English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 1935-1946 DOI: 10.7536/PC201214 前一篇   后一篇

• 综述 •

基于共价有机框架材料的纳米体系在生物医学中的应用

胡子涛, 丁寅*()   

  1. 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210023
  • 收稿日期:2020-12-08 修回日期:2021-01-10 出版日期:2021-11-20 发布日期:2021-03-04
  • 通讯作者: 丁寅
  • 基金资助:
    国家重点研发计划(2018YFF0215500); 国家自然科学基金项目(21105047); 国家自然科学基金项目(51773089); 国家自然科学基金项目(51973091)

Application of Covalent Organic Framework-Based Nanosystems in Biomedicine

Zitao Hu, Yin Ding()   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2020-12-08 Revised:2021-01-10 Online:2021-11-20 Published:2021-03-04
  • Contact: Yin Ding
  • Supported by:
    National Key Research and Development Program of China(2018YFF0215500); National Natural Science Foundation of China(21105047); National Natural Science Foundation of China(51773089); National Natural Science Foundation of China(51973091)

共价有机框架(Covalent organic frameworks, COFs)材料是通过动态共价化学法合成的一种高度有序的多孔晶态有机聚合物。COFs材料具有密度低、比表面积大、孔隙度可调、合成路线简单多样、功能单元和结构可设计、表面及孔道易功能化、物理化学稳定性高等主要特征,在分子吸附与分离、储能、光电、传感、催化、色谱材料、水处理材料和生物医学等方面受到了广泛关注。本文重点综述近年来基于COFs材料的体系在生物检测和成像、药物输送、光学治疗和联合治疗等生物医学领域的研究进展,并总结了目前COFs材料在生物医学领域所面临的挑战和未来的发展机遇。

Covalent organic frameworks(COFs)is a highly ordered crystalline porous polymer synthesized by dynamic covalent chemical method. Low density, large specific surface area, adjustable porosity, simple and diverse synthesis routes, designable functional units and structures, easy functionalization of surface and pore channels, and high physicochemical stability are the main characteristics of COFs. It has received extensive attention in molecular adsorption and separation, energy storage, photoelectricity, sensing, catalysis, chromatography materials, water treatment materials and biomedicine domains. This paper focuses on the recent research progress of COFs-based nanosystems in biomedical fields, such as biological detection and imaging, drug delivery, optical therapy and combination therapy, and finally summarize the current challenges and future development opportunities of COFs in biomedical field.

Contents

1 Introduction

2 COFs for biosensors and imaging

3 COFs for drug delivery

4 COFs for phototherapy

4.1 COFs for photothermal therapy

4.2 COFs for photodynamic therapy

4.3 COFs for synergistic therapy

5 Other application of COFs

6 Conclusion and outlook

()
表1 近三年来部分COFs的合成方法及生物医学用途
Table 1 Synthesis methods and biomedical applications of some COFs in recent three years
Nanosystems Synthetic method Biomedical applications ref
TTA-DFP COF Microwave-assisted method Bioimaging 21
TPI-COF Solvothermal reaction Bioimaging 68
FA-Pd NPs/CMC-COF-LZU1 Room temperature reaction Bioimaging 69
TpASH-NPHS 90 ℃ 12 h Bioimaging 70
UCCOFs Solvothermal reaction Imaging, photodynamic therapy 71
F68@SS-COFs Solvothermal reaction Drug delivery 76
DOX@COF Room temperature reaction Drug delivery 77
PEG-CCM@APTES
COF-1@DOX
75 ℃ 24 h Drug delivery 78
FITC-PEG-COF@Ins-GOx Solvothermal reaction Drug delivery 79
5-FU@COF-HQ Solvothermal reaction Drug delivery 80
Fe-HCOF Room temperature reaction Photothermal therapy 88
CNP Room temperature reaction Photothermal therapy 89
Py-BPy-COF Solvothermal/Room temperature reaction Photothermal therapy 90
PCPP Solvothermal reaction Photodynamic therapy 33
PcS@COF-1 75 ℃ 20 h Photodynamic therapy 96
CONDs-PEG Solvothermal reaction Photodynamic therapy 97
COF-survivin Solvothermal reaction Imaging, photodynamic therapy 98
COF909 Solvothermal reaction Photodynamic therapy 99
COF-CuSe@PEG Room temperature reaction Photodynamic、Photothermal 100
COF-Ag2Se Room temperature reaction Photodynamic, photothermal 101
COF B Room temperature reaction Photodynamic, photothermal therapy 102
COF-366 Solvothermal reaction Photodynamic, photothermal 103
VONc@COF-Por Room temperature reaction Photodynamic, photothermal 104
COF@ICG@OVA Room temperature reaction Photodynamic, photothermal 105
ICG@COF-1@PDA 75 ℃ 20 h Photodynamic, photothermal 106
CaCO3@COF- BODIPY-2I@GAG Room temperature reaction Photodynamic therapy, Ca2+ overload 107
γ-SD/PLL Microwave irradiation MRI probe, chemo-thermotherapy 108
MnO2/ZnCOF@Au&BSA 80~85 ℃ 24 h Photothermal therapy, bioimaging 109
COF@IR783 Solvothermal reaction Chemotherapy, photothermal therapy 110
图1 TPI-COF合成示意图,长程阶π共轭域和跃迁偶极子的协同增强双光子性质[68]
Fig. 1 Schematic illustrating the synthesis of TPI-COF. Illustration of the long-range order π-conjugated domain and the cooperative enhancement of a transition dipole in TPI-COF leads to a strong two-photon interaction. Reproduced from ref 68 with permission. Copyright 2019, Wiley-VCH
图2 三维多孔晶体PI-COF的合成及其药物的释放性能[75]
Fig. 2 Synthesis process of 3D porous crystalline PI-COFs and drug release performance of IBU-loaded PI-COF. Reproduced from ref 75 with permission. Copyright 2015, American Chemical Society
图3 PEG-CCM@APTES-COF-1@DOX的制备及其PEG化后良好的水分散特性[78]
Fig. 3 Preparation of DOX-loaded PEG-CCM@APTES-COF-1@DOX and photographs of as-prepared samples in aqueous solution. Reproduced from ref 78 with permission. Copyright 2018, Springer Nature Limited
图4 (a) Py-BPy-COF转化为阳离子Py-BPy2+-COF和阳离子自由基Py-BPy+·-COF的过程示意图;(b)在808 nm(左)和1064 nm(右)激光照射下温度变化[90]
Fig. 4 (a) Transformation of Py-BPy-COF to cationic Py-BPy2+-COF and cationic radical Py-BPy+·-COF by two-step postmodification;(b) temperature changes upon exposure to 808 nm(left) and 1064 nm(right) lasers. Reproduced from ref 90 with permission. Copyright 2019, American Chemical Society
图5 (a)基于ROS惰性分子的新型COF基光敏剂合成示意图;(b)光动力治疗后小鼠肿瘤重量和图片[99]
Fig. 5 (a) New COF-based photosensitizers from ROS-inert molecular motif;(b) the tumor weights and images of mice after pthotodynamics therapy. Reproduced from ref 99 with permission. Copyright 2019, Wiley-VCH.
图6 ICG@COF-1@PDA制备示意图及其在通过免疫治疗抑制肿瘤转移中的应用[106]
Fig. 6 Schematic illustrating the fabrication process of ICG@COF-1@PDA nanosheets and its application in suppressing tumor metastasis through immunotherapy. Reproduced from ref 106 with permission. Copyright 2019, Wiley-VCH
图7 CaCO3 @COF-BODIPY-2I@GAG的合成过程和通过胞内Ca2+协同超载和PDT的肿瘤治疗示意图[107]
Fig. 7 Synthetic procedure of CaCO3@COF-BODIPY-2I@GAG and schematic illustration of synergistic intracellular Ca2+ overload and PDT. Reproduced from ref 107 with permission. Copyright 2020, Wiley-VCH
[1]
Cote A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

doi: 10.1126/science.1120411     URL    
[2]
Beuerle F, Gole B. Angew. Chem. Int. Ed., 2018, 57(18): 4850.

doi: 10.1002/anie.201710190     URL    
[3]
Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(47): 17853.

doi: 10.1021/ja408121p     pmid: 24168521
[4]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.

doi: 10.1021/jacs.7b11940     URL    
[5]
Qiu S, Fang Q, Li H, Guan X, Yusran Y. Natl. Sci. Rev., 2020, 7: 170.

doi: 10.1093/nsr/nwz122     URL    
[6]
Zhou T, Gong Y F, Guo J. J. Funct. Polym., 2018, 31(3): 189.
(周婷, 龚祎凡, 郭佳. 功能高分子学报, 2018, 31(3): 189.)
[7]
Guan X Y, Chen F Q, Fang Q R, Qiu S L. Chem. Soc. Rev., 2020, 49(5): 1357.

doi: 10.1039/C9CS00911F     URL    
[8]
Meng Y, Luo Y, Shi J L, Ding H M, Lang X J, Chen W, Zheng A M, Sun J L, Wang C. Angew. Chem. Int. Ed., 2020, 59(9): 3624.

doi: 10.1002/anie.v59.9     URL    
[9]
Alahakoon S B, Diwakara S D, Thompson C M, Smaldone R A. Chem. Soc. Rev., 2020, 49(5): 1344.

doi: 10.1039/c9cs00884e     pmid: 32073066
[10]
Fang Q R, Gu S, Zheng J, Zhuang Z B, Qiu S L, Yan Y S. Angew. Chem. Int. Ed., 2014, 53(11): 2878.

doi: 10.1002/anie.v53.11     URL    
[11]
Zhu Y L, Fu C L, Li Z W, Sun Z Y. J. Phys. Chem. Lett., 2020, 11(1): 179.
[12]
Liang R R, Ru-Han A, Xu S Q, Qi Q Y, Zhao X. J. Am. Chem. Soc., 2020, 142(1): 70.

doi: 10.1021/jacs.9b11401     URL    
[13]
Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42(2): 548.

doi: 10.1039/C2CS35072F     URL    
[14]
Smith B J, Overholts A C, Hwang N, Dichtel W R. Chem. Commun., 2016, 52(18): 3690.

doi: 10.1039/C5CC10221A     URL    
[15]
Feng X, Chen L, Dong Y P, Jiang D L. Chem. Commun., 2011, 47(7): 1979.

doi: 10.1039/c0cc04386a     URL    
[16]
Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41(18): 6010.

doi: 10.1039/c2cs35157a     URL    
[17]
Ding X S, Guo J, Feng X, Honsho Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew. Chem. Int. Ed., 2011, 50(6): 1289.

doi: 10.1002/anie.v50.6     URL    
[18]
Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202.

doi: 10.1002/adma.v22:19     URL    
[19]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/(ISSN)1521-3773     URL    
[20]
Kuecken S, Schmidt J, Zhi L J, Thomas A. J. Mater. Chem. A, 2015, 3(48): 24422.

doi: 10.1039/C5TA07408H     URL    
[21]
Das G, Benyettou F, Sharama S K, Prakasam T, Gándara F, de la Peña-O’Shea V A, Saleh N, Pasricha R, Jagannathan R, Olson M A, Trabolsi A. Chem. Sci., 2018, 9(44): 8382.

doi: 10.1039/C8SC02842G     URL    
[22]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.

doi: 10.1021/cm802981m     URL    
[23]
De la Peña RuigÓmez A, Rodríguez-San-miguel D, Stylianou K C, Cavallini M, Gentili D, Liscio F, Milita S, Roscioni O M, Ruiz-González M L, Carbonell C, Maspoch D, Mas-BallestÉ R, Segura J L, Zamora F. Chem. Eur. J., 2015, 21(30): 10666.

doi: 10.1002/chem.v21.30     URL    
[24]
Matsumoto M, Dasari R R, Ji W, Feriante C H, Parker T C, Marder S R, Dichtel W R. J. Am. Chem. Soc., 2017, 139(14): 4999.

doi: 10.1021/jacs.7b01240     pmid: 28345908
[25]
Montoro C, Rodríguez-San-miguel D, Polo E, Escudero-Cid R, Ruiz-González M L, Navarro J A R, OcÓn P, Zamora F. J. Am. Chem. Soc., 2017, 139(29): 10079.

doi: 10.1021/jacs.7b05182     pmid: 28669183
[26]
Ding S Y, Cui X H, Feng J, Lu G X, Wang W. Chem. Commun., 2017, 53(87): 11956.

doi: 10.1039/C7CC05779B     URL    
[27]
Das G, Balaji Shinde D, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50(84): 12615.

doi: 10.1039/C4CC03389B     URL    
[28]
Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc., 2017, 139(5): 1856.

doi: 10.1021/jacs.6b08815     URL    
[29]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842     URL    
[30]
Liao Q B, Ke C, Huang X, Wang D N, Han Q W, Zhang Y F, Zhang Y Y, Xi K. Angew. Chem. Int. Ed., 2021, 60(3): 1411.

doi: 10.1002/anie.v60.3     URL    
[31]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.

doi: 10.1038/s41557-019-0238-5     URL    
[32]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10): 16068.

doi: 10.1038/natrevmats.2016.68     URL    
[33]
Wang S B, Chen Z X, Gao F, Zhang C, Zou M Z, Ye J J, Zeng X, Zhang X Z. Biomaterials, 2020, 234: 119772.
[34]
Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R S, El-Kaderi H M. Chem. Eur. J., 2013, 19(10): 3324.

doi: 10.1002/chem.v19.10     URL    
[35]
Qian H L, Meng F L, Yang C X, Yan X P. Angew. Chem. Int. Ed., 2020, 59(40): 17607.

doi: 10.1002/anie.v59.40     URL    
[36]
Liu C H, Ma X L. Chemical Industry and Engineering Progress, 2019, 38: 4978.
(刘春晖, 马晓莉. 化工进展, 2019, 38: 4978.).
[37]
Han S S, Mendoza-CortÉs J L, Goddard W A. Chem. Soc. Rev., 2009, 38(5): 1460.

doi: 10.1039/b802430h     URL    
[38]
Mandal A K, Mahmood J, Baek J B. ChemNanoMat, 2017, 3(6): 373.

doi: 10.1002/cnma.201700048     URL    
[39]
Keller N, Calik M, Sharapa D, Soni H R, Zehetmaier P M, Rager S, Auras F, Jakowetz A C, Görling A, Clark T, Bein T. J. Am. Chem. Soc., 2018, 140(48): 16544.

doi: 10.1021/jacs.8b08088     URL    
[40]
Zhan X J, Chen Z, Zhang Q C. J. Mater. Chem. A, 2017, 5(28): 14463.

doi: 10.1039/C7TA02105D     URL    
[41]
Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem. Sci., 2015, 6(7): 3931.

doi: 10.1039/C5SC00512D     URL    
[42]
Ascherl L, Evans E W, Gorman J, Orsborne S, Bessinger D, Bein T, Friend R H, Auras F. J. Am. Chem. Soc., 2019, 141(39): 15693.

doi: 10.1021/jacs.9b08079     pmid: 31550149
[43]
Tu D Y, Chen J X, Liu X G, Shen L. J. Hangzhou Norm. Univ. Nat. Sci. Ed., 2019, 18(4): 343.
(屠丹宇, 陈建香, 刘训高, 沈良. 杭州师范大学学报(自然科学版), 2019, 18(4): 343.)
[44]
Lu S L, Hu Y M, Wan S, McCaffrey R, Jin Y H, Gu H W, Zhang W. J. Am. Chem. Soc., 2017, 139(47): 17082.

doi: 10.1021/jacs.7b07918     URL    
[45]
Han X, Xia Q C, Huang J J, Liu Y, Tan C X, Cui Y. J. Am. Chem. Soc., 2017, 139(25): 8693.

doi: 10.1021/jacs.7b04008     URL    
[46]
Lin C Y, Zhang D T, Zhao Z H, Xia Z H. Adv. Mater., 2018, 30(5): 1703646.
[47]
Bhunia S, Deo K A, Gaharwar A K. Adv. Funct. Mater., 2020, 30(27): 2002046.
[48]
Guan Q, Wang G B, Zhou L L, Li W Y, Dong Y B. Nanoscale Adv., 2020, 2(9): 3656.

doi: 10.1039/D0NA00537A     URL    
[49]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550     URL    
[50]
Chedid G, Yassin A. Nanomaterials, 2018, 8(11): 916.

doi: 10.3390/nano8110916     URL    
[51]
Sakamaki Y, Ozdemir J, Heidrick Z, Watson O, Shahsavari H R, Fereidoonnezhad M, Khosropour A R, Beyzavi M H. Comments Inorg. Chem., 2019, 38: 238.

doi: 10.1080/02603594.2018.1542597     URL    
[52]
Feng L L, Qian C, Zhao Y L. ACS Mater. Lett., 2020, 2(9): 1074.
[53]
Guan Q, Zhou L L, Li W Y, Li Y A, Dong Y B. Chem. Eur. J., 2020, 26(25): 5583.

doi: 10.1002/chem.v26.25     URL    
[54]
Chen W J, Guo J. Polym. Bull., 2018(6): 129.
(陈无忌, 郭佳. 高分子通报, 2018(6): 129.)
[55]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138(14): 4710.

doi: 10.1021/jacs.6b01244     URL    
[56]
Qian C, Qi Q Y, Jiang G F, Cui F Z, Tian Y, Zhao X. J. Am. Chem. Soc., 2017, 139(19): 6736.

doi: 10.1021/jacs.7b02303     URL    
[57]
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136(45): 15885.

doi: 10.1021/ja5092936     URL    
[58]
El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O'Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[59]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.

doi: 10.1002/anie.201411262     URL    
[60]
Lohse M S, Stassin T, Naudin G, Wuttke S, Ameloot R de Vos D, Medina D D, Bein T. Chem. Mater., 2016, 28(2): 626.

doi: 10.1021/acs.chemmater.5b04388     URL    
[61]
Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Commun., 2014, 50(11): 1292.

doi: 10.1039/C3CC48813F     URL    
[62]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2(1): 536.

doi: 10.1038/ncomms1542     URL    
[63]
Nagai A, Chen X, Feng X, Ding X S, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2013, 52(13): 3770.

doi: 10.1002/anie.201300256     URL    
[64]
Hunt J R, Doonan C J, LeVangie J D, CôtÉ A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130(36): 11872.

doi: 10.1021/ja805064f     URL    
[65]
Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(46): 17310.

doi: 10.1021/ja4103293     pmid: 24182194
[66]
Wen W, Song Y, Yan X, Zhu C Z, Du D, Wang S F, Asiri A M, Lin Y H. Mater. Today, 2018, 21(2): 164.

doi: 10.1016/j.mattod.2017.09.001     URL    
[67]
Wan S, Guo J, Kim J, Ihee H, Jiang D L. Angew. Chem. Int. Ed., 2008, 47(46): 8826.

doi: 10.1002/anie.v47:46     URL    
[68]
Zeng J Y, Wang X S, Xie B R, Li M J, Zhang X Z. Angew. Chem. Int. Ed., 2020, 59(25): 10087.

doi: 10.1002/anie.v59.25     URL    
[69]
Sun P P, Hai J, Sun S H, Lu S Y, Liu S, Liu H W, Chen F J, Wang B D. Nanoscale, 2020, 12(2): 825.

doi: 10.1039/C9NR08486J     URL    
[70]
Wang P, Zhou F, Zhang C, Yin S Y, Teng L L, Chen L L, Hu X X, Liu H W, Yin X, Zhang X B. Chem. Sci., 2018, 9(44): 8402.

doi: 10.1039/C8SC03393E     URL    
[71]
Wang P, Zhou F, Guan K S, Wang Y J, Fu X Y, Yang Y, Yin X, Song G S, Zhang X B, Tan W H. Chem. Sci., 2020, 11(5): 1299.

doi: 10.1039/C9SC04875H     URL    
[72]
Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv. Funct. Mater., 2018, 28(8): 1705137.
[73]
Nichols J W, Bae Y H. J. Control. Release, 2014, 190: 451.

doi: 10.1016/j.jconrel.2014.03.057     URL    
[74]
Zhang D W, Wang H, Li Z T. Polym. Bull., 2018(6): 243.
(张丹维, 王辉, 黎占亭. 高分子通报, 2018(6): 243.)
[75]
Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137(26): 8352.

doi: 10.1021/jacs.5b04147     URL    
[76]
Liu S, Yang J M, Guo R W, Deng L D, Dong A J, Zhang J H. Macromol. Rapid Commun., 2020, 41(4): 1900570.
[77]
Liu S N, Hu C L, Liu Y, Zhao X Y, Pang M L, Lin J. Chem. Eur. J., 2019, 25(17): 4315.

doi: 10.1002/chem.v25.17     URL    
[78]
Zhang G Y, Li X L, Liao Q B, Liu Y F, Xi K, Huang W, Jia X D. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[79]
Zhang G Y, Ji Y, Li X L, Wang X Y, Song M M, Gou H L, Gao S, Jia X D. Adv. Healthcare Mater., 2020, 9(14): 2000221.
[80]
Jia Y, Zhang L, He B, Lin Y, Wang J, Li M. Mater. Sci. Eng. C Mater. Biol. Appl., 2020, 117: 111243.
[81]
Lyu Y, Fang Y, Miao Q Q, Zhen X, Ding D, Pu K Y. ACS Nano, 2016, 10(4): 4472.

doi: 10.1021/acsnano.6b00168     URL    
[82]
Ng K K, Zheng G. Chem. Rev., 2015, 115(19): 11012.

doi: 10.1021/acs.chemrev.5b00140     URL    
[83]
Ding X G, Liow C H, Zhang M X, Huang R J, Li C Y, Shen H, Liu M Y, Zou Y, Gao N, Zhang Z J, Li Y G, Wang Q B, Li S Z, Jiang J. J. Am. Chem. Soc., 2014, 136(44): 15684.

doi: 10.1021/ja508641z     URL    
[84]
Tam J M, Tam J O, Murthy A, Ingram D R, Ma L L, Travis K, Johnston K P, Sokolov K V. ACS Nano, 2010, 4(4): 2178.

doi: 10.1021/nn9015746     URL    
[85]
Yin W Y, Yu J, Lv F, Yan L, Zheng L R, Gu Z J, Zhao Y L. ACS Nano, 2016, 10(12): 11000.

doi: 10.1021/acsnano.6b05810     URL    
[86]
Zhu K, Ju Y M, Xu J J, Yang Z Y, Gao S, Hou Y L. Acc. Chem. Res., 2018, 51(2): 404.

doi: 10.1021/acs.accounts.7b00407     URL    
[87]
Tan J, Namuangruk S, Kong W F, Kungwan N, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(45): 13979.

doi: 10.1002/anie.201606155     URL    
[88]
Shi Y S, Liu S N, Zhang Z X, Liu Y, Pang M L. Chem. Commun., 2019, 55(95): 14315.

doi: 10.1039/C9CC07809F     URL    
[89]
Guan Q, Zhou L L, Zhou L N, Li M D, Qin G X, Li W Y, Li Y A, Dong Y B. Chem. Commun., 2020, 56(56): 7793.

doi: 10.1039/D0CC00861C     URL    
[90]
Mi Z, Yang P, Wang R, Unruangsri J, Yang W L, Wang C C, Guo J. J. Am. Chem. Soc., 2019, 141(36): 14433.

doi: 10.1021/jacs.9b07695     URL    
[91]
Zhou Z J, Song J B, Nie L M, Chen X Y. Chem. Soc. Rev., 2016, 45(23): 6597.

doi: 10.1039/C6CS00271D     URL    
[92]
Ge J C, Lan M H, Zhou B J, Liu W M, Guo L, Wang H, Jia Q Y, Niu G L, Huang X, Zhou H Y, Meng X M, Wang P F, Lee C S, Zhang W J, Han X D. Nat. Commun., 2014, 5(1): 4596.

doi: 10.1038/ncomms5596     URL    
[93]
Kessel D. Photochem. Photobiol., 2019, 95(1): 119.

doi: 10.1111/php.12952     pmid: 29882356
[94]
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Biomed. Pharmacother., 2018, 106: 1098.

doi: S0753-3322(18)34161-1     pmid: 30119176
[95]
Celli J P, Spring B Q, Rizvi I, Evans C L, Samkoe K S, Verma S, Pogue B W, Hasan T. Chem. Rev., 2010, 110(5): 2795.

doi: 10.1021/cr900300p     URL    
[96]
Tong X N, Gan S J, Wu J H, Hu Y Q, Yuan A H. Nanoscale, 2020, 12(13): 7376.

doi: 10.1039/C9NR10787H     URL    
[97]
Zhang Y, Zhang L, Wang Z Z, Wang F M, Kang L H, Cao F F, Dong K, Ren J S, Qu X G. Biomaterials, 2019, 223: 119462.
[98]
Gao P, Wang M Z, Chen Y Y, Pan W, Zhou P, Wan X Y, Li N, Tang B. Chem. Sci., 2020, 11(26): 6882.

doi: 10.1039/D0SC00847H     URL    
[99]
Zhang L, Wang S B, Zhou Y, Wang C, Zhang X Z, Deng H X. Angew. Chem. Int. Ed., 2019, 58(40): 14213.

doi: 10.1002/anie.v58.40     URL    
[100]
Hu C L, Zhang Z X, Liu S N, Liu X J, Pang M L. ACS Appl. Mater. Interfaces, 2019, 11(26): 23072.

doi: 10.1021/acsami.9b08394     URL    
[101]
Hu C L, Cai L H, Liu S N, Pang M L. Chem. Commun., 2019, 55(62): 9164.

doi: 10.1039/C9CC04668B     URL    
[102]
Sun T T, Xia R, Zhou J L, Zheng X H, Liu S, Xie Z G. Mater. Chem. Front., 2020, 4(8): 2346.

doi: 10.1039/D0QM00274G     URL    
[103]
Wang D W, Zhang Z, Lin L, Liu F, Wang Y B, Guo Z P, Li Y H, Tian H Y, Chen X S. Biomaterials, 2019, 223: 119459.
[104]
Guan Q, Zhou L L, Li Y A, Li W Y, Wang S M, Song C, Dong Y B. ACS Nano, 2019, 13(11): 13304.

doi: 10.1021/acsnano.9b06467     pmid: 31689082
[105]
Zhou Y, Liu S N, Hu C L, Cai L H, Pang M L. J. Mater. Chem. B, 2020, 8(25): 5451.

doi: 10.1039/D0TB00679C     URL    
[106]
Gan S J, Tong X N, Zhang Y, Wu J H, Hu Y Q, Yuan A H. Adv. Funct. Mater., 2019, 29(46): 1902757.
[107]
Guan Q, Zhou L L, Lv F H, Li W Y, Li Y A, Dong Y B. Angew. Chem. Int. Ed., 2020, 59(41): 18042.

doi: 10.1002/anie.v59.41     URL    
[108]
Benyettou F, Das G, Nair A R, Prakasam T, Shinde D B, Sharma S K, Whelan J, Lalatonne Y, Traboulsi H, Pasricha R, Abdullah O, Jagannathan R, Lai Z P, Motte L, Gándara F, Sadler K C, Trabolsi A. J. Am. Chem. Soc., 2020, 142(44): 18782.

doi: 10.1021/jacs.0c05381     pmid: 33090806
[109]
Liu Y, Zhang Y P, Li X M, Gao X F, Niu X Y, Wang W, Wu Q, Yuan Z. Nanoscale, 2019, 11(21): 10429.

doi: 10.1039/C9NR02140J     URL    
[110]
Wang K, Zhang Z, Lin L, Hao K, Chen J, Tian H Y, Chen X S. ACS Appl. Mater. Interfaces, 2019, 11(43): 39503.

doi: 10.1021/acsami.9b13544     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[9] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[10] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[11] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[12] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[13] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[14] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[15] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.