English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 1947-1952 DOI: 10.7536/PC201001 前一篇   后一篇

• 综述 •

C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化

陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥*()   

  1. 上海应用技术大学化学与环境工程学院 上海 201418
  • 收稿日期:2020-10-09 修回日期:2021-01-14 出版日期:2021-11-20 发布日期:2021-03-04
  • 通讯作者: 刘传祥
  • 基金资助:
    上海市科学技术委员会(17ZR1429900); 上海市化学生物学重点实验室开放基金资助

C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide

Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu()   

  1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology,Shanghai 201418, China
  • Received:2020-10-09 Revised:2021-01-14 Online:2021-11-20 Published:2021-03-04
  • Contact: Chuanxiang Liu
  • Supported by:
    Natural Science Foundation of Shanghai(17ZR1429900); Opening Fund of Shanghai Key Laboratory of Chemical Biology.

氰基广泛存在药物活性分子中,且氰基可以很容易转化成酰胺、酯基、醛基以及伯胺等官能团,因此有机分子的氰烷基/甲基化反应得到有机和药学研究者的广泛关注。尽管已有合成策略可以选择性引入氰基,近年来最有效的方法是通过C—H键激活直接与乙腈或取代乙腈发生氰甲基/氰烷基化反应,因其具有高效的原子经济性以及可规避预官能团化等优点。因此,本文详细评述了自由基促进的氰甲基化、光化学催化直接氰甲基化、芳环或杂环脱氢偶联氰甲基化、导向基促进的氰甲基化、本课题组发展的荧光团(Fluorophore C—H)直接氰甲基化反应的研究进展。

The cyanoalkylation/cyanomethylation of organic molecules is of great research interest to organic and medicinal chemists due to the wide presence of the cyano group in biologically active molecules and the facile conversion of the cyano group into many other functional groups, such as amides, esters, aldehydes, and primary amines. Although a variety of different synthetic strategies have been developed for the selective introduction of the cyanomethyl group, an attractive approach is to use acetonitrile directly through C—H activation due to the highly efficient atom economy and the avoidance of prefunctionalization. Therefore, this review summarizes the main research progress in C—H cyanoalkylation/cyanomethylation of radical cyanomethylation, Photochemical Cross-coupling reaction, Cross-Dehydrogenative Coupling(CDC) Reaction, Directing group-promoted C—H cyanomethylation and Fluorophore C—H cyanomethylation reported by our group.

Contents

1 Introduction

2 Radical cyanomethylation of activated alkenes with acetonitrile

3 Photochemical cross-coupling reaction of alkene or aroma C(sp2)—H functionalization of acetonitrile

4 Cross-dehydrogenative coupling(CDC) reaction of aromatic ring C(sp2)—H functionalization of acetonitrile

5 Directing group-promoted C—H cyanomethylation

6 Conclusion and outlook

()
[1]
Mᶏkosza M. Chem. Soc. Rev., 2010, 39(8): 2855.

doi: 10.1039/b822559c     URL    
[2]
Rappoport Z.[M]. Chichester, UK: John Wiley & Sons, Ltd., 1970.
[3]
Dénès F, Pérez-Luna A, Chemla F. Chem. Rev., 2010, 110(4): 2366.

doi: 10.1021/cr800420x     URL    
[4]
Weiberth F J, Hall S S. J. Org. Chem., 1987, 52(17): 3901.

doi: 10.1021/jo00226a033     URL    
[5]
Trivedi B K, Holmes A, Stoeber T L, Blankley C J, Roark W H, Picard J A, Shaw M K, Essenburg A D, Stanfield R L, Krause B R. J. Med. Chem., 1993, 36(22): 3300.

pmid: 8230120
[6]
Culkin D A, Hartwig J F. Acc. Chem. Res., 2003, 36(4): 234.

doi: 10.1021/ar0201106     URL    
[7]
Chen G, Wang Z, Wu J, Ding K L. Org. Lett., 2008, 10(20): 4573.

doi: 10.1021/ol801812a     URL    
[8]
Narsaiah A, Nagaiah K. Adv. Synth. Catal., 2004, 346(11): 1271.

doi: 10.1002/(ISSN)1615-4169     URL    
[9]
Bacchi S, Stazi F, Maton W, Castoldi D, Westerduin P, Curcuruto O. Synthesis, 2010, 2010(19): 3332.

doi: 10.1055/s-0030-1257871     URL    
[10]
Yang Y Y, Tang S, Liu C, Zhang H M, Sun Z X, Lei A W. Org. Biomol. Chem., 2011, 9(15): 5343.

doi: 10.1039/c1ob05326d     URL    
[11]
Wu L Y, Hartwig J F. J. Am. Chem. Soc., 2005, 127(45): 15824.

doi: 10.1021/ja053027x     URL    
[12]
Shang R, Ji D S, Chu L, Fu Y, Liu L. Angew. Chem. Int. Ed., 2011, 50(19): 4470.

doi: 10.1002/anie.201006763     URL    
[13]
Lovato K, Guo L R, Xu Q L, Liu F T, Yousufuddin M, Ess D H, Kürti L, Gao H Y. Chem. Sci., 2018, 9(41): 7992.

doi: 10.1039/C8SC02758G     URL    
[14]
Dong Z, Wang J C, Dong G B. J. Am. Chem. Soc., 2015, 137(18): 5887.

doi: 10.1021/jacs.5b02809     pmid: 25909445
[15]
Cornella J, Righi M, Larrosa I. Angew. Chem. Int. Ed., 2011, 50(40): 9429.

doi: 10.1002/anie.v50.40     URL    
[16]
Wu T, Mu X, Liu G S. Angew. Chem. Int. Ed., 2011, 50(52): 12578.

doi: 10.1002/anie.201104575     URL    
[17]
Li J, Wang Z G, Wu N J, Gao G, You J S. Chem. Commun., 2014, 50(95): 15049.

doi: 10.1039/C4CC07667B     URL    
[18]
Li Z J, Xiao Y X, Liu Z Q. Chem. Commun., 2015, 51(49): 9969.

doi: 10.1039/C5CC02968F     URL    
[19]
Pan C D, Zhang H L, Zhu C J. Org. Biomol. Chem., 2015, 13(2): 361.

doi: 10.1039/C4OB02172J     URL    
[20]
Bunescu A, Wang Q, Zhu J P. Org. Lett., 2015, 17(8): 1890.

doi: 10.1021/acs.orglett.5b00571     pmid: 25825802
[21]
Chatalova-Sazepin C, Wang Q, Sammis G M, Zhu J P. Angew. Chem. Int. Ed., 2015, 54(18): 5443.

doi: 10.1002/anie.201412357     URL    
[22]
Liu Y Y, Yang X H, Song R J, Luo S L, Li J H. Nat. Commun., 2017, 8: 14720.

doi: 10.1038/ncomms14720     pmid: 28393864
[23]
Wang K C, Chen X, Yuan M, Yao M, Zhu H C, Xue Y B, Luo Z W, Zhang Y H. J. Org. Chem., 2018, 83(3): 1525.

doi: 10.1021/acs.joc.7b02585     URL    
[24]
Yoshida H, Fujimura Y, Yuzawa H, Kumagai J, Yoshida T. Chem. Commun., 2013, 49(36): 3793.

doi: 10.1039/c3cc41068d     URL    
[25]
Zhang J L, Liu Y, Song R J, Jiang G F, Li J H. Synlett., 2014, 25: 1031.

doi: 10.1055/s-00000083     URL    
[26]
Wada E, Takeuchi T, Fujimura Y, Tyagi A, Kato T, Yoshida H. Catal. Sci. Technol., 2017, 7(12): 2457.

doi: 10.1039/C7CY00365J     URL    
[27]
Liu Z Q, Li Z J. Chem. Commun., 2016, 52(99): 14278.

doi: 10.1039/C6CC08213K     URL    
[28]
Su H M, Wang L Y, Rao H H, Xu H. Org. Lett., 2017, 19(9): 2226.

doi: 10.1021/acs.orglett.7b00678     URL    
[29]
Zhang R X, Jin S Z, Liu Q, Lin S, Yan Z H. J. Org. Chem., 2018, 83(21): 13030.

doi: 10.1021/acs.joc.8b01508     URL    
[30]
Liu Y B, Yang K, Ge H B. Chem. Sci., 2016, 7(4): 2804.

doi: 10.1039/C5SC04066C     URL    
[31]
Qiao K, Zhang D, Zhang K, Yuan X, Zheng M W, Guo T F, Fang Z, Wan L, Guo K. Org. Chem. Front., 2018, 5(7): 1129.

doi: 10.1039/C7QO01086A     URL    
[32]
Davis R B, Pizzini L C. J. Org. Chem., 1960, 25(11): 1884.

doi: 10.1021/jo01081a015     URL    
[33]
Mᶏkosza M, Wojciechowski K. Chem. Rev., 2004, 104(5): 2631.

doi: 10.1021/cr020086+     URL    
[34]
Mᶏkosza M, Staliński K. Tetrahedron, 1998, 54(30): 8797.

doi: 10.1016/S0040-4020(98)00472-4     URL    
[35]
Chen J J, Liu C X, Zhang J L, Ding W, Zhou M, Wu F H. Chem. Commun., 2013, 49(92): 10814.

doi: 10.1039/c3cc46065g     URL    
[36]
Wu H W, Chen Y Y, Rao C H, Liu C X. Prog. Chem., 2016, 28(10): 1501.
(伍宏伟, 陈亚运, 饶才辉, 刘传祥. 化学进展, 2016, 28(10): 1501).
[37]
Duke R M, Veale E B, Pfeffer F M, Kruger P E, Gunnlaugsson T. Chem. Soc. Rev., 2010, 39(10): 3936.

doi: 10.1039/b910560n     URL    
[38]
Zhou L, Xie L J, Liu C H, Xiao Y. Chin. Chem. Lett., 2019, 30(10): 1799.

doi: 10.1016/j.cclet.2019.07.051     URL    
[39]
McDonald K P, Ramabhadran R O, Lee S, Raghavachari K, Flood A H. Org. Lett., 2011, 13(23): 6260.

doi: 10.1021/ol202729z     pmid: 22054048
[40]
Xu Z C, Xiao Y, Qian X H, Cui J N, Cui D W. Org. Lett., 2005, 7(5): 889.

doi: 10.1021/ol0473445     URL    
[41]
Chen Y Y, Hu X X, Rao C H, Li Z Y, Chen L, Fu C, Liu C X. Anal., 2018, 143(19): 4655.

doi: 10.1039/C8AN00718G     URL    
[42]
Li Z Y, Rao C H, Chen L, Fu C, Zhu T T, Chen X, Liu C X. J. Org. Chem., 2019, 84(11): 7518.

doi: 10.1021/acs.joc.9b00904     URL    
[43]
Li Z Y, Rao C H, Chen L, Fu C, Zhu T T, Chen X, Liu C X. Dyes Pigments, 2020, 173: 107967.
[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[3] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[4] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[5] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[6] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[7] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[8] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[9] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[10] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[11] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[12] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[13] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[14] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[15] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.