.watres.2015.01.002     pmid: 25622004
[71]
Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2): 314.

doi: 10.1016/S1001-0742(11)60769-9     URL    
[72]
Antony J, Niveditha S V, Gandhimathi R, Ramesh S T, Nidheesh P V. Waste Manag., 2020, 106: 1.

doi: 10.1016/j.wasman.2020.03.005     URL    
[73]
Genç N, Pişkin E D, Aydın Ş. Process. Saf. Environ. Prot., 2022, 159: 605.

doi: 10.1016/j.psep.2022.01.038     URL    
[74]
Gai W Z, Shi Y, Deng Z Y, Zhou J G. Int. J. Hydrog. Energy, 2015, 40(36): 12057.

doi: 10.1016/j.ijhydene.2015.07.102     URL    
[75]
Deng Z Y, Liu Y F, Tanaka Y, Ye J H, Sakka Y. J. Am. Ceram. Soc., 2005, 88(4): 977.

doi: 10.1111/jace.2005.88.issue-4     URL    
[76]
Deng Z Y, Fukasawa T, Ando M, Zhang G J, Ohji T. Acta Mater., 2001, 49(11): 1939.

doi: 10.1016/S1359-6454(01)00109-4     URL    
[77]
Deng Z Y, Liu W H, Gai W Z, Sakka Y, Ye J H, Ou Z W. J. Am. Ceram. Soc., 2010, 93(9): 2534.

doi: 10.1111/jace.2010.93.issue-9     URL    
[78]
Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302: 437.

doi: 10.1016/j.jhazmat.2015.09.041     URL    
[79]
Lin K Y A, Lin J Y, Li P Y. Sep. Purif. Technol., 2017, 185: 120.

doi: 10.1016/j.seppur.2017.05.033     URL    
[80]
Fu F L, Han W J, Cheng Z H, Tang B. Desalination Water Treat., 2016, 57(12): 5592.

doi: 10.1080/19443994.2015.1006259     URL    
[81]
Yuan C, Li L, Sun Y L, Wang B D, Xu H, Wang Y. Research of Environmental Sciences, 2016, 29(07):1067.
(袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 环境科学研究, 2016, 29(07):1067.).
[82]
Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96: 22.

doi: 10.1016/j.watres.2016.03.020     URL    
[83]
Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1-2): 76.

doi: 10.1016/j.jhazmat.2011.02.001     pmid: 21377789
[84]
Fu F L, Cheng Z H, Dionysiou D D, Tang B. J. Hazard. Mater., 2015, 298: 261.

doi: 10.1016/j.jhazmat.2015.05.047     URL    
[85]
Lin K Y A, Lin C H, Yang H T. J. Environ. Chem. Eng., 2017, 5(5): 5085.

doi: 10.1016/j.jece.2017.09.040     URL    
[86]
Li Y, Zhang Y Q, Yang S Y, Xue Y C, Liu J Q, Wang M Q, Liu S J, Chen Y Y. Sci. Total Environ., 2021, 783: 146999.

doi: 10.1016/j.scitotenv.2021.146999     URL    
[87]
Liu S J, Yang S Y, Bao X J, Li Y, Wang M Q, Zhao D Y. J. Clean. Prod., 2022, 366: 133013.

doi: 10.1016/j.jclepro.2022.133013     URL    
[88]
Jiang Y T, Yang S Y, Wang M Q, Xue Y C, Liu J Q, Li Y, Zhao D Y. Chemosphere, 2021, 279: 130520.

doi: 10.1016/j.chemosphere.2021.130520     URL    
[89]
Hu Y, Zhan G M, Peng X, Liu X F, Ai Z H, Jia F L, Cao S Y, Quan F J, Shen W J, Zhang L Z. Chem. Eng. J., 2020, 389: 124414.

doi: 10.1016/j.cej.2020.124414     URL    
[90]
He K, Wang S C, Liu Y, Cao Z Y, Yang L W, He F. Sci. Total Environ., 2023, 857: 159397.

doi: 10.1016/j.scitotenv.2022.159397     URL    
[91]
He C S, Ding R R, Chen J Q, Zhou G N, Mu Y. Sci. Total Environ., 2022, 802: 149812.

doi: 10.1016/j.scitotenv.2021.149812     URL    
[92]
Li M Z, Cheng J X, Gu J N, Li Y X, Zou F, Yan M Q. Chinese Journal of Environmental Engineering, 2021, 15(02):580.
(李勐卓, 程继夏, 顾军农, 李玉仙, 邹放, 晏明全. 环境工程学报, 2021, 15(02):580.).
[93]
Zhou L, Li Z, Yi Y Q, Tsang E P, Fang Z Q. J. Hazard. Mater., 2022, 421: 126709.

doi: 10.1016/j.jhazmat.2021.126709     URL    
[94]
Li Y, Bao X J, Yang S Y, Li Q F, Fan D Y, Wang H C, Zhao D Y. J. Hazard. Mater., 2023, 452: 131313.

doi: 10.1016/j.jhazmat.2023.131313     URL    
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[3] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[4] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[5] 杨世迎, 张艺萱, 郑迪, 辛佳. 零价铝在水介质中的表面作用机制[J]. 化学进展, 2017, 29(8): 879-891.
[6] 杨世迎, 张翱, 任腾飞, 张宜涛. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展, 2017, 29(5): 539-552.
[7] 杨世迎, 郑迪, 常书雅, 石超. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展, 2016, 28(5): 754-762.
[8] 韩强, 杨世迎, 杨鑫, 邵雪停, 牛瑞, 王雷雷. 钴催化过一硫酸氢盐降解水中有机污染物:机理及应用研究[J]. 化学进展, 2012, 24(01): 144-156.
[9] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.