English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 752-766 DOI: 10.7536/PC200653 前一篇   后一篇

• 研究论文 •

新型二维材料MXene在生物医学的应用

许惠凤1,*(), 董永强2, 朱希3,*(), 余丽双4   

  1. 1 福建省中西医结合老年性疾病重点实验室 福建中医药大学中西医结合研究院 福州 350122
    2 食品安全分析检测技术教育部重点实验室 福建省食品安全分析检测技术省级重点实验室 福州大学化学学院 福州 350108
    3 福建农林大学生命科学学院 福州 350002
    4 福建中医药大学药学院 福州 350122
  • 收稿日期:2020-06-16 修回日期:2020-08-06 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 许惠凤, 朱希
  • 作者简介:
    * Corresponding author e-mail: (Huifeng Xu);
  • 基金资助:
    国家自然科学基金项目(81773894); 福建省自然科学基金杰出青年项目(2019J06021)

Novel Two-Dimensional MXene for Biomedical Applications

Huifeng Xu1,*(), Yongqiang Dong2, Xi Zhu3,*(), Lishuang Yu4   

  1. 1 Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
    2 Ministry of Education Key Laboratory of Analysis Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, China
    3 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    4 College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
  • Received:2020-06-16 Revised:2020-08-06 Online:2021-05-20 Published:2020-12-22
  • Contact: Huifeng Xu, Xi Zhu
  • Supported by:
    NSFC(81773894); Natural Science Funds of Fujian Province for Distinguished Young Scholar(2019J06021)

MXene是一类新型的二维过渡金属碳化物和氮化物的总称,通式为Mn + 1XnTx(n = 1~3),其中M为前过渡金属元素,X为碳或氮元素,T指键合在该材料表面的氟基、羟基或氧基等活性官能团。该类材料具有超薄的结构和出色的物理化学(电子、光学、磁性等)特性,从而吸引了各领域研究人员的广泛兴趣。目前,MXene在生物医学领域的应用逐渐拓展。这主要是由于其大的表面积和在近红外区域的强吸收,加之其可以通过容易的表面修饰与多种分子或者纳米颗粒结合。在这篇综述中,我们总结了MXene在生物医学应用中的最新进展。文章首先介绍MXene的相关制备方法和表面改性手段;之后重点围绕其独特的理化性质,依次介绍该材料在抗菌材料、生物成像、肿瘤诊断治疗和生物传感等生物医学领域中的应用进展;文章最后总结讨论了MXene在生物医学应用方面面临的挑战和新机遇。预期超薄MXene及精巧设计的纳米复合物将成为多种生物医学应用的最有吸引力的生物相容性无机纳米平台之一。

As a novel kind of two dimensional material, MXene refers to the family of two-dimensional transition metal carbides, nitrides or carbonitrides. The general formula of this material is Mn+1XnTx(n=1~3) where M is transitional metal, X is carbon or nitrogen and T is active functional groups such as fluorine, hydroxyl or oxygen-containing group. The ultra-thin structure and fascinating physical and chemical(electronic, optical, magnetic, etc.) properties of this material has attracted wide interest in mechanical engineering, optics, energy, and electronics areas. Currently, MXenes are broadening their applications in the biomedical field. This is mainly originated from their large surface area and strong absorbance in near-infrared region, combining with their facile surface modifications with various molecular or nanoparticles. This review introduces the very recent progress and novel paradigms of MXenes for state-of-the-art biomedical applications. Firstly, the preparation methods and surface modifications of MXenes designed for biomedical applications is introduced. Then their applications in the biomedical areas are emphasized, including structural- and dose-dependent antimicrobial activity, bioimaging, photothermal cancer therapy, precise biosensors and so on. Finally, the current challenges and future opportunities of applying MXene-based nanomaterials and nanocomposites in biomedical field are summarized and discussed. It is highly expected that the ultrathin MXenes and their elaborately designed nanocomposites will become one of the most attractive biocompatible inorganic nano-platforms for multiple and extensive biomedical applications.

Contents

1 Introduction

2 Preparation methods

2.1 Synthesis of MXene

2.2 Surface modifications

3 Biomedical applications

3.1 Antibacterial activity

3.2 Bioimaging

3.3 Tumor therapy

3.4 Biosensing

3.5 Others

4 Conclusion and outlook

()
图1 (A)MXenes 和MAX相元素在元素周期表上的位置及(B)以HF为蚀刻剂的制备过程示意图[4]
Fig. 1 (A) The periodic table presenting the elements used for the formation of Mxenes and MAX phase and(B) schematic depicting the synthesis process of MXene using HF as the etchant[4]. Copyright 2018, Wiley-VCH.
表1 MXenes的不同制备方法
Table 1 Different etching and delamination condition used for the synthesis of MXenes
图2 MXenes表面修饰的几种方法:(A)物理吸附[28];(B)静电吸附[26];(C)硅烷化共价键结合[29];(D)自引发的光接枝光聚合[34]
Fig. 2 Several surface modi?cation methods of MXene-based materials:(A) Physical adsorption[28], Copyright 2017, American Chemical Society.(B) Electrostatic adsorption[26], Copyright 2017, American Chemical Society.(C) Covalent method through APTES[29], Copyright 2018, Ivyspring International Publisher.(D) SIPGP polymerization[34]. Copyright 2014, the Royal Society of Chemistry.
图3 基于MXenes的抗菌材料性能表征[35]:(A)Ti3C2Tx MXene的抗菌能力,(B)负载AgNPs的Ti3C2Tx复合膜的抗菌能力
Fig. 3 Characterization of MXenes based antibacterial materials.(A) Antibacterial activities of the Ti3C2Tx nanosheets as a function of concentration[35]. Copyright 2016, American Chemical Society.(B) Schematic structure and antibacterial activities of the 21% Ag-decorated Ti3C2Tx -based membrane[38]. Copyright 2018, the Royal Society of Chemistry.
图4 基于MXenes 的生物成像:(A)荧光成像[37],(B)光声成像[19,46]。A中:(a)明场成像;(b)明场成像和共聚焦图像的合并图像;(c)THP-1单核细胞与 N, P-MQD;(d~f)没有N, P-MQD的对照细胞的相应图像。B中:(a)MXene介导PAI示意图,在暴露于NIR激光后,组织成分吸收光,经历热弹性膨胀,随后产生超声信号(光声效应),可以由超声传感器检测到;(b)在不同激发波长下的MQD的PA图像;(c)在680 nm处不同浓度的MQD的PA图像
Fig. 4 Bioimaging of MXenes:(A) fluorescence imaging[37].(a) Bright-field imaging;(b) Merged images of the bright-field and the confocal images(Ex =488 nm) ; and(c) Fluorescent imaging(Ex = 488 nm) of THP-1 monocytes incubated with N, P-MQDs;(d~f) Corresponding images of the control cells without N, P-MQDs. Copyright 2019, The Royal Society of Chemistry.(B) PA imaging[19,46].(a) The Schematic representation of MXene-mediated PAI. Upon exposure to the NIR laser, the tissue constituents absorb light, undergo thermoelastic expansion, and subsequently produce ultrasound signals(photoacoustic effect), which can be detected by an ultrasound sensor;(b) PA images of MQDs at different excitation wavelengths;(c) PA images of different concentrations of the MQDs at 680 nm. Copyright 2017, The Royal Society of Chemistry.
表2 不同类型的MXene及其在癌症医学中的应用
Table 2 Different types of MXenes and their applications in cancer medicine
图5 基于MXene 的光热疗法[25]:(A)Nb2CTx水溶液的吸收光谱,(B)Nb2CTx水溶液的光稳定性(C)光热转化的体内肿瘤组织渗透的示意图,(D)Nb2CTx-PVP在不同强度激光诱导处理后U87细胞系的相对活力,(E)不同肿瘤组织深度处的癌细胞增殖情况。(F)不同治疗后随时间变化的肿瘤生长曲线。(G)在NIR-Ⅰ和NIR-Ⅱ激光照射后的Nb2CTx水溶液的温度变化情况
Fig. 5 MXene-based photothermal therapy.(A) Absorbance spectra of well-dispersed aqueous Nb2CTx at varied concentrations.(B) Photostability profles of an aqueous Nb2CTx solution in NIR-Ⅰ and NIR-Ⅱ biowindows for fve laser on/off cycles.(C) Schematic diagram of in vivo tumor tissue penetration for photothermal conversion based on NIR-Ⅰ and NIR-Ⅱ.(D) Relative viabilities of U87 cell line after Nb2CTx-PVP-induced photothermal eradication at various power densities of laser.(E) Cancer cellular proliferation at varied depths of tumor tissues by antigen Ki-67 immunofuorescence staining,(F) Time-dependent tumor growth curves after various treatments.(G) Temperature elevations of Nb2CTx dispersed aqueous suspensions upon exposure to NIR-Ⅰ and NIR-Ⅱ laser via photothermal conversion. Copyright 2017, American Chemical Society.
图6 由2D MXene构建的生物传感器类型.(A)气体传感器[51],(B)电化学传感器[52],(C)电化学酶传感器[62],(D)电化学发光传感器[69],(E)荧光传感器[73],(F)可穿戴式压力传感器[85]
Fig. 6 Typical kinds of biosensors constructed by 2D MXenes.(A) gas sensors[62], Copyright 2017, Elsevier;(B) electrochemical sensors[63], Copyright 2017, Elsevier;(C) electrochemical immunosensors[73], Copyright 2019, Elsevier;(D) ECL sensors[80], Copyright 2020, American Chemical Society;(E) fluorescent sensors[84], Copyright 2018, American Chemical Society;(F) wearable pressure sensors[95]. Copyright 2018, American Chemical Society.
[1]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37):4248.

doi: 10.1002/adma.201102306     URL    
[2]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7):992.

doi: 10.1002/adma.201304138     URL    
[3]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2):1322.

doi: 10.1021/nn204153h     URL    
[4]
Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W. Adv. Mater., 2018, 30:e1704561.
[5]
Jiang X T, Kuklin A V, Baev A, Ge Y Q, Ågren H, Zhang H, Prasad P N. Phys. Rep., 2020, 848:1.

doi: 10.1016/j.physrep.2019.12.006     URL    
[6]
Li J H, Zhang J, Rui B L, Lin L, Chang L M, Nie P. Prog. Chem., 2019, 31(9):1283.
( 李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. 化学进展, 2019, 31(9):1283.)

doi: 10.7536/PC190219    
[7]
Yao S S, Li R, Ye H Q, Han K. Prog. Chem., 2018, 30(7):932.
( 姚送送, 李诺, 叶红齐, 韩凯. 化学进展, 2018, 30(7):932.

doi: 10.7536/PC171114    
[8]
Huang K, Li Z J, Lin J, Han G, Huang P. Chem. Soc. Rev., 2018, 47:5109.

doi: 10.1039/c7cs00838d     pmid: 29667670
[9]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):16098.

doi: 10.1038/natrevmats.2016.98     URL    
[10]
Verger L, Natu V, Carey M, Barsoum M W. Trends Chem., 2019, 1(7):656.

doi: 10.1016/j.trechm.2019.04.006     URL    
[11]
Cao M S, Cai Y Z, He P, Shu J C, Cao W Q, Yuan J. Chem. Eng. J., 2019, 359:1265.

doi: 10.1016/j.cej.2018.11.051     URL    
[12]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Chem. Mater., 2016, 28(1):349.

doi: 10.1021/acs.chemmater.5b04250     URL    
[13]
Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A. Adv. Electron. Mater., 2016, 2(12):1600255.

doi: 10.1002/aelm.v2.12     URL    
[14]
Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Chem. Soc., 2013, 135(43):15966.

doi: 10.1021/ja405735d     URL    
[15]
Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q. Angew. Chem. Int. Ed., 2016, 55(16):5008.

doi: 10.1002/anie.v55.16     URL    
[16]
Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X. Mater. Des., 2017, 114:161.

doi: 10.1016/j.matdes.2016.10.053     URL    
[17]
Urbankowski P, Anasori B, Makaryan T, Er D Q, Kota S, Walsh P L, Zhao M Q, Shenoy V B, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(22):11385.

doi: 10.1039/c6nr02253g     pmid: 27211286
[18]
Xuan J N, Wang Z Q, Chen Y Y, Liang D J, Cheng L, Yang X J, Liu Z, Ma R Z, Sasaki T, Geng F X. Angew. Chem. Int. Ed., 2016, 55(47):14569.

doi: 10.1002/anie.v55.47     URL    
[19]
Yu X H, Cai X K, Cui H D, Lee S W, Yu X F, Liu B L. Nanoscale, 2017, 9(45):17859.

doi: 10.1039/C7NR05997C     URL    
[20]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21):6115.

doi: 10.1002/anie.v57.21     URL    
[21]
Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. J. Mater. Chem. A, 2017, 5(41):21663.

doi: 10.1039/C7TA05574A     URL    
[22]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47):15491.

doi: 10.1002/anie.v57.47     URL    
[23]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11):4730.

doi: 10.1021/jacs.9b00574     URL    
[24]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19(8):894.

doi: 10.1038/s41563-020-0657-0     URL    
[25]
Lin H, Gao S S, Dai C, Chen Y, Shi J L. J. Am. Chem. Soc., 2017, 139(45):16235.

doi: 10.1021/jacs.7b07818     URL    
[26]
Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Nano Lett., 2017, 17(1):384.

doi: 10.1021/acs.nanolett.6b04339     URL    
[27]
Dai C, Chen Y, Jing X X, Xiang L H, Yang D Y, Lin H, Liu Z, Han X X, Wu R. ACS Nano, 2017, 11(12):12696.

doi: 10.1021/acsnano.7b07241     pmid: 29156126
[28]
Liu G Y, Zou J H, Tang Q Y, Yang X Y, Zhang Y W, Zhang Q, Huang W, Chen P, Shao J J, Dong X C. ACS Appl. Mater. Interfaces, 2017, 9(46):40077.

doi: 10.1021/acsami.7b13421     URL    
[29]
Han X X, Jing X X, Yang D Y, Lin H, Wang Z G, Ran H T, Li P, Chen Y. Theranostics, 2018, 8(16):4491.

doi: 10.7150/thno.26291     URL    
[30]
Steenackers M, Kuüller A, Stoycheva S, Grunze M, Jordan R. Langmuir, 2009, 25(4):2225.

doi: 10.1021/la803386c     pmid: 19140707
[31]
Gupta S, Agrawal M, Conrad M, Hutter N A, Olk P, Simon F, Eng L M, Stamm M, Jordan R. Adv. Funct. Mater., 2010, 20(11):1756.

doi: 10.1002/adfm.201000025     URL    
[32]
Lehr J, Garrett D J, Paulik M G, Flavel B S, Brooksby P A, Williamson B E, Downard A J. Anal. Chem., 2010, 82(16):7027.

doi: 10.1021/ac101785c     URL    
[33]
Wang H B, Zhang J F, Wu Y P, Huang H J, Jiang Q G. J. Phys. Chem. Solids, 2018, 115:172.

doi: 10.1016/j.jpcs.2017.12.039     URL    
[34]
Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Huang Q, Chen T. Chem. Commun., 2015, 51(2):314.

doi: 10.1039/C4CC07220K     URL    
[35]
Rasool K, Helal M, Ali A, Ren C G, Gogotsi Y, Mahmoud K A. ACS Nano, 2016, 10(3):3674.

doi: 10.1021/acsnano.6b00181     URL    
[36]
Rasool K, Mahmoud K A, Johnson D J, Helal M, Berdiyorov G R, Gogotsi Y. Sci. Rep., 2017, 7:1598.

doi: 10.1038/s41598-017-01714-3     URL    
[37]
Jastrzębska A. Int. J. electrochem. sci., 2016, 12:2159.
[38]
Pandey R P, Rasool K, Madhavan V E, Aïssa B, Gogotsi Y, Mahmoud K A. J. Mater. Chem. A, 2018, 6(8):3522.

doi: 10.1039/C7TA10888E     URL    
[39]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.

doi: 10.1038/nature13970    
[40]
Wang Z Q, Xuan J N, Zhao Z G, Li Q W, Geng F X. ACS Nano, 2017, 11(11):11559.

doi: 10.1021/acsnano.7b06476     URL    
[41]
Xue Q, Zhang H J, Zhu M S, Pei Z X, Li H F, Wang Z F, Huang Y, Huang Y, Deng Q H, Zhou J, Du S Y, Huang Q, Zhi C Y. Adv. Mater., 2017, 29(15):1604847.

doi: 10.1002/adma.201604847     URL    
[42]
Zhou L, Wu F M, Yu J H, Deng Q H, Zhang F A, Wang G. Carbon, 2017, 118:50.

doi: 10.1016/j.carbon.2017.03.023     URL    
[43]
Xu Q, Ding L, Wen Y Y, Yang W J, Zhou H J, Chen X Z, Street J, Zhou A G, Ong W J, Li N. J. Mater. Chem. C, 2018, 6(24):6360.

doi: 10.1039/C8TC02156B     URL    
[44]
Guan Q W, Ma J F, Yang W J, Zhang R, Zhang X J, Dong X X, Fan Y T, Cai L L, Cao Y, Zhang Y L, Li N, Xu Q. Nanoscale, 2019, 11(30):14123.

doi: 10.1039/C9NR04421C     URL    
[45]
Yang G H, Zhao J L, Yi S Z, Wan X J, Tang J N. Sensor Actuat. B: Chem., 2020, 309:127735.

doi: 10.1016/j.snb.2020.127735     URL    
[46]
Soleymaniha M, Shahbazi M A, Rafieerad A R, Maleki A, Amiri A. Adv. Healthcare Mater., 2019, 8(1):1801137.

doi: 10.1002/adhm.201801137     URL    
[47]
Liu Z, Lin H, Zhao M L, Dai C, Zhang S J, Peng W J, Chen Y. Theranostics, 2018, 8(6):1648.

doi: 10.7150/thno.23369     URL    
[48]
Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y, Shi P. Adv. Mater., 2016, 28(17):3333.

doi: 10.1002/adma.201504657     URL    
[49]
Dai C, Lin H, Xu G, Liu Z, Wu R, Chen Y. Chem. Mater., 2017, 29(20):8637.

doi: 10.1021/acs.chemmater.7b02441     URL    
[50]
Lin H, Wang Y, Gao S, Chen Y, Shi J. Adv. Mater., 2018,30.
[51]
Szuplewska A, Kulpińska D, Dybko A, Jastrzębska A M, Wojciechowski T, Rozmysłowska A, Chudy M, Grabowska-Jadach I, Ziemkowska W, Brzózka Z, Olszyna A. Mater. Sci. Eng.: C, 2019, 98:874.
[52]
Zada S, Dai W H, Kai Z, Lu H T, Meng X D, Zhang Y Y, Cheng Y R, Yan F, Fu P C, Zhang X J, Dong H F. Angew. Chem. Int. Ed., 2020, 59(16):6601.

doi: 10.1002/anie.v59.16     URL    
[53]
Hussein E A, Zagho M M, Rizeq B R, Younes N N, Pintus G, Mahmoud K A, Nasrallah G K, Elzatahry A A. Int. J. Nanomed., 2019, 14:4529.

doi: 10.2147/IJN     URL    
[54]
Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, Yuan C, Xiao Z, Liu Z, Cheng L. ACS Nano, 2019, 13:284.

doi: 10.1021/acsnano.8b05982     URL    
[55]
Shao J D, Zhang J, Jiang C, Lin J, Huang P. Chem. Eng. J., 2020, 400:126009.

doi: 10.1016/j.cej.2020.126009     URL    
[56]
Xing C Y, Chen S Y, Liang X, Liu Q, Qu M M, Zou Q S, Li J H, Tan H, Liu L P, Fan D Y, Zhang H. ACS Appl. Mater. Interfaces, 2018, 10(33):27631.

doi: 10.1021/acsami.8b08314     URL    
[57]
Han X X, Huang J, Lin H, Wang Z G, Li P, Chen Y. Adv. Healthcare Mater., 2018, 7(9):1701394.

doi: 10.1002/adhm.v7.9     URL    
[58]
Sinha A, Dhanjai, Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R,. Trac Trends Anal. Chem., 2018, 105:424.

doi: 10.1016/j.trac.2018.05.021     URL    
[59]
Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. ACS Appl. Mater. Interfaces, 2015, 7(24):13707.

doi: 10.1021/acsami.5b03737     URL    
[60]
Xiao B, Li Y C, Yu X F, Cheng J B. Sensor Actuat. B: Chem., 2016, 235:103.

doi: 10.1016/j.snb.2016.05.062     URL    
[61]
Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J. ACS Appl. Mater. Interfaces, 2017, 9(42):37184.

doi: 10.1021/acsami.7b11055     URL    
[62]
Kim S J, Koh H J, Ren C G, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T. ACS Nano, 2018, 12(2):986.

doi: 10.1021/acsnano.7b07460     URL    
[63]
Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud K A, Tkac J. Electrochimica Acta, 2017, 235:471.

doi: 10.1016/j.electacta.2017.03.073     pmid: 29109588
[64]
Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud K A, Tkac J. Sensor. Actuat. B-Chem., 2018, 263:360.

doi: 10.1016/j.snb.2018.02.124     URL    
[65]
Yang Y, Zeng Z T, Zeng G M, Huang D L, Xiao R, Zhang C, Zhou C Y, Xiong W P, Wang W J, Cheng M, Xue W J, Guo H, Tang X, He D H. Appl. Catal. B: Environ., 2019, 258:117956.

doi: 10.1016/j.apcatb.2019.117956     URL    
[66]
Elumalai S, Mani V, Jeromiyas N, Ponnusamy V K, Yoshimura M. Microchimica Acta, 2020, 187:33.

doi: 10.1007/s00604-019-4018-0     URL    
[67]
Gao M. Int. J. Electrochem. Sci., 2020, 15:4619.
[68]
Wang F, Yang C, Duan M, Tang Y, Zhu J. Biosens. Bioelectron., 2015, 74:1022.

doi: 10.1016/j.bios.2015.08.004     URL    
[69]
Qing H, Cai S, Xin-Chu W, Ling-Zhi C, Mian L I, Bao-Kai M A. J. Inorg. Mater., 2020, 35(1):131.
[70]
Zheng J S, Diao J L, Jin Y Z, Ding A L, Wang B, Wu L Z, Weng B, Chen J C. J. Electrochem. Soc., 2018, 165(5):B227.

doi: 10.1149/2.0051807jes     URL    
[71]
Chia H L, Mayorga-Martinez C C, Antonatos N, Sofer Z, Gonzalez-Julian J J, Webster R D, Pumera M. Anal. Chem., 2020, 92(3):2452.

doi: 10.1021/acs.analchem.9b03634     URL    
[72]
Koyappayil A, Chavan S G, Mohammadniaei M, Go A, Hwang S Y, Lee M H. Microchimica Acta, 2020, 187(5):277.

doi: 10.1007/s00604-020-04258-y     URL    
[73]
Zhao F N, Yao Y, Jiang C M, Shao Y Z, Barceló D, Ying Y B, Ping J F. J. Hazard. Mater., 2020, 384:121358.

doi: 10.1016/j.jhazmat.2019.121358     URL    
[74]
Xu Q, Xu J K, Jia H Y, Tian Q Y, Liu P, Chen S X, Cai Y, Lu X Y, Duan X M, Lu L M. J. Electroanal. Chem., 2020, 860:113869.

doi: 10.1016/j.jelechem.2020.113869     URL    
[75]
Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z. Anal. Chim. Acta, 2020, 1094:18.

doi: 10.1016/j.aca.2019.10.003     URL    
[76]
Ma X, Tu X L, Gao F, Xie Y, Huang X G, Fernandez C, Qu F L, Liu G B, Lu L M, Yu Y F. Sensor Actuat. B: Chem., 2020, 309:127815.

doi: 10.1016/j.snb.2020.127815     URL    
[77]
Mohammadniaei M, Koyappayil A, Sun Y, Min J H, Lee M H. Biosens. Bioelectron., 2020, 159:112208.

doi: S0956-5663(20)30205-0     pmid: 32364932
[78]
Fang Y, Yang X, Chen T, Xu G, Liu M, Liu J, Xu Y. Sensor. Actuat. B-Chem., 2018, 263:400.
[79]
Zhang H, Wang Z, Zhang Q, Wang F, Liu Y. Biosens. Bioelectron., 2019,124-125: 184.
[80]
Zhang H X, Wang Z H, Wang F, Zhang Y M, Wang H Y, Liu Y. Anal. Chem., 2020, 92(7):5546.

doi: 10.1021/acs.analchem.0c00469     URL    
[81]
Fang D D, Zhao D D, Zhang S P, Huang Y T, Dai H, Lin Y Y. Sensor Actuat. B: Chem., 2020, 305:127544.

doi: 10.1016/j.snb.2019.127544     URL    
[82]
Chen X, Sun X K, Xu W, Pan G C, Zhou D L, Zhu J Y, Wang H, Bai X, Dong B, Song H W. Nanoscale, 2018, 10(3):1111.

doi: 10.1039/c7nr06958h     pmid: 29271463
[83]
Liu M W, He Y, Zhou J, Ge Y L, Zhou J G, Song G W. Anal. Chimica Acta, 2020, 1103:134.

doi: 10.1016/j.aca.2019.12.069     URL    
[84]
Zhang Q X, Wang F, Zhang H X, Zhang Y Y, Liu M L, Liu Y. Anal. Chem., 2018, 90(21):12737.

doi: 10.1021/acs.analchem.8b03083     URL    
[85]
Manzanares-Palenzuela C L, Pourrahimi A M, Gonzalez-Julian J, Sofer Z, Pykal M, Otyepka M, Pumera M. Chem. Sci., 2019, 10(43):10010.

doi: 10.1039/c9sc03049b     pmid: 32055358
[86]
Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. J. Phys. Chem. C, 2017, 121(36):19983.

doi: 10.1021/acs.jpcc.7b08180     URL    
[87]
Ye Y T, Yi W C, Liu W, Zhou Y, Bai H, Li J F, Xi G C. Sci. China Mater., 2020, 63(5):794.

doi: 10.1007/s40843-020-1283-8     URL    
[88]
Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M. Sci. Rep., 2016, 6:32049.

doi: 10.1038/srep32049     URL    
[89]
Soundiraraju B, George B K. ACS Nano, 2017, 11(9):8892.

doi: 10.1021/acsnano.7b03129     URL    
[90]
Chen K Y, Yan X Y, Li J K, Jiao T F, Cai C, Zou G D, Wang R, Wang M L, Zhang L X, Peng Q M. Nanomaterials, 2019, 9(2):284.

doi: 10.3390/nano9020284     URL    
[91]
Xie X J, Zhu Y M, Li F, Zhou X W, Xue T. Sci. China Technol. Sci., 2019, 62(7):1202.

doi: 10.1007/s11431-018-9359-4     URL    
[92]
Elumalai S, Lombardi J R, Yoshimura M. Mater. Adv., 2020, 1(2):146.
[93]
Sarycheva A, Gogotsi Y. Chem. Mater., 2020, 32(8):3480.

doi: 10.1021/acs.chemmater.0c00359     URL    
[94]
Lei Y J, Zhao W L, Zhang Y Z, Jiang Q, He J H, Baeumner A J, Wolfbeis O S, Wang Z L, Salama K N, Alshareef H N. Small, 2019, 15(19):1901190.

doi: 10.1002/smll.v15.19     URL    
[95]
Guo Y, Zhong M J, Fang Z W, Wan P B, Yu G H. Nano Lett., 2019, 19(2):1143.

doi: 10.1021/acs.nanolett.8b04514     URL    
[96]
Cai Y C, Shen J, Ge G, Zhang Y Z, Jin W Q, Huang W, Shao J J, Yang J, Dong X C. ACS Nano, 2018, 12(1):56.

doi: 10.1021/acsnano.7b06251     URL    
[97]
Li G L, Wen D. J. Mater. Chem. B, 2020, 8(16):3423.

doi: 10.1039/C9TB02474C     URL    
[98]
Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal J M. Adv. Funct. Mater., 2020, 30(12):1910504.

doi: 10.1002/adfm.v30.12     URL    
[99]
Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z, Li W, Guo Y, Liu J, Yang Z, Wang H, Jin L. ACS Applied Bio Materials, 2020, 3:2125.

doi: 10.1021/acsabm.0c00007     URL    
[100]
Yang Q H, Yin H H, Xu T M, Zhu D Y, Yin J H, Chen Y X, Yu X W, Gao J J, Zhang C Q, Chen Y, Gao Y S. Small, 2020, 16(14):2070073.

doi: 10.1002/smll.v16.14     URL    
[101]
Jastrzębska A M, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmysłowska A, Olszyna A. J. Hazard. Mater., 2017, 339:1.

doi: 10.1016/j.jhazmat.2017.06.004     URL    
[1] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[2] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[3] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[4] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[5] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[6] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[7] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[8] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[9] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[10] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[11] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[12] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[13] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[14] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[15] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
阅读次数
全文


摘要