English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 216-231 DOI: 10.7536/PC20072 前一篇   后一篇

• 综述 •

激活型有机光声造影剂的应用

刘加伟1, 王婧1, 王其1,2,*(), 范曲立1,*(), 黄维3   

  1. 1 南京邮电大学有机电子与信息显示国家重点实验室培育基地 信息材料与纳米技术研究院 南京 210023
    2 东南大学生物电子学国家重点实验室 南京 210096
    3 西北工业大学柔性电子研究院 西安 710072
  • 收稿日期:2020-07-13 修回日期:2020-08-23 出版日期:2021-02-24 发布日期:2020-12-28
  • 通讯作者: 王其, 范曲立
  • 基金资助:
    国家自然科学基金项目(21602112); 国家自然科学基金项目(21674048); 东南大学生物电子学国家重点实验室开放研究基金(OPSKLB202006); 江苏省研究生科研与实践创新计划项目(KYCX20_0752)

Applications of Activatable Organic Photoacoustic Contrast Agents

Jiawei Liu1, Jing Wang1, Qi Wang1,2,*(), Quli Fan1,*(), Wei Huang3   

  1. 1 Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    2 State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
    3 Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
  • Received:2020-07-13 Revised:2020-08-23 Online:2021-02-24 Published:2020-12-28
  • Contact: Qi Wang, Quli Fan
  • About author:
    * Corresponding author e-mail: (Qi Wang);
  • Supported by:
    National Natural Science Foundation of China(21602112); National Natural Science Foundation of China(21674048); Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University(OPSKLB202006); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_0752)

光声(PA)成像作为一种结合了光学和声学成像优势的新型成像方式,具有深层组织穿透和高空间分辨率等优点,在重大疾病的早期影像诊断方面有着巨大的应用前景。然而传统的PA造影剂依然存在信噪比低、选择性及特异性差等不足,容易产生假阳性诊断结果。激活型PA造影剂可以有效的降低背景噪声,并提升成像的灵敏度和特异性,是目前PA造影剂设计与构筑的主要趋势。本综述首先简单介绍了PA成像的原理,然后结合近几年在金属离子、酶、活性氮和活性氧等相关方面的生物成像应用,梳理了可激活探针在不同微环境中的响应方式。最后,对激活型探针在PA成像中的应用进行了总结和展望。

Photoacoustic(PA) imaging, as a new type of imaging technique that offers strong optical absorption contrast and high ultrasonic resolution, shows great application prospects in the early disease diagnosis for its characteristics of deep tissue penetration and high spatial resolution. However, traditional “always on” PA contrast agents have many disadvantages such as low signal-to-noise ratio, poor selectivity and specificity. In contrast, activatable PA contrast agents, where the imaging signal can be changed in response to pathologic parameters, have shown decreased background signal and improved selectivity and specificity in early disease diagnosis. Moreover, these contrast agents can obtain pathological parameters and information of various diseases at the molecular level by rational design to their structures, providing important guidelines for the optimization of treatment options. Therefore, activatable PA contrast agents hold greater promise in clinical practice than traditional “always on” PA contrast agents. In this review, we describe the recent advances in the development of activatable PA contrast agents. The design mechanisms and proof-of-concept applications of these activatable PA contrast agents are summarized in detail. The use of these activatable probes to detect different pathologic parameters(such as metal ions, enzymes, reactive nitrogen and reactive oxygen species) is highlighted. Finally, current challenges and future perspectives in this emerging field are also analyzed.

Contents

1 Introduction

2 “Always on” versus activatable PA imaging

3 Applications of activatable PA imaging contrast agents

3.1 Metal ions

3.2 Enzymes

3.3 RONS

3.4 pH

3.5 Gasotransmitters

3.6 Glutathione(GSH)

3.7 Hypoxia

3.8 Others

4 Conclusion and outlook

()
图1 激活型PA探针和传统型PA探针的对比及其相关应用
Fig. 1 Comparison of activatable PA probe and convetional PA probe and its related applications
图2 (A)PA探针LET-2检测Cu2+的原理示意图;(B)LET-2滴加Cu2+的吸收光谱和PA715与Cu2+浓度的线性图[33]
Fig. 2 (A) Schematic illustration of PA probe LET-2 for the detection of Cu2+;(B) The absorption spectra of LET-2 upon treatment with Cu2+ and plot of PA715 against the concentration of Cu2+.[33] Copyright 2019, John Wiley and Sons
图3 (A)探针NRh-IR-NMs检测Cu2+的原理示意图及检测前后吸收光谱的变化[31];(B)探针APC-2与Cu2+作用前后结构的变化[32];(C)探针hCy7及其与MeHg+反应的产物hCy7'[34]
Fig. 3 (A) Schematic diagram of the probe NRh-IR-NMs for detection of Cu2+ and absorption spectra changes of the nanoprobe.[31] Copyright 2019, American Chemical Society;(B) Chemical structure of the APC-2 and the products formed after Cu(II) treatment;[32](C) Probe hCy7 and its reaction product hCy7'[34]
图4 (A)Clark等报道的Li+探针原理示意图[37]。(B)Kopelman等报道的探针在不同K+浓度(10 μmol/L ~ 1 mol/L)的吸收光谱 [40]
Fig. 4 (A) Schematic illustration of mechanism of Li+ probe reported by Clark et al.[37] Copyright 2015, American Chemical Society;(B) Absorption spectra of probe reported by Kopelman et al. at different concentrations of potassium(from 10 μmol/L to 1 mol/L). [40] Copyright 2017, American Chemical Society
图5 (A)探针分子Probe 1的结构及肿瘤部位响应自组装纳米纤维示意图;(B)探针在琼脂模型中与明胶酶(15 ng·mL-1)孵育1 h后,PA信号增强;(C)注射后0.5到24 h,肿瘤部位PA信号强度随时间的变化曲线[45]
Fig. 5 (A) Schematic illustration of the structure of the Probe 1 and it responsively self-assembled into nanofibers in tumor sites;(B) PA signal enhancing after 1 h co-incubation of gelatinase(15 ng·mL-1) and Probe 1;(C) The PA signal intensity in tumor site with time increase from 0.5 to 24 h postinjection.[45] Copyright 2015, John Wiley and Sons
图6 (A)探针ESOR-PA01在肿瘤微环境缩合反应和自组装过程示意图;(B)探针在过表达弗林蛋白酶的MDA-MB-231细胞和缺乏弗林蛋白酶的LoVo细胞中的PA成像;(C)置于PA成像定位装置的小鼠照片及小鼠肿瘤处的PA图像[48]
Fig. 6 (A) Schematic illustration of condensation reactions and self-assembly of probe ESOR-PA01 at tumor microenvironment;(B) The PA imaging of the probe in Furin-overexpressing MDA-MB-231 cells and furin-deficient LoVo cells;(C) Photographic image of a mouse placed in a positioning device for PA imaging and representative PA images of mice tumors[48] Copyright 2013, American Chemical Society
图7 (A)探针P-Dex结构式及uPA反应后产物CyN3OH-Dex结构式;(B)P-Dex或SP加入或不加入uPA的吸收和PA光谱[50]
Fig. 7 (A) The structure of probe P-Dex and its reaction product CyN3OH-Dex;(B) UV-Vis absorption and PA spectra of P-Dex or SP in the absence or presence of uPA.[50] Copyright 2020, John Wiley and Sons
图8 探针PCBP设计及表征[61]:(A)探针响应及自组装的机理;(B)尾静脉注射探针PCPB后肿瘤处PA图像随时间的变化
Fig. 8 Design and characterization of the probe PCBP[61].(A) The activation and self-assembly mechanism of probe;(B) Representative PA intensity projection images of tumors after systemic administration of PCBP through tail vein. Copyright 2017, John Wiley and Sons
图9 (A)探针Lipo@HRP&ABTS中ABTS与H2O2氧化反应[62];(B)探针BDP-DOH的氧化还原原理示意图[63]
Fig. 9 (A) The oxidation reaction of ABTS and H2O2 in the probe Lipo@HRP&ABTS;[62](B) Schematic illustration of redox mechanism of probe BDP-DOH[63]
图10 (A)探针PDI-IR790s-Fe/Pt的制备;(B)静脉注射后皮下U87MG肿瘤在680和790 nm的PA图像及PA信号强度随注射时间的变化[67]
Fig. 10 (A) Preparation of probe PDI-IR790s-Fe/Pt;(B) Representative PA images at 680 and 790 nm of a subcutaneous U87MG tumor after intravenous injection and the PA signal intensity as a function of postinjection time.[67] Copyright 2018, John Wiley and Sons
图11 (A)探针OSN-B1中BBD分子的氧化反应[70];(B)探针OEG-Aza-BODIPY-BAPE的激活原理[71]
Fig. 11 (A) Oxidation of molecule BBD in probe OSN-B1;[70](B) Activated mechanism of probe OEG-Aza-BODIPY-BAPE[71]
图12 (A)探针LET-4中IR-pH的质子化和去质子化过程[74];(B)探针Probe 3中F-DTS和pH-BDP的分子结构式[77]
Fig. 12 (A) Protonation and deprotonation of IR-pH in probe LET-4;[74](B) Molecular structures of F-DTS and pH-BDP in Probe 3[77]
图13 (A)探针NP1的结构式及酸化后腙键断裂;(B)NP1在不同pH值下785 nm和708 nm处的PA信号强度及PA信号比率[79]
Fig. 13 (A) The structure of NP1 and the cleavage of hydrazone bonds in a physiologically acidic environment;(B) PA signal amplitude intensity at the two wavelengths of NP1 at different pH values and PA signal ratios between 785 nm and 708 nm.[79] Copyright 2012, Royal Society of Chemistry
图14 (A)探针PBP@MnO2 NPs的制备及H2O2/pH激活原理示意图;(B)尾静脉给药后4T1肿瘤小鼠的PA图像及ΔPA825/ΔPA680的比值随时间的变化[81]
Fig. 14 (A) Schematic illustration of the preparation of probe PBP@MnO2 NPs and its activation mechanism by H2O2/pH;(B) Representative PA images of 4T1 neoplastic mice after tail vein administration and ratiometric PA signals(ΔPA825/ΔPA680) as a function of the postinjection time[81] Copyright 2019, Royal Society of Chemistry
图15 (A)PA探针HS-CyBz的检测机理[83];(B)探针CyCl-1和CyCl-2的结构及对H2S的检测机理[84];(C)探针AzHD-LP用于比率式PA检测H2S的机理[85]
Fig. 15 (A) Detection mechanism of PA probe HS-CyBz;[83](B) Structures of CyCl-1 and CyCl-2 and the proposed mechanism for H2S detection;[84](C) Proposed mechanism for ratiometric photoacoustic detection of H2S by probe AzHD-LP[85]
图16 (A)探针DATN中NRM与NO的反应示意图[88];(B)探针APNO-5的响应机理[89]
Fig. 16 (A) The illustration of the reaction for NRM to NO in the probe DATN;[88](B) Response mechanism of probe APNO-5[89]
图17 (A)IR806-PDA二硫键被GSH还原并转化为巯基(—SH),SH和仲胺交换得到IR806-S-NH2产物;(B)IR806-PDA注射后在820 nm和680 nm处的PA信号强度及在两个波长下的比率值[92]
Fig. 17 (A) The disulfide bond of IR806-PDA can be cleaved by GSH and a subsequent exchange between —SH and the secondary amine occurred to form the thiolate-substituted IR806(IR806-S-NH 2);(B) PA signal amplitude intensity at 820 nm and 680 nm of IR806-PDA after injection and PA signal ratios between the two wavelengths.[92] Copyright 2018, John Wiley and Sons
图18 (A)HyP-1在乏氧环境中的还原过程[94];(B)探针NR-azo在乏氧条件反应示意图[95]
Fig. 18 (A) Reduction process of HyP-1 in hypoxic environment;[94](B) Schematic illustration for the probe NR-azo response toward hypoxia[95]
表1 文中部分可激活型PA探针的性质总结
Table 1 Summary of properties of partially activatable PA probes in this review
[1]
He S Q, Song J, Qu J L, Cheng Z. Chem. Soc. Rev., 2018, 47:4258.

URL     pmid: 29725670
[2]
Hong G S, Antaris A L, Dai H J. Nat. Biomed. Eng., 2017, 1:0010.
[3]
Wang Q, Xu J Z, Geng R Y, Cai J, Li J, Xie C, Tang W H, Shen Q M, Huang W, Fan Q L. Biomaterials, 2020, 231:119671.
[4]
Weber J, Beard P C, Bohndiek S E. Nat. Methods, 2016, 13:639.
[5]
Lemaster J E, Jokerst J V. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2017, 9(1):11.
[6]
Upputuri P K, Pramanik M. J. Biomed. Opt., 2019, 24:1.
[7]
Jiang Y Y, Pu K Y. Small, 2017, 13:1700710.
[8]
Wang Q, Dai Y N, Xu J Z, Cai J, Niu X R, Zhang L, Chen R F, Shen Q M, Huang W, Fan Q L. Adv. Funct. Mater., 2019, 29:1901480.
[9]
Wang Q, Xia B, Xu J Z, Niu X R, Cai J, Shen Q M, Wang W J, Huang W, Fan Q L. Mater. Chem. Front., 2019, 3:650.
[10]
Ye J M, Li Z, Fu Q R, Li Q Q, Zhang X, Su L C, Yang H H, Song J B. Adv. Funct. Mater., 2020, 30:2001771.
[11]
Garcea S C, Wang Y, Withers P J. Compos. Sci. Technol., 2018, 156:305.
[12]
Parada S A, Eichinger J K, Dumont G D, Parada C A, Greenhouse A R, Provencher M T, Higgins L D, Warner J J P. Arthrosc.: J. Arthrosc. Relat. Surg., 2018, 34:84.
[13]
Poelma C. Exp. Fluids, 2017, 58:3.
[14]
Huang T J, Kim K T, Nakamura H, Yeung A T, Zeng J C. Biomed Res. Int., 2017, 2017:1.
[15]
Renard D. Eur. J. Neurol., 2018, 25:441.

doi: 10.1111/ene.13544     URL     pmid: 29222944
[16]
Steinberg I, Huland D M, Vermesh O, Frostig H E, Tummers W S, Gambhir S S. Photoacoustic clinical imaging. Photoacoustics, 2019, 14:77.
[17]
Liu Y Y, Fan X, Li Y Y, Qu L L, Qin H Y, Cao Y N, Li H T. Prog. Chem., 2015, 27:1459.
刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 化学进展, 2015, 27:1459.
[18]
Xu M H, Wang L V. Rev. Sci. Instruments, 2006, 77:041101.
[19]
Lu X M, Chen P F, Hu W B, Tang Y F, Huang W, Fan Q L. Prog. Chem., 2017, 29:119.
卢晓梅, 陈鹏飞, 胡文博, 唐玉富, 黄维, 范曲立. 化学进展, 2017, 29:119.
[20]
Wu J J, Yang Zhen, Jiao J M, Sun P F, Fan Q L, Huang W. Progress in Chemistry, 2017, 029(2):216.
吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 化学进展, 2017, 029(2):216.
[21]
Chen C, Ou H L, Liu R H, Ding D. Adv. Mater., 2020, 32:1806331.
[22]
Ou H L, Li J, Chen C, Gao H Q, Xue X, Ding D. Sci. China Mater., 2019, 62:1740.
[23]
Tang Y F, Pei F, Lu X M, Fan Q L, Huang W. Adv. Optical Mater., 2019, 7:1900917.
[24]
Wang X H, Wang X Y, Jin S X, Muhammad N, Guo Z J. Chem. Rev., 2019, 119:1138.

URL     pmid: 30299085
[25]
Miao Q Q, Pu K Y. Bioconjugate Chem., 2016, 27:2808.
[26]
Lyu Y, Pu K Y. Adv. Sci., 2017, 4:1600481.
[27]
Fu Q, Zhu R, Song J, Yang H, Chen X. Adv. Mater., 2019, 31(6):e1805875.

URL     pmid: 30556205
[28]
Carter K P, Young A M, Palmer A E. Chem. Rev., 2014, 114:4564.
[29]
Knox H J, Chan J. Acc. Chem. Res., 2018, 51:2897.

doi: 10.1021/acs.accounts.8b00351     URL     pmid: 30379532
[30]
Wang S C, Sheng Z H, Yang Z G, Hu D H, Long X J, Feng G, Liu Y B, Yuan Z, Zhang J J, Zheng H R, Zhang X J. Angew. Chem. Int. Ed., 2019, 58:12415.
[31]
Wang W, Tran R, Qu J F, Liu Y, Chen C, Xu M G, Chen Y B, Ong S P, Wang L Z, Zhou W, Shao Z P. ACS Appl. Mater. Interfaces, 2019, 11:35641.

doi: 10.1021/acsami.9b07966     URL     pmid: 31532199
[32]
Li H, Zhang P, Smaga L P, Hoffman R A, Chan J. J. Am. Chem. Soc., 2015, 137:15628.
[33]
Zeng L L, Ma G C, Xu H, Mu J, Li F, Gao X T, Deng Z T, Qu J L, Huang P, Lin J. Small, 2019, 15:1803866.
[34]
Liu Y, Wang S, Ma Y, Lin J, Wang H Y, Gu Y Q, Chen X Y, Huang P. Adv. Mater., 2017, 29:1606129.
[35]
Huang Y, Li F, Ma G C, Yang W W, Zhang X F, Lin J, Luo Y X, Huang P. Talanta, 2018, 187:65.
[36]
Roberts S, Seeger M, Jiang Y Y, Mishra A, Sigmund F, Stelzl A, Lauri A, Symvoulidis P, Rolbieski H, Preller M, Deán-Ben X L, Razansky D, Orschmann T, Desbordes S C, Vetschera P, Bach T, Ntziachristos V, Westmeyer G G. J. Am. Chem. Soc., 2018, 140:2718.
[37]
Cash K J, Li C Y, Xia J, Wang L V, Clark H A. ACS Nano, 2015, 9:1692.

URL     pmid: 25588028
[38]
Ho I T, Sessler J L, Gambhir S S, Jokerst J V. Anal., 2015, 140:3731.
[39]
Xiang J J, Liu C J, Zhou L H, Yang X, Li Y, Jiang Y C, Mahmood T, Zhang P F, Gong P, Cai L T. Anal. Chem., 2020, 92:4721.
[40]
Lee C H, Folz J, Zhang W L, Jo J, Tan J W Y, Wang X D, Kopelman R. Anal. Chem., 2017, 89:7943.
[41]
Mu J, Lin J, Huang P, Chen X Y. Chem. Soc. Rev., 2018, 47:5554.

doi: 10.1039/C7CS00663B     URL    
[42]
Razgulin A, Ma N, Rao J H. Chem. Soc. Rev., 2011, 40:4186.

URL     pmid: 21552609
[43]
Zhang J D, Liu H Z, Meng L. Chinese Journal of Organic Chemistry, 2019, 39(11):3132.
张继东, 刘鸿泽, 孟丽. 有机化学, 2019, 39(11):3132.
[44]
Wu C F, Zhang R, Du W, Cheng L, Liang G L. Nano Lett., 2018, 18:7749.
[45]
Zhang D, Qi G B, Zhao Y X, Qiao S L, Yang C, Wang H. Adv. Mater., 2015, 27:6125.
[46]
Li L L, Ma H L, Qi G B, Zhang D, Yu F Q, Hu Z Y, Wang H. Adv. Mater., 2016, 28:254.

URL     pmid: 26568542
[47]
Lin Y X, Wang Y, Qiao S L, An H W, Wang J, Ma Y, Wang L, Wang H. Biomaterials, 2017, 141:199.
[48]
Dragulescu-Andrasi A, Kothapalli S R, Tikhomirov G A, Rao J H, Gambhir S S. J. Am. Chem. Soc., 2013, 135:11015.
[49]
Wang Y Q, Hu X M, Weng J H, Li J B, Fan Q L, Zhang Y, Ye D J. Angew. Chem. Int. Ed., 2019, 58:4886.
[50]
Li Q, Li S H, He S S, Chen W, Cheng P H, Zhang Y, Miao Q Q, Pu K Y. Angew. Chem. Int. Ed., 2020, 59:7018.
[51]
Gao X T, Ma G C, Jiang C, Zeng L L, Jiang S S, Huang P, Lin J. Anal. Chem., 2019, 91:7112.
[52]
Levi J, Kothapalli S R, Bohndiek S, Yoon J K, Dragulescu-Andrasi A, Nielsen C, Tisma A, Bodapati S, Gowrishankar G, Yan X R, Chan C, Starcevic D, Gambhir S S. Clin. Cancer Res., 2013, 19:1494.

doi: 10.1158/1078-0432.CCR-12-3061     URL    
[53]
Zhang J J, Smaga L P, Satyavolu N S R, Chan J, Lu Y. J. Am. Chem. Soc., 2017, 139:17225.

URL     pmid: 29028325
[54]
Meng X Q, Zhang J L, Sun Z H, Zhou L H, Deng G J, Li S P, Li W J, Gong P, Cai L T. Theranostics, 2018, 8:6025.
[55]
Bauerová K, Bezek A. Gen. Physiol. Biophys., 1999, 18:15.

URL     pmid: 10703714
[56]
Martin L D, Krunkosky T M, Dye J A, Fischer B M, Jiang N F, Rochelle L G, Akley N J, Dreher K L, Adler K B. Environ. Heal. Perspect., 1997, 105:1301.
[57]
Baran C, Zeigler M, Tridandapani S, Marsh C. Curr. Pharm. Des., 2004, 10:855.
[58]
Tapeinos C, Pandit A. Adv. Mater., 2016, 28:5553.
[59]
Ye H, Zhou Y, Liu X, Chen Y B, Duan S Z, Zhu R Y, Liu Y, Yin L C. Biomacromolecules, 2019, 20:2441.

URL     pmid: 31117357
[60]
Jiao C P, Liu Y Y, Lu W J, Zhang P P, Wang Y F. Chinese Journal of Organic Chemistry, 2019, 39(3):591.
矫春鹏, 刘媛媛, 路文娟, 张平平, 王延风. 有机化学, 2019, 39(3):591.
[61]
Xie C, Zhen X, Lyu Y, Pu K Y. Adv. Mater., 2017, 29:1703693.
[62]
Chen Q, Liang C, Sun X Q, Chen J W, Yang Z J, Zhao H, Feng L Z, Liu Z. PNAS, 2017, 114:5343.

URL     pmid: 28484000
[63]
Zheng J D, Zeng Q, Zhang R J, Xing D, Zhang T. J. Am. Chem. Soc., 2019, 141:19226.

doi: 10.1021/jacs.9b10353     URL     pmid: 31770490
[64]
Wang Z M, Zhen X, Upputuri P K, Jiang Y Y, Lau J, Pramanik M, Pu K Y, Xing B G. ACS Nano, 2019, 13:5816.
[65]
Yang Y L, Wang S F, Lu L F, Zhang Q S, Yu P, Fan Y, Zhang F. Angew. Chem. Int. Ed., 2020, 59:18380.
[66]
Yin C, Zhen X, Fan Q L, Huang W, Pu K Y. ACS Nano, 2017, 11:4174.

URL     pmid: 28296388
[67]
Yang Z, Dai Y L, Yin C, Fan Q L, Zhang W S, Song J, Yu G C, Tang W, Fan W P, Yung B C, Li J, Li X, Li X C, Tang Y F, Huang W, Song J B, Chen X Y. Adv. Mater., 2018, 30:1707509.
[68]
Pu K Y, Shuhendler A J, Jokerst J V, Mei J G, Gambhir S S, Bao Z N, Rao J H. Nat. Nanotechnol., 2014, 9:233.
[69]
Qin X L, Li F, Zhang Y F, Ma G C, Feng T, Luo Y X, Huang P, Lin J. Anal. Chem., 2018, 90:9381.

doi: 10.1021/acs.analchem.8b01992     URL     pmid: 29963863
[70]
Zhang J J, Zhen X, Upputuri P K, Pramanik M, Chen P, Pu K Y. Adv. Mater., 2017, 29:1604764.
[71]
Lu X M, Zhao M, Chen P F, Fan Q L, Wang W J, Huang W. J. Mater. Chem. B, 2018, 6:4531.

URL     pmid: 32254670
[72]
Toriumi N, Asano N, Ikeno T, Muranaka A, Hanaoka K, Urano Y, Uchiyama M. Angew. Chem. Int. Ed., 2019, 58:7788.
[73]
Adrogué H J, Madias N E. N Engl J. Med., 1998, 338:107.
[74]
Ma G C, Gao X T, Jiang C, Xing S J, Wei C L, Huang P, Lin J. Anal. Chem., 2019, 91:13570.

doi: 10.1021/acs.analchem.9b02701     URL     pmid: 31610654
[75]
Chen Q, Liu X D, Zeng J F, Cheng Z P, Liu Z. Biomaterials, 2016, 98:23.

URL     pmid: 27177219
[76]
Guha S, Shaw G K, Mitcham T M, Bouchard R R, Smith B D. Chem. Commun., 2016, 52:120.
[77]
Miao Q Q, Lyu Y, Ding D, Pu K Y. Adv. Mater., 2016, 28:3662.

URL     pmid: 27000431
[78]
Chen Q, Liu X D, Chen J W, Zeng J F, Cheng Z P, Liu Z. Adv. Mater., 2015, 27:6820.
[79]
Huang G J, Si Z, Yang S H, Li C, Xing D. J. Mater. Chem., 2012, 22:22575.
[80]
Ju K Y, Kang J, Pyo J, Lim J, Chang J H, Lee J K. Nanoscale, 2016, 8:14448.
[81]
Hu X M, Zhan C, Tang Y F, Lu F, Li Y Y, Pei F, Lu X M, Ji Y, Li J, Wang W J, Fan Q L, Huang W. Chem. Commun., 2019, 55:6006.
[82]
Wang R. Physiol. Rev., 2012, 92:791.

URL     pmid: 22535897
[83]
Chen Z Y, Mu X L, Han Z, Yang S P, Zhang C L, Guo Z J, Bai Y, He W J. J. Am. Chem. Soc., 2019, 141:17973.

doi: 10.1021/jacs.9b09181     URL     pmid: 31657918
[84]
Li X, Tang Y F, Li J, Hu X M, Yin C, Yang Z, Wang Q, Wu Z Z, Lu X M, Wang W J, Huang W, Fan Q L. Chem. Commun., 2019, 55:5934.
[85]
Ma T, Zheng J D, Zhang T, Xing D. Nanoscale, 2018, 10:13462.

URL     pmid: 29972183
[86]
Denninger J W, Marletta M A. Biochim. et Biophys. Acta BBA - Bioenerg., 1999, 1411:334.
[87]
Wang L Z, Zhang J, An X, Duan H D. Org. Biomol. Chem., 2020, 18:1522.

URL     pmid: 31995085
[88]
Teng L L, Song G S, Liu Y C, Han X Y, Li Z, Wang Y J, Huan S Y, Zhang X B, Tan W H. J. Am. Chem. Soc., 2019, 141:13572.

doi: 10.1021/jacs.9b05901     URL     pmid: 31370392
[89]
Reinhardt C J, Zhou E Y, Jorgensen M D, Partipilo G, Chan J. J. Am. Chem. Soc., 2018, 140:1011.

URL     pmid: 29313677
[90]
Kleinman W A, Richie J P Jr. Biochem. Pharmacol., 2000, 60:19.

doi: 10.1016/s0006-2952(00)00293-8     URL     pmid: 10807941
[91]
Jung H S, Chen X Q, Kim J S, Yoon J. Chem. Soc. Rev., 2013, 42:6019.

URL     pmid: 23689799
[92]
Yin C, Tang Y F, Li X Z, Yang Z, Li J, Li X, Huang W, Fan Q L. Small, 2018, 14:1703400.
[93]
Tang L G, Yu F, Tang B W, Yang Z, Fan W P, Zhang M R, Wang Z T, Jacobson O, Zhou Z J, Li L, Liu Y J, Kiesewetter D O, Tang W, He L C, Ma Y, Niu G, Zhang X Z, Chen X Y. ACS Appl. Mater. Interfaces, 2019, 11:27558.

URL     pmid: 31317730
[94]
Knox H J, Hedhli J, Kim T W, Khalili K, Dobrucki L W, Chan J. Nat. Commun., 2017, 8:1794.

URL     pmid: 29176550
[95]
Huang J, Wu Y L, Zeng F, Wu S Z. Theranostics, 2019, 9:7313.

doi: 10.7150/thno.36755     URL     pmid: 31695770
[96]
Ng K K, Shakiba M, Huynh E, Weersink R A, Roxin Á, Wilson B C, Zheng G. ACS Nano, 2014, 8:8363.
[97]
Xiao H B, Wu C C, Li P, Gao W, Zhang W, Zhang W, Tong L L, Tang B. Chem. Sci., 2017, 8:7025.

doi: 10.1039/c7sc02330h     URL     pmid: 29147529
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[8] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[9] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[10] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[11] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[12] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[13] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[14] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[15] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
阅读次数
全文


摘要

激活型有机光声造影剂的应用