English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1293-1302 DOI: 10.7536/PC190106 前一篇   后一篇

• •

原子转移自由基聚合接枝改性木质素

翟景琳1, 胡欣2,**(), 刘成扣1, 朱宁1, 郭凯1,**()   

  1. 1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
    2. 南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2019-01-07 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 胡欣, 郭凯
  • 基金资助:
    国家自然科学基金项目(No.21604037); 江苏省先进生物制造创新中心项目(No.XTD1823); 江苏省先进生物制造创新中心项目(No.XTD1821); 江苏省先进生物制造创新中心项目(No.XTB1802)

Grafting Modification of Lignin via Atom Transfer Radical Polymerization

Jinglin Zhai1, Xin Hu2,**(), Chengkou Liu1, Ning Zhu1, Kai Guo1,**()   

  1. 1. College of Biological and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2019-01-07 Online:2019-09-15 Published:2019-07-02
  • Contact: Xin Hu, Kai Guo
  • About author:
    ** E-mail: (Xin Hu);
  • Supported by:
    The National Natural Science Foundation of China(No.21604037); The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTD1823); The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTD1821); The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTB1802)

木质素是仅次于纤维素的第二大生物质资源, 是自然界中唯一的可再生芳香族化合物资源。长久以来, 木质素的难以充分利用是掣肘生物化工产业的一个重大问题。近年来, 原子转移自由基聚合接枝改性成为木质素高值化利用的一个重要方法, 可制备获得不同结构、性能各异的木质素接枝改性材料。本文从单体种类、催化剂、材料的结构与性能等方面, 介绍了原子转移自由基聚合接枝改性木质素的研究进展, 并对该领域的发展前景与挑战进行了探讨。

Lignin is the second most abundant biomass and the only natural source of aromatic hydrocarbons. The great challenge of the low-level utility of lignin remains for the biochemical industry. Recently, grafting modification of lignin via atom transfer radical polymerization(ATRP) has attracted much interest as an important improvement strategy for lignin. Varied kinds of lignin-based copolymers with different properties are synthesized via ATRP. This review summarizes the progress of grafting modification of lignin via ATRP, including the monomers, catalysts, copolymer structures and properties. Moreover, the outlook and challenges for lignin-based copolymers are discussed.

()
图式1 ATRP的机理
Scheme. 1 A general mechanism of ATRP
图式2 Cu(Ⅰ)/PMDETA催化丙烯酰胺ATRP聚合接枝改性木质素[30]
Scheme. 2 Synthesis of lignin-g-PNIPAM via Cu(Ⅰ)/PMDETA mediated ATRP[30]
图式3 Cu(Ⅰ)/HMTETA催化丙烯酰胺ATRP聚合接枝改性木质素纳米纤维膜[36]
Scheme. 3 Synthesis of modified lignin nanofiber mats via Cu(Ⅰ)/HMTETA mediated ATRP[36]
图式4 Cu(Ⅰ)/Me6TREN催化松香基单体ATRP聚合接枝改性木质素[31]
Scheme. 4 The synthesis of rosin polymer-g-lignin via Cu(Ⅰ)/Me6TREN mediated ATRP[31]
图式5 Cu(Ⅰ)/PMDETA催化甲基丙烯酸(二乙基氨基)乙酯ATRP聚合接枝改性木质素[38]
Scheme. 5 The synthesis of lignin-g-PDEAEMA via Cu(Ⅰ)/PMDETA mediated ATRP[38]
图式6 Cu(Ⅰ)/HMTETA催化二甲基氨乙基甲基丙烯酸甲酯ATRP聚合接枝改性木质素[32]
Scheme. 6 Synthesis of lignin-g-PDMAEMA via Cu(Ⅰ)/HMTETA mediated ATRP[32]
图式7 Cu(Ⅰ)/PMDETA催化甲基丙烯酸甲酯和丙烯酸丁酯ATRP聚合接枝改性木质素[9]
Scheme. 7 Synthesis of lignin-g-P(MMA-co-BA) via Cu(Ⅰ)/PMDETA mediated ATRP[9]
图式8 Cu(Ⅰ)/HMTETA催化乙二醇甲基醚甲基丙烯酸甲酯ATRP聚合接枝改性木质素[15]
Scheme. 8 Synthesis of lignin-g-PEGMA via Cu(Ⅰ)/HMTETA mediated ATRP[15]
图式9 Cu(Ⅰ)/HMTETA催化甲基丙烯酸甲酯ATRP聚合接枝改性木质素[41]
Scheme. 9 Synthesis of lignin-g-PMMA via Cu(Ⅰ)/HMTETA mediated ATRP[41]
图式10 Cu(Ⅰ)/HMTETA催化甲基丙烯酸缩水甘油酯, 甲基丙烯酸聚乙二醇酯ATRP聚合接枝改性木质素[42]
Scheme. 10 Synthesis of lignin-g-P(GMA-co-EGMA) via Cu(Ⅰ)/HMTETA mediated ATRP[42]
图式11 Cu(Ⅰ)/bpy催化苯乙烯ATRP聚合接枝改性木质素以及Cu(Ⅰ)/PMAETA催化甲基丙烯酸甲酯接枝改性木质素[13]
Scheme. 11 Synthesis of lignin-g-PMMA via Cu(Ⅰ)/PMDETA and lignin-g-polystyrene via Cu(Ⅰ)/bpy mediated ATRP[13]
图式12 Cu(Ⅰ)/HMTETA催化偶氮苯ATRP聚合接枝改性木质素[44]
Scheme. 12 Synthesis of lignin-g-azobenzene via Cu(Ⅰ)/HMTETA mediated ATRP[44]
图式13 Cu(Ⅰ)/PMDETA催化丙烯腈ATRP聚合接枝改性硫酸盐木质素[45]
Scheme. 13 Synthesis of kraft lignin-g-PAN via Cu(Ⅰ)/PMDETA mediated ATRP[45]
图式14 Cu(Ⅱ)/bpy催化苯乙烯, 丙烯酰二苯甲酮ATRP聚合接枝改性木质素[46]
Scheme. 14 Synthesis of lignin-g-P(S-co-ABP) via Cu(Ⅱ)/bpy mediated ATRP[46]
[1]
Bujanovic B, Ralph S, Reiner R, Hirth K, Atalla R . Materials, 2010, 3:1888. http://www.mdpi.com/1996-1944/3/3/1888

doi: 10.3390/ma3031888     URL    
[2]
Thakur V K, Thakur M K, Raghavan P, Kessler M R . ACS Sustain. Chem. Eng., 2014, 2:1072.
[3]
Stewart D Ind. Crop. Prod., 2008, 27:202.
[4]
Ten E, Vermerris W . J. Appl. Polym. Sci., 2015, 132:42069.
[5]
Thakur V K, Thakur M K . Int. J. Biol. Macromol., 2015, 72:834. https://www.ncbi.nlm.nih.gov/pubmed/25304747

doi: 10.1016/j.ijbiomac.2014.09.044     URL     pmid: 25304747
[6]
Laurichesse S, Averous L . Prog. Polym. Sci., 2014, 39:1266.
[7]
Upton B M, Kasko A M . Chem. Rev., 2016, 116:2275. https://www.ncbi.nlm.nih.gov/pubmed/26654678

doi: 10.1021/acs.chemrev.5b00345     URL     pmid: 26654678
[8]
Gupta C, Washburn N R . Langmuir, 2014, 30:9303. https://www.ncbi.nlm.nih.gov/pubmed/25046477

doi: 10.1021/la501696y     URL     pmid: 25046477
[9]
Yu J, Wang J, Wang C, Liu Y, Xu Y, Tang C, Chu F . Macromol. Rapid Commun., 2015, 36:398. https://www.ncbi.nlm.nih.gov/pubmed/25545630

doi: 10.1002/marc.201400663     URL     pmid: 25545630
[10]
Chen N, Dempere L A, Tong Z . ACS Sustain. Chem. Eng., 2016, 4:5204.
[11]
Xu Y, Yuan L, Wang Z, Wilbon P A, Wang C, Chu F, Tang C . Green Chem., 2016, 18:4974. https://www.ncbi.nlm.nih.gov/pubmed/11982358

doi: 10.1021/ja025790m     URL     pmid: 11982358
[12]
Ren W, Pan X, Wang G, Cheng W, Liu Y . Green Chem., 2016, 18:5008.
[13]
Hilburg S L, Elder A N, Chung H, Ferebee R L, Bockstaller M R, Washburn N R . Polymer, 2014, 55:995.
[14]
Sun Y, Yang L, Lu X, He C . J. Mater. Chem. A, 2015, 3:3699.
[15]
Kai D, Low Z W, Liow S S, Karim A A, Ye H, Jin G, Li K, Loh X J . ACS Sustain. Chem. Eng., 2015, 3:2160.
[16]
Kai D, Zhang K, Jiang L, Wong H Z, Li Z, Zhang Z, Loh X J . ACS Sustain. Chem. Eng., 2017, 5:6016.
[17]
Chile L E, Kaser S J, Hatzikiriakos S G, Mehrkhodavandi P . ACS Sustain. Chem. Eng., 2018, 6:1650.
[18]
Shah T, Gupta C, Ferebee R L, Bockstaller M R, Washburn N R . Polymer, 2015, 72:406.
[19]
Ma Y L, Dai J X, Wu L L, Fang G Z, Guo Z H . Polymer, 2017, 114:113.
[20]
Panovic I, Montgomery J R D, Lancefield C S, Puri D, Lebl T, Westwood N . J. ACS Sustain. Chem. Eng., 2017, 5:10640.
[21]
Perkins K M, Gupta C, Charleson E N, Washburn N R . Colloid. Surface. A, 2017, 530:200.
[22]
Matyjaszewski K, Xia J H . Chem. Rev., 2001, 101:2921. https://www.ncbi.nlm.nih.gov/pubmed/11749397

doi: 10.1021/cr940534g     URL     pmid: 11749397
[23]
Braunecker W A, Matyjaszewski K . Prog. Polym. Sci., 2007, 32:93.
[24]
唐新德(Tang X D), 范星河(Fan X H), 陈小芳(Chen X F), 周其凤(Zhou Q F) . 化学进展(Progress in Chemistry), 2005, 17(6):1089.
[25]
Pan X, Fang C, Fantin M, Malhotra N, So W Y, Peteanu L A, Isse A A, Gennaro A, Liu P, Matyjaszewskit K . J. Am. Chem. Soc., 2016, 138:2411. https://www.ncbi.nlm.nih.gov/pubmed/26820243

doi: 10.1021/jacs.5b13455     URL     pmid: 26820243
[26]
Theriot J C, Lim C H, Yang H, Ryan M D, Musgrave C B, Miyake G M . Science, 2016, 352:1082. https://www.ncbi.nlm.nih.gov/pubmed/27033549

doi: 10.1126/science.aaf3935     URL     pmid: 27033549
[27]
Pearson R M, Lim C H, McCarthy B G, Musgrave C B, Miyake G M . J. Am. Chem. Soc., 2016, 138:11399. https://www.ncbi.nlm.nih.gov/pubmed/27554292

doi: 10.1021/jacs.6b08068     URL     pmid: 27554292
[28]
牟思阳(Mou S Y), 郭静(Guo J), 于春芳(Yu C F), 宫玉梅(Gong Y M), 张森(Zhang S) . 化学进展(Progress in Chemistry), 2015, 27(5):539.
[29]
Edlund U, Albertsson A C . J. Polym. Sci. Part A: Polym. Chem., 2012, 50:2650.
[30]
Kim Y S, Kadla J F . Biomacromolecules, 2010, 11:981. https://www.ncbi.nlm.nih.gov/pubmed/20187613

doi: 10.1021/bm901455p     URL     pmid: 20187613
[31]
Wang J, Ya K, Korich A L, Li S, Ma S, Ploehn H J, Iovine P M, Wang C, Chu F, Tang C . J. Polym. Sci. Part A: Polym. Chem., 2011, 49:3728.
[32]
Liu X, Yin H, Zhang Z, Diao B, Li J . Colloids Surf. B Biointerf., 2015, 125:230. https://www.ncbi.nlm.nih.gov/pubmed/25506805

doi: 10.1016/j.colsurfb.2014.11.018     URL     pmid: 25506805
[33]
Liu H, Chung H . Macromolecules, 2016, 49:7246. https://pubs.acs.org/doi/10.1021/acs.macromol.6b01028

doi: 10.1021/acs.macromol.6b01028     URL    
[34]
Fischer H . J. Polym. Sci. Part A: Polym. Chem., 1999, 37:1885.
[35]
Tsarevsky N V, Matyjaszewski K . Chem. Rev., 2007, 107:2270. https://www.ncbi.nlm.nih.gov/pubmed/17530906

doi: 10.1021/cr050947p     URL     pmid: 17530906
[36]
Gao G, Dallmeyer J I, Kadla J F . Biomacromolecules, 2012, 13:3602. https://www.ncbi.nlm.nih.gov/pubmed/22988814

doi: 10.1021/bm301039f     URL     pmid: 22988814
[37]
Zheng Y, Yao K, Lee J, Chandler D, Wang J, Wang C, Chu F, Tang C . Macromolecules, 2010, 43:5922.
[38]
Qian Y, Zhang Q, Qiu X, Zhu S . Green Chem., 2014, 16:4963.
[39]
Gao G, Ko F, Kadla J F . Macromol. Mater. Eng., 2015, 300:836.
[40]
Kai D, Chua Y K, Jiang L, Owh C, Chan S Y . Loh X J. RSC Adv., 2016, 6:86420.
[41]
Kai D, Jiang S, Low Z W, Loh X J . J. Mater. Chem. B, 2015, 3:6194. https://www.ncbi.nlm.nih.gov/pubmed/32262738

doi: 10.1039/c5tb00765h     URL     pmid: 32262738
[42]
Jiang S, Kai D, Dou Q Q, Loh X J . J. Mater. Chem. B, 2015, 3:6897. https://www.ncbi.nlm.nih.gov/pubmed/32262538

doi: 10.1039/c5tb01202c     URL     pmid: 32262538
[43]
Kajihara M, Aoki D, Matsushita Y, Fukushima K . J. Appl. Polym. Sci., 2018, 135:46611.
[44]
魏振耀(Wei Z Y), 邓永红(Deng Y H), 于海峰(Yu H F), 邱学清(Qiu X Q) . 高分子学报(Acta Polymerica Sinica), 2016, 47(6):742.
[45]
Park C W, Youe W J, Han S Y, Kim Y S . Lee S H. Wood Sci. Technol., 2017, 51:151.
[46]
Wang C, Venditti R A . ACS Sustain. Chem. Eng., 2015, 3:1839. https://pubs.acs.org/doi/10.1021/acssuschemeng.5b00416

doi: 10.1021/acssuschemeng.5b00416     URL    
[47]
Huang W, Wu M, Liu W, Hua Z, Wang Z, Zhou L . App. Surf. Sci., 2019, 475:302.
[48]
Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J . Green Chem., 2016, 18:1175.
[49]
Gao G, Karaaslan M A, Kadla J F, Ko F . Green Chem., 2014, 16:3890. d241a90c-9bdf-48de-9917-430a7b5bb76bhttp://dx.doi.org/10.1039/c4gc00757c

doi: 10.1039/c4gc00757c     URL    
[1] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[2] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[3] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[4] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[5] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[6] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭*, 郑明远*. 硫化物催化木质素及其模型化合物转化制备高附加值化学品[J]. 化学进展, 2017, 29(5): 563-578.
[7] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[8] 何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅. N-乙烯基己内酰胺的活性/可控自由基聚合[J]. 化学进展, 2016, 28(2/3): 328-336.
[9] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[10] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[11] 李斌, 于波, 叶谦, 周峰. 外界刺激调控的表面引发原子转移自由基聚合[J]. 化学进展, 2015, 27(2/3): 146-156.
[12] 张兴华, 陈伦刚, 张琦, 龙金星, 王铁军, 马隆龙. 木质素基酚类化合物加氢脱氧制取碳氢燃料[J]. 化学进展, 2014, 26(12): 1997-2006.
[13] 路瑶, 魏贤勇*, 宗志敏, 陆永超, 赵炜, 曹景沛. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(05): 838-858.
[14] 李强 张丽芬 柏良久 缪洁 程振平 朱秀林. 原子转移自由基聚合的最新研究进展*[J]. 化学进展, 2010, 22(11): 2079-2088.
[15] 钱涛 汪涓涓 张庆华 詹晓力 陈丰秋. 原子转移自由基细乳液聚合*[J]. 化学进展, 2010, 22(04): 663-668.
阅读次数
全文


摘要