English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2489-2502 DOI: 10.7536/PC220335 前一篇   后一篇

• 综述 •

聚集诱导发光型光敏剂用于线粒体靶向光动力治疗

郭玲香1, 李菊平1, 刘志洋1,2,*(), 李全1,2,*()   

  1. 1 东南大学化学化工学院 南京 211189
    2 东南大学智能材料研究院 南京 211189
  • 收稿日期:2022-03-29 修回日期:2022-04-21 出版日期:2022-11-24 发布日期:2022-06-23
  • 通讯作者: 刘志洋, 李全
  • 作者简介:

    刘志洋 现就职于东南大学化学化工学院/智能材料研究院。博士毕业于中国科学院大学(中国科学院宁波材料技术与工程研究所),博士后工作于香港科技大学(师从唐本忠先生),致力于聚集诱导发光材料的研究和应用拓展等。目前在Advanced Materials, ACS Nano, Materials Horizons等杂志发表SCI论文30余篇。授权中国专利2项。

    李全 欧洲科学院院士,东南大学智能材料研究院院长和首席科学家。液晶技术领域的国际顶级学者,液晶光显示和液晶智能变色玻璃的发明者。在智能液晶材料、智能纳米材料、生物医用材料、仿生材料和分子构造软材料等前沿领域的研究以及国内外人才培养方面做出了杰出贡献。大量研究成果发表在Nature, Chem. Rev., Chem. Soc. Rev., Acc. Chem. Res., JACS, Angew. Chem., Adv. Mater., Nat. Commun., Sci. Adv.等学术期刊上。在过去10年里,主编了8本英文专著,涉及智能材料和工程领域最重要的科学前沿和应用。以受邀作者身份在著名的Kirk-Othmer百科全书中撰写“液晶”词条,以最权威的方式阐述其定义和发展。被多所大学聘为客座教授、讲座教授和荣誉教授。

  • 基金资助:
    江苏省双创项目(JSSCTD202141); 江苏省双创项目(JSSCBS20210097)

Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy

Lingxiang Guo1, Juping Li1, Zhiyang Liu1,2(), Quan Li1,2()   

  1. 1 College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
    2 Institute of Advanced Materials, Southeast University, Nanjing 211189, China
  • Received:2022-03-29 Revised:2022-04-21 Online:2022-11-24 Published:2022-06-23
  • Contact: Zhiyang Liu, Quan Li

光动力治疗是一种基于光敏剂和光照的安全无创性治疗方法,在癌症治疗和杀菌等方面具有广阔的应用前景。光敏剂在光照激发下与氧气作用会生成高反应活性的活性氧。在细胞中过量的活性氧会氧化损伤蛋白质、核酸和脂质等细胞组分,诱导细胞凋亡或坏死。新兴的聚集诱导发光型光敏剂在分子聚集状态下光照激发能发射强的荧光,同时高效地产生活性氧,解决了传统光敏剂在分子聚集时荧光猝灭的问题,易实现成像指导的光动力治疗,近年来备受关注。线粒体作为细胞能量工厂富含氧气,是理想的光动力治疗靶点。本文总结了靶向癌细胞线粒体的聚集诱导发光型光敏剂的分子类型和设计策略,以及其在光动力治疗肿瘤方面的应用。

Photodynamic therapy is a safe and noninvasive treatment method based on photosensitizers and light. It has broad application prospects in cancer treatment and sterilization. Photosensitizers react with oxygen under light excitation to produce reactive oxygen species with high reactivity. Excessive reactive oxygen species in cells can oxidize and damage cellular components such as proteins, nucleic acids and lipids, and induce cell apoptosis or necrosis. The emerging photosensitizers with aggregation-induced emission (AIE) characteristics can emit strong fluorescence under light excitation in the aggregate state, and efficiently produce reactive oxygen species at the same time, which solves the problem of fluorescence quenching of traditional photosensitizers in the aggregate state. AIE photosensitizers are easy to realize image-guided photodynamic therapy, which has attracted much attention in recent years. Mitochondria, as cell energy factories, are rich in oxygen and are ideal targets for photodynamic therapy. Mitochondria are more numerous in cancer cells and play an important role in both tumorization and programmed cell death. Currently, the AIE photosensitizers targeting the mitochondria of cancer cells are mainly cationic compounds, including pyridium ions, quinolinium ions, isoquinolinium ions and triphenylphosphenonium ions. This review summarizes the molecular types and design strategies of AIE photosensitizers targeting the mitochondria of cancer cells, as well as their applications in photodynamic therapy of tumors.

Contents

1 Introduction

2 Mitochondrion-targeting ionic AIE photosensitizers

2.1 Quinolinium and isoquinolinium-based ionic AIE photosensitizers

2.2 Triphenylphosphenonium-based ionic AIE photosensitizers

2.3 Pyridium-based ionic AIE photosensitizers

2.4 Other types of ionic AIE photosensitizers

3 Mitochondrion-targeting non-ionic AIE photosensitizers

4 Conclusion and outlook

()
图1 活性氧生成原理示意图
Fig. 1 Schematic diagram of reactive oxygen species generation principle
图2 喹啉和异喹啉离子基AIE光敏剂的分子结构
Fig.2 Molecular structures of quinolinium and isoquinolinium ionic AIE photosensitizers
图3 三苯基膦离子基AIE光敏剂的分子结构
Fig.3 Molecular structures of triphenylphosphinium ionic AIE photosensitizers
图4 吡啶离子基AIE光敏剂的分子结构
Fig.4 Molecular structures of pyridinium ionic AIE photosensitizers
图5 其他类型离子基AIE光敏剂的分子结构
Fig.5 Molecular structures of other types of ionic AIE photosensitizers
图6 AIE光敏剂63的分子结构
Fig.6 Molecular structure of AIE photosensitizer 63
表1 AIE光敏剂的光学性质
Table 1 Optical properties of AIE photosensitizers
[1]
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. J. Natl. Cancer Inst., 1998, 90(12): 889.

doi: 10.1093/jnci/90.12.889     pmid: 9637138
[2]
Cheng W Y, Chen H T, Liu C, Ji C D, Ma G P, Yin M Z. VIEW, 2020, 1(4): 20200055.

doi: 10.1002/VIW.20200055     URL    
[3]
Ochsner M. J. Photochem. Photobiol., B, 1997, 39(1): 1.

doi: 10.1016/S1011-1344(96)07428-3     URL    
[4]
Chen J M, Fan T J, Xie Z J, Zeng Q Q, Xue P, Zheng T T, Chen Y, Luo X L, Zhang H. Biomaterials, 2020, 237: 119827.

doi: 10.1016/j.biomaterials.2020.119827     URL    
[5]
Green B, Cobb A R M, Hopper C. Br. J. Oral Maxillofac. Surg., 2013, 51(4): 283.

doi: 10.1016/j.bjoms.2012.11.011     pmid: 23245464
[6]
Dolmans D E J G J, Fukumura D, Jain R K. Nat. Rev. Cancer, 2003, 3(5): 380.

pmid: 12724736
[7]
Solban N, Rizvi I, Hasna T. Lasers Surg. Med., 2006, 38(5): 522.

doi: 10.1002/lsm.20345     URL    
[8]
Zhang M, Cui Z W, Song R X, Lv B, Tang Z M, Meng X F, Chen X Y, Zheng X P, Zhang J W, Yao Z W, Bu W B. Biomaterials, 2018, 155: 135.

doi: S0142-9612(17)30742-1     pmid: 29175082
[9]
Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.

doi: 10.1021/nn300934k     URL    
[10]
Cheng P, Li G, Zhan X W, Yang Y. Nat. Photonics., 2018, 12: 131.

doi: 10.1038/s41566-018-0104-9     URL    
[11]
Nakanishi W, Minami K, Shrestha L K, Ji Q M, Hill J P, Ariga K. Nano Today, 2014, 9(3): 378.

doi: 10.1016/j.nantod.2014.05.002     URL    
[12]
Gupta V K, Saleh T A. Environ. Sci. Pollut. Res., 2013, 20(5): 2828.

doi: 10.1007/s11356-013-1524-1     URL    
[13]
Ge J C, Lan M H, Zhou B J, Liu W M, Guo L, Wang H, Jia Q Y, Niu G L, Huang X, Zhou H Y, Meng X M, Wang P F, Lee C S, Zhang W J, Han X D. Nat. Commun., 2014, 5: 4596.

doi: 10.1038/ncomms5596     URL    
[14]
Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39(1): 228.

doi: 10.1039/B917103G     URL    
[15]
Lucky S S, Soo K C, Zhang Y. Chem. Rev., 2015, 115(4): 1990.

doi: 10.1021/cr5004198     URL    
[16]
Kou J Y, Dou D, Yang L M. Oncotarget, 2017, 8(46): 81591.

doi: 10.18632/oncotarget.20189     URL    
[17]
Wong R C H, Lo P C, Ng D K P. Coord. Chem. Rev., 2019, 379: 30.

doi: 10.1016/j.ccr.2017.10.006     URL    
[18]
Dichiara M, Prezzavento O, Marrazzo A, Pittalà V, Salerno L, Rescifina A, Amata E. Eur. J. Med. Chem., 2017, 142: 459.

doi: S0223-5234(17)30681-5     pmid: 28943196
[19]
Li X S, Zheng B D, Peng X H, Li S Z, Ying J W, Zhao Y Y, Huang J D, Yoon J Y. Coord. Chem. Rev., 2019, 379: 147.

doi: 10.1016/j.ccr.2017.08.003     URL    
[20]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Chem. Commun., 2001, (18): 1740.
[21]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21): 11718.

doi: 10.1021/acs.chemrev.5b00263     pmid: 26492387
[22]
Hu F, Huang Y Y, Zhang G X, Zhao R, Yang H, Zhang D Q. Anal. Chem., 2014, 86(15): 7987.

doi: 10.1021/ac502103t     URL    
[23]
Yuan Y Y, Feng G X, Qin W, Tang B Z, Liu B. Chem. Commun., 2014, 50(63): 8757.

doi: 10.1039/C4CC02767A     URL    
[24]
Kang M M, Gu X H, Kwok R T K, Leung C W T, Lam J W Y, Li F, Tang B Z. Chem. Commun., 2016, 52(35): 5957.

doi: 10.1039/C6CC01797E     URL    
[25]
Tan P, Zhuang W H, Li S F, Zhang J P, Xu H, Yang L, Liao Y B, Chen M, Wei Q. Chem. Commun., 2021, 57(8): 1046.

doi: 10.1039/D0CC07336A     URL    
[26]
Dai Y P, Zhao X X, Ji H F, Zhang D D, Zhang P, Xue K, Misal S, Zhu H Y, Qi Z J. Chem. Eng. J., 2021, 410: 128186.

doi: 10.1016/j.cej.2020.128186     URL    
[27]
Leung C W T, Wang Z M, Zhao E G, Hong Y N, Chen S J, Kwok R T K, Leung A C S, Wen R S, Li B S, Lam J W Y, Tang B Z. Adv. Healthcare Mater., 2016, 5(4): 427.

doi: 10.1002/adhm.201500674     URL    
[28]
Yang M Q, Deng J R, Su H F, Gu S X, Zhang J, Zhong A G, Wu F S. Mater. Chem. Front., 2021, 5(1): 406.

doi: 10.1039/D0QM00536C     URL    
[29]
Shi L L, Wu W B, Duan Y K, Xu L, Xu Y Y, Hou L D, Meng X J, Zhu X Y, Liu B. Angew. Chem., Int. Ed., 2020, 59(43): 19168.

doi: 10.1002/anie.202006890     URL    
[30]
Li D Y, Ni X, Zhang X Y, Liu L W, Qu J L, Ding D, Qian J. Nano Res., 2018, 11(11): 6023.

doi: 10.1007/s12274-018-2118-5     URL    
[31]
Kong Q, Ma B X, Yu T, Hu C, Li G C, Jiang Q, Wang Y B. New J. Chem., 2020, 44(22): 9355.

doi: 10.1039/D0NJ00822B     URL    
[32]
Vyas S, Zaganjor E, Haigis M C. Cell, 2016, 166(3): 555.

doi: 10.1016/j.cell.2016.07.002     URL    
[33]
Weinberg S E, Chandel N S. Nat. Chem. Biol., 2015, 11(1): 9.

doi: 10.1038/nchembio.1712     pmid: 25517383
[34]
Wallace D C. Science, 1999, 283(5407): 1482.

doi: 10.1126/science.283.5407.1482     pmid: 10066162
[35]
Eng C, Kiuru M, Fernandez M J, Aaltonen L A. Nat. Rev. Cancer, 2003, 3(3): 193.

doi: 10.1038/nrc1013     URL    
[36]
Jeronimo C, Nomoto S, Caballero O L, Usadel H, Henrique R, Varzim G, Oliveira J, Lopes C, Fliss M S, Sidransky D. Oncogene, 2001, 20(37): 5195.

doi: 10.1038/sj.onc.1204646     URL    
[37]
Sabharwal S S, Schumacker P T. Nat. Rev. Cancer, 2014, 14(11): 709.

doi: 10.1038/nrc3803     pmid: 25342630
[38]
Waris G, Ahsan H. J. Carcinog., 2006, 5: 14.

doi: 10.1186/1477-3163-5-14     URL    
[39]
Sena L A, Chandel N S. Mol. Cell, 2012, 48(2): 158.

doi: 10.1016/j.molcel.2012.09.025     URL    
[40]
Tait S W G, Green D R. Cold Spring Harb. Perspect. Biol., 2013, 5(9): a008706.

doi: 10.1101/cshperspect.a008706     URL    
[41]
Shimizu S, Narita M, Tsujimoto Y. Nature, 1999, 399(6735): 483.

doi: 10.1038/20959     URL    
[42]
Sullivan L B, Gui D Y, Heiden M G V. Nat. Rev. Cancer, 2016, 16(11): 680.

doi: 10.1038/nrc.2016.85     pmid: 27658530
[43]
Gaude E, Frezza C. Diabetes Metab., 2014, 2(10): 1.
[44]
Dong C K, Masutomi K, Hahn W C. Crit. Rev. Oncol. Hematol., 2005, 54(2): 85.

doi: 10.1016/j.critrevonc.2004.12.005     URL    
[45]
Haendeler J, Dröse S, Bu¨chner N, Jakob S, Altschmied J, Goy C, Spyridopoulos I, Zeiher A M, Brandt U, Dimmeler S. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6): 929.

doi: 10.1161/ATVBAHA.109.185546     pmid: 19265030
[46]
Chen L B. Annu. Rev. Cell Dev. Biol., 1988, 4(1): 155.

doi: 10.1146/annurev.cb.04.110188.001103     URL    
[47]
Zhao E G, Deng H Q, Chen S J, Hong Y N, Leung C W T, Lam J W Y, Tang B Z. Chem. Commun., 2014, 50(92): 14451.

doi: 10.1039/C4CC07128J     URL    
[48]
Gui C, Zhao E G, Kwok R T K, Leung A C S, Lam J W Y, Jiang M J, Deng H Q, Cai Y J, Zhang W J, Su H F, Tang B Z. Chem. Sci., 2017, 8(3): 1822.

doi: 10.1039/C6SC04947H     URL    
[49]
Jiang M J, Kwok R T K, Li X S, Gui C, Lam J W Y, Qu J N, Tang B Z. J. Mater. Chem. B, 2018, 6(17): 2557.

doi: 10.1039/C7TB02609A     URL    
[50]
Chen K Q, Zhang R Y, Wang Z M, Zhang W J, Tang B Z. Adv. Optical Mater., 2020, 8(2): 1901433.

doi: 10.1002/adom.201901433     URL    
[51]
Lee M M S, Zheng L, Yu B R, Xu W H, Kwok R T K, Lam J W Y, Xu F J, Wang D, Tang B Z. Mater. Chem. Front., 2019, 3(7): 1454.

doi: 10.1039/C9QM00242A     URL    
[52]
Zheng Z, Liu H X, Zhai S D, Zhang H K, Shan G G, Kwok R T K, Ma C, Sung H H Y, Williams I D, Lam J W Y, Wong K S, Hu X L, Tang B Z. Chem. Sci., 2020, 11(9): 2494.

doi: 10.1039/c9sc06441a     pmid: 34084415
[53]
Yang H X, Zhuang J B, Li N, Li Y, Zhu S Y, Hao J X, Xin J Y, Zhao N. Mater. Chem. Front., 2020, 4(7): 2064.

doi: 10.1039/D0QM00170H     URL    
[54]
Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Chem. Rev., 2017, 117(15): 10043.

doi: 10.1021/acs.chemrev.7b00042     pmid: 28654243
[55]
Zhang C J, Hu Q L, Feng G X, Zhang R Y, Yuan Y Y, Lu X M, Liu B. Chem. Sci., 2015, 6(8): 4580.

doi: 10.1039/C5SC00826C     URL    
[56]
Zou J L, Lu H G, Zhao X W, Li W, Guan Y, Zheng Y D, Zhang L J, Gao H. Dyes Pigm., 2018, 151: 45.

doi: 10.1016/j.dyepig.2017.12.044     URL    
[57]
Zhang J, Wang Q, Guo Z Q, Zhang S Z, Yan C X, Tian H, Zhu W H. Adv. Funct. Mater., 2019, 29(16): 1808153.

doi: 10.1002/adfm.201808153     URL    
[58]
Zhang Y J, Huang W D, Tan X Y, Wang J H, Zhao Y F, Hu J B, Wang S H. Biomater. Sci., 2021, 9(4): 1232.

doi: 10.1039/D0BM02099K     URL    
[59]
Zhao D, Han H H, Zhu L, Xu F Z, Ma X Y, Li J, James T D, Zhang Y, He X P, Wang C Y. ACS Appl. Bio Mater., 2021, 4(9): 7016.

doi: 10.1021/acsabm.1c00673     pmid: 35006934
[60]
Feng G X, Qin W, Hu Q L, Tang B Z, Liu B. Adv. Healthcare Mater., 2015, 4(17): 2667.

doi: 10.1002/adhm.201500431     URL    
[61]
Gao M, Sim C K, Leung C W T, Hu Q L, Feng G X, Xu F, Tang B Z, Liu B. Chem. Commun., 2014, 50(61): 8312.

doi: 10.1039/C4CC00452C     URL    
[62]
Gu X G, Zhao E G, Lam J W Y, Peng Q, Xie Y J, Zhang Y L, Wong K S, Sung H H Y, Williams I D, Tang B Z. Adv. Mater., 2015, 27(44): 7093.

doi: 10.1002/adma.201503751     URL    
[63]
Zhang W J, Kwok R T K, Chen Y L, Chen S J, Zhao E G, Yu C Y Y, Lam J W Y, Zheng Q C, Tang B Z. Chem. Commun., 2015, 51(43): 9022.

doi: 10.1039/C5CC02486B     URL    
[64]
Huang Y Y, Zhang G X, Hu F, Jin Y L, Zhao R, Zhang D Q. Chem. Sci., 2016, 7(12): 7013.

doi: 10.1039/C6SC02395A     URL    
[65]
Huang Y Y, You X, Wang L N, Zhang G X, Gui S L, Jin Y L, Zhao R, Zhang D Q. Angew. Chem. Int. Ed., 2020, 59(25): 10042.

doi: 10.1002/anie.202001906     URL    
[66]
Zhan C, Zhang G X, Zhang D Q. ACS Appl. Mater. Interfaces, 2018, 10(15): 12141.

doi: 10.1021/acsami.7b14446     URL    
[67]
Kang M M, Kwok R T K, Wang J G, Zhang H, Lam J W Y, Li Y, Zhang P F, Zou H, Gu X H, Li F, Tang B Z. J. Mater. Chem. B, 2018, 6(23): 3894.

doi: 10.1039/C8TB00572A     URL    
[68]
Wang D, Lee M M S, Shan G G, Kwok R T K, Lam J W Y, Su H F, Cai Y C, Tang B Z. Adv. Mater., 2018, 30(39):1802105.

doi: 10.1002/adma.201802105     URL    
[69]
Zheng Z, Zhang T F, Liu H X, Chen Y C, Kwok R T K, Ma C, Zhang P F, Sung H H Y, Williams I D, Lam J W Y, Wong K S, Tang B Z. ACS Nano, 2018, 12(8): 8145.

doi: 10.1021/acsnano.8b03138     pmid: 30074773
[70]
Zhang T F, Li Y Y, Zheng Z, Ye R Q, Zhang Y R, Kwok R T K, Lam J W Y, Tang B Z. J. Am. Chem. Soc., 2019, 141(14): 5612.

doi: 10.1021/jacs.9b00636     URL    
[71]
Zhao N, Li P F, Zhuang J B, Liu Y Y, Xiao Y X, Qin R L, Li N. ACS Appl. Mater. Interfaces, 2019, 11(12): 11227.

doi: 10.1021/acsami.9b01655     URL    
[72]
Zhuang W H, Yang L, Ma B X, Kong Q S, Li G C, Wang Y B, Tang B Z. ACS Appl. Mater. Interfaces, 2019, 11(23): 20715.

doi: 10.1021/acsami.9b04813     URL    
[73]
Liu Z Y, Zou H, Zhao Z, Zhang P F, Shan G G, Kwok R T K, Lam J W Y, Zheng L, Tang B Z. ACS Nano, 2019, 13(10): 11283.

doi: 10.1021/acsnano.9b04430     URL    
[74]
He X J, Situ B, Gao M, Guan S J, He B R, Ge X X, Li S W, Tao M L, Zou H, Tang B Z, Zheng L. Small, 2019, 15(50): 1905080.

doi: 10.1002/smll.201905080     URL    
[75]
Chen C, Ni X, Jia S R, Liang Y, Wu X L, Kong D L, Ding D. Adv. Mater., 2019, 31(52): 1904914.

doi: 10.1002/adma.201904914     URL    
[76]
Xiong W, Wang L Y, Chen X L, Tang H, Cao D R, Zhang G Z, Chen W. J. Mater. Chem. B, 2020, 8(24): 5234.

doi: 10.1039/d0tb00888e     pmid: 32432307
[77]
Zhang Y Y, Wang L K, Rao Q P, Bu Y C, Xu T R, Zhu X J, Zhang J, Tian Y P, Zhou H P. Sens. Actuators B Chem., 2020, 321: 128460.

doi: 10.1016/j.snb.2020.128460     URL    
[78]
Xu W H, Lee M M S, Nie J J, Zhang Z H, Kwok R T K, Lam J W Y, Xu F J, Wang D, Tang B Z. Angew. Chem. Int. Ed., 2020, 132(24): 9697.

doi: 10.1002/ange.202000740     URL    
[79]
Guo B, Wu M, Shi Q, Dai T J, Xu S D, Jiang J W, Liu B. Chem. Mater., 2020, 32(11): 4681.

doi: 10.1021/acs.chemmater.0c01187     URL    
[80]
Zhou T, Zhu J F, Shang D, Chai C X, Li Y Z, Sun H Y, Li Y Q, Gao M, Li M. Mater. Chem. Front., 2020, 4(11): 3201.

doi: 10.1039/D0QM00503G     URL    
[81]
Wang J J, Zhu X J, Zhang J, Wang H Y, Liu G, Bu Y C, Yu J H, Tian Y P, Zhou H P. ACS Appl. Mater. Interfaces, 2020, 12(2): 1988.

doi: 10.1021/acsami.9b15577     URL    
[82]
Wang Y B, Xu S D, Shi L L, Teh C, Qi G B, Liu B. Angew. Chem. Int. Ed., 2021, 133(27): 15072.

doi: 10.1002/ange.202017350     URL    
[83]
Wang C, Zhao X H, Jiang H Y, Wang J X, Zhong W X, Xue K, Zhu C L. Nanoscale, 2021, 13(2): 1195.

doi: 10.1039/D0NR07342C     URL    
[84]
Yang Z M, Yin W D, Zhang S X, Shah I, Zhang B, Zhang S J, Li Z, Lei Z Q, Ma H C. ACS Appl. Bio Mater., 2020, 3(2): 1187.

doi: 10.1021/acsabm.9b01094     URL    
[85]
Yu C Y Y, Xu H E, Ji S L, Kwok R T K, Lam J W Y, Li X L, Krishnan S, Ding D, Tang B Z. Adv. Mater., 2017, 29(15): 1606167.

doi: 10.1002/adma.201606167     URL    
[86]
Feng G X, Liu J, Zhang C J, Liu B. ACS Appl. Mater. Interfaces, 2018, 10(14): 11546.

doi: 10.1021/acsami.8b01960     URL    
[87]
Chen Y Z, Ai W T, Guo X, Li Y W, Ma Y F, Chen L F, Zhang H, Wang T X, Zhang X, Wang Z. Small, 2019, 15(30): 1902352.

doi: 10.1002/smll.201902352     URL    
[88]
Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53(12): 2052.

doi: 10.1039/C6CC10015E     URL    
[89]
Qiu K Q, Ouyang M, Liu Y K, Huang H Y, Liu C F, Chen Y, Jia L N, Chao H. J. Mater. Chem. B, 2017, 5(27): 5488.

doi: 10.1039/C7TB00731K     URL    
[90]
Ou Y Y, Luo Y H, Lu N, Hu R T, Zhang P Y, Zhang Q L. Chin. J. Inorg. Chem., 2021, 37(3): 401.
(欧阳艾, 罗雨珩, 陆农, 胡仁涛, 张平玉, 张黔玲. 无机化学学报, 2021, 37(3):401).
[91]
Wang E J, Zhao E G, Hong Y N, Lam J W Y, Tang B Z. J. Mater. Chem. B, 2014, 2(14): 2013.

doi: 10.1039/C3TB21675F     URL    
[92]
Zhang Y, Wang C X, Huang S W. Nanomaterials, 2018, 8(11): 921.

doi: 10.3390/nano8110921     URL    
[1] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[2] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[3] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[4] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[5] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[6] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[7] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[8] 夏也, 苏喜, 陈李, 李顺波, 徐溢. 用于细胞检测的微电极传感器设计及传感分析[J]. 化学进展, 2019, 31(8): 1129-1135.
[9] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[10] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[11] 费进波, 李琦, 赵洁, 李峻柏. 二苯丙氨酸二肽组装体的光学性质及潜在应用[J]. 化学进展, 2019, 31(1): 30-37.
[12] 郑秉得, 赵园园, 李洪才, 郑碧远, 柯美荣, 黄剑东*. 可激活抗癌光敏剂[J]. 化学进展, 2018, 30(9): 1403-1414.
[13] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[14] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[15] 刘湘梅, 田康, 薛乘风, 韩艺蕃, 刘淑娟, 赵强*. X射线激发发光体在光动力治疗中的应用[J]. 化学进展, 2017, 29(12): 1488-1498.