English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1796-1808 DOI: 10.7536/PC211009 前一篇   后一篇

• 综述 •

酶催化原子转移自由基聚合

王慧悦1, 胡欣2,*(), 胡玉静1,*(), 朱宁1,*(), 郭凯1   

  1. 1 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
    2 南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2021-10-11 修回日期:2021-12-23 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 胡欣, 胡玉静, 朱宁
  • 基金资助:
    国家重点研发计划(2019YFA0905000); 国家自然科学基金(21604037); 江苏省先进生物制造创新中心项目(XTD1823); 江苏省先进生物制造创新中心项目(XTB1802)

Enzyme-Catalyzed Atom Transfer Radical Polymerization

Huiyue Wang1, Xin Hu2(), Yujing Hu1(), Ning Zhu1(), Kai Guo1   

  1. 1 College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University,Nanjing 211800, China
    2 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2021-10-11 Revised:2021-12-23 Online:2022-08-20 Published:2022-04-01
  • Contact: Xin Hu, Yujing Hu, Ning Zhu
  • Supported by:
    National Key R&D Program of China(2019YFA0905000); National Natural Science Foundation of China(21604037); Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTD1823); Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTB1802)

原子转移自由基聚合(ATRP)是制备分子量以及分散度可控聚合物的重要途径。然而,受制于除氧步骤复杂、金属催化剂残留以及单体适用范围有限等因素,ATRP难以应用于批量制备功能化聚合物/共聚物材料,限制了其进一步应用。近年来提出和发展的酶催化聚合,为高效便捷除氧、拓展单体适用范围以及制备具有特殊(纳米)结构的纯净聚合物/共聚物提供了新思路。本文详细介绍了酶的结构与催化机理,以酶的种类进行分类,系统总结了具有不同结构的酶催化体系(包括过氧化辣根酶、血红蛋白、血红素、漆酶等)的催化机理、适用单体、优缺点及应用等;综述了酶以及酶模拟物催化ATRP体系的发展现状;最后,对酶催化ATRP的发展前景和挑战进行了探讨和展望。

Atom transfer radical polymerization (ATRP) is an important method for preparing polymers with controllable molecular weight and polydispersity. However, due to the complex oxygen removal steps, metal catalysts residue, and limited monomer scope, it is difficult for ATRP to be widely used in the large-scale preparation of functionalized polymers/copolymers. With the development of enzyme-catalyzed polymerization, radical polymerization has made significant progress in efficient and convenient oxygen removal, expanding monomer scope, and the synthesis of polymers/copolymers with special (nano) structures. This review highlights the structure of enzymes and their catalytic mechanism in enzyme-catalyzed ATRP. Various enzyme/ enzyme mimics catalysis system (including horseradish peroxidase, hemoglobin, heme, laccase, etc.) employed in ATRP are carefully summarized in order. Finally, the opportunities and challenges of enzyme-catalyzed ATRP are discussed for the further development in this field.

Enzyme-Catalyzed Atom Transfer Radical Polymerization

Contents

1 Introduction

2 Horseradish peroxidase (HRP) catalyzed ATRP

3 Hemoglobin catalyzed ATRP

4 Hemin and Enzyme mimic catalyzed ATRP

5 Laccase catalyzed ATRP

6 GOx-HRP cascade catalysis applied as initiator

7 Conclusion and outlook

()
表1 不同酶催化乙烯基单体的ATRP聚合
Table 1 Different enzymes catalyze the polymerization of vinyl monomers by ATRP Table Reviews
图式1 (a) 辣根过氧化物酶结构; (b) HRP的催化机理示意图[66]
Scheme 1 (a) The Structure of Horseradish Peroxidase. (b) Schematic diagram of HRP catalytic mechanism[66]
图式2 ARGET ATRP条件下的HRP催化机理[67]
Scheme 2 Putative mechanism of HRP-catalyzed polymerization under ARGET ATRP condition[67]
图1 通过生物催化ATRP用聚合物填充聚合物囊泡[68]
Fig. 1 Filling of polymersomes with polymers by biocatalytic ATRP[68]
图式3 通过ATRPase合成的用于体内ROS响应生物荧光成像的MPG示意图。(a) 制备SiO2@MPGs。(b) 串联催化SiO2@MPGs响应荧光成像的机理图[70]
Scheme 3 Schematic illustration of the MPGs synthesized by ATRPase for ROS responsive biofluorescence imaging in vivo. (a) Preparation of MPGs encapsulating SiO2@MPGs. (b) Mechanism illustration of ROS responsive fluorescence imaging by tandem catalysis with SiO2@MPGs[70]
图式4 血红蛋白催化ARGET ATRP的预测机理[75]
Scheme 4 Possible mechanism of Hb-Catalyzed Polymerization under ARGET ATRP Conditions[75]
图式5 NIPAM的多步SI-ATRP示意图[76]
Scheme 5 Schematic Representation of Multistep SI-ATRP of NIPAM[76]
图2 以GCE/PTB/nPt为阴极,通过eATRP合成PIP[78]
Fig. 2 Synthesis scheme of PIPs via eATRP with GCE/PTB/nPt as cathode[78]
图式6 羟高铁血红素的化学结构[80]
Scheme 6 Chemical structure of hydroxyhemin[80]
图式7 血红素催化聚合NIPAAm的预测机理[80]
Scheme 7 Proposed mechanism for polymerization of NIPAAm catalyzed by hematin[80]
图式8 (a)水相溶液中MAA的ATRP聚合;(b)中亚血红素-(MPEG550)2催化剂的结构;(c)三种引发剂的结构[81]
Scheme 8 (a) ATRP of MAA in aqueous solution; (b) Mesohemin-(MPEG550)2 catalyst; (c) Structure of polymerization Initiators[81]
图式9 (a) DhHP-6的结构;(b) DhHP-6催化PEGMA500的ARGET ATRP聚合[82]
Scheme 9 (a) Structure of DhHP-6; (b) DhHP-6 catalyzed ARGET ATRP of PEGMA500[82]
图3 DhHP-6@ZIF-8催化合成PEGMA500的ATRP机理[83]
Fig. 3 Detailed mechanism of DhHP-6@ZIF-8-induced ATRP reaction of PEGMA500[83]
图式10 (a) 漆酶活性位点的示意图; (b) 漆酶和烷基卤化物的激活/失活机理[45]
Scheme 10 (a) Schematic representation of the active site of laccase. (b) Possible activation/deactivation mechanism involving laccase from T. versicolor and alkyl halides[45]
图式11 在不同配体存在下,酶促ARGET ATRP合成聚(PEGA480)[92]
Scheme 11 Synthesis of poly(PEGA480) by enzymatic ARGET ATRP in the presence of different ligands[92]
图式12 漆酶-聚合物共聚物的合成与表征[93]。
Scheme 12 Synthesis and characterization of laccase-polymer biohybrids[93]
图式13 叶绿素铜催化的电子转移ATRP(AGET ATRP)生成的活化剂的可能机理及和二氢卟酚结构[94]
Scheme 13 Proposed mechanism for activator generated by electron transfer ATRP (AGET ATRP) catalyzed by copper chlorophyllin and structure of the chlorins[94]
图式14 “消耗氧气”的ATRP聚合过程[106]
Scheme 14 Overall process of “oxygen-fueled” ATRP[106]
[1]
Corrigan N, Jung K, Moad G, Hawker C J, Matyjaszewski K, Boyer C. Prog. Polym. Sci., 2020, 111: 101311.
[2]
Wang Z H, Wang Z H, Pan X C, Fu L Y, Lathwal S, Olszewski M, Yan J J, Enciso A E, Wang Z Y, Xia H S, Matyjaszewski K. ACS Macro Lett., 2018, 7(3): 275.

doi: 10.1021/acsmacrolett.8b00027     URL    
[3]
Pan X C, Lathwal S, Mack S, Yan J J, Das S R, Matyjaszewski K. Angew. Chem. Int. Ed., 2017, 56(10): 2740.

doi: 10.1002/anie.201611567     URL    
[4]
Matyjaszewski K, Xia J H. Chem. Rev., 2001, 101(9): 2921.

pmid: 11749397
[5]
An Z X, Zhu S L, An Z S. Polym. Chem., 2021, 12(16): 2357.

doi: 10.1039/D1PY00130B     URL    
[6]
Matyjaszewski K. Macromolecules, 2012, 45(10): 4015.

doi: 10.1021/ma3001719     URL    
[7]
Falireas P G, Ladmiral V, Debuigne A, Detrembleur C, Poli R, Ameduri B. Macromolecules, 2019, 52(3): 1266.

doi: 10.1021/acs.macromol.8b02252     URL    
[8]
Dadashi-Silab S, Matyjaszewski K. Molecules, 2020, 25(7): 1648.

doi: 10.3390/molecules25071648     URL    
[9]
Ding M, Jiang X, Zhang L, Cheng Z, Zhu X. Macromol. Rapid Commun., 2015, 36: 1702.

doi: 10.1002/marc.201500085     URL    
[10]
Li S P, Mohamed A I, Pande V, Wang H, Cuthbert J, Pan X C, He H K, Wang Z Y, Viswanathan V, Whitacre J F, Matyjaszewski K. ACS Energy Lett., 2018, 3(1): 20.

doi: 10.1021/acsenergylett.7b00999     URL    
[11]
Pan X C, Fantin M, Yuan F, Matyjaszewski K. Chem. Soc. Rev., 2018, 47(14): 5457.

doi: 10.1039/C8CS00259B     URL    
[12]
Ribelli T G, Lorandi F, Fantin M, Matyjaszewski K. Macromol. Rapid Commun., 2019, 40(1): 1800616.
[13]
Shi B Y, Zhang H, Liu Y, Wang J, Zhou P, Cao M Y, Wang G W. Macromol. Rapid Commun., 2019, 40(24): 1900547.
[14]
Wang G W, Wang Z Y, Lee B, Yuan R, Lu Z, Yan J J, Pan X C, Song Y, Bockstaller M R, Matyjaszewski K. Polymer, 2017, 129: 57.

doi: 10.1016/j.polymer.2017.09.029     URL    
[15]
Li X, He C Z, Matyjaszewski K, Pan X C. ACS Macro Lett., 2021, 10(10): 1327.

doi: 10.1021/acsmacrolett.1c00592     URL    
[16]
Li W, Wu J, Wu L, Zhang Z, Lu Y. Polym. Bull., 2020: 18.
[17]
Uttley O F, Brummitt L A, Worrall S D, Edmondson S. Polym. Chem., 2020, 11(23): 3831.

doi: 10.1039/D0PY00516A     URL    
[18]
Chmielarz P, Fantin M, Park S, Isse A A, Gennaro A, Magenau A J D, Sobkowiak A, Matyjaszewski K. Prog. Polym. Sci., 2017, 69: 47.

doi: 10.1016/j.progpolymsci.2017.02.005     URL    
[19]
Rolland M, Whitfield R, Messmer D, Parkatzidis K, Truong N P, Anastasaki A. ACS Macro Lett., 2019, 8(12): 1546.

doi: 10.1021/acsmacrolett.9b00855    
[20]
Martinez M R, Sobieski J, Lorandi F, Fantin M, Dadashi-Silab S, Xie G J, Olszewski M, Pan X C, Ribelli T G, Matyjaszewski K. Macromolecules, 2020, 53(1): 59.

doi: 10.1021/acs.macromol.9b02397     URL    
[21]
Zhang W J, He J H, Lv C N, Wang Q Y, Pang X C, Matyjaszewski K, Pan X C. Macromolecules, 2020, 53(12): 4678.

doi: 10.1021/acs.macromol.0c00850     URL    
[22]
He J H, Zhang W J, Lv C N, Chen R Y, Wang L N, Wang Y D, Pan X C. Polymer, 2021, 215: 123345.
[23]
Hu X, Zhu N, Guo K. Adv. Polym. Technol., 2019, 2019: 7971683.
[24]
Huang W J, Zhai J L, Hu X, Duan J D, Fang Z, Zhu N, Guo K. Eur. Polym. J., 2020, 126: 109565.
[25]
Lorandi F, Matyjaszewski K. Isr. J. Chem., 2020, 60(1/2): 108.

doi: 10.1002/ijch.201900079     URL    
[26]
Rodriguez K J, Gajewska B, Pollard J, Pellizzoni M M, Fodor C, Bruns N. ACS Macro Lett., 2018, 7(9): 1111.

doi: 10.1021/acsmacrolett.8b00561     pmid: 35632946
[27]
Song W, Ko J, Choi Y H, Hwang N S. APL Bioeng., 2021, 5(2): 021502.
[28]
Bilal M, Hussain N, AmÉrico-Pinheiro J H P, Almulaiky Y Q, Iqbal H M N. Int. J. Biol. Macromol., 2021, 186: 735.

doi: 10.1016/j.ijbiomac.2021.07.064     URL    
[29]
Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun K B, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R. Bioresour. Technol., 2021, 337: 125491.
[30]
Wu J, Wang X Y, Wang Q, Lou Z P, Li S R, Zhu Y Y, Qin L, Wei H. Chem. Soc. Rev., 2019, 48(4): 1004.

doi: 10.1039/C8CS00457A     URL    
[31]
Engel J, Cordellier A, Huang L, Kara S. ChemCatChem, 2019, 11(20): 4983.

doi: 10.1002/cctc.201900976     URL    
[32]
Bao C Y, Xu X L, Chen J, Zhang Q. Polym. Chem., 2020, 11(3): 682.

doi: 10.1039/C9PY01464K     URL    
[33]
Huang W J, Zhu N, Liu Y H, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K. Chem. Eng. J., 2019, 356: 592.

doi: 10.1016/j.cej.2018.09.033     URL    
[34]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Chem. Eng. J., 2018, 333: 43.

doi: 10.1016/j.cej.2017.09.143     URL    
[35]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Macromol. Rapid Commun., 2018, 39(8): 1700807.
[36]
Cao P, Liu H, Wu D Z, Wang X D. Chem. Eng. J., 2021, 405: 126695.
[37]
Cao T T, Zheng J, Xu J L, Alharbi N S, Hayat T, Zhang M. New J. Chem., 2019, 43(40): 15946.
[38]
Zhang Y R, Spinella S, Xie W C, Cai J L, Yang Y X, Wang Y Z, Gross R A. Eur. Polym. J., 2013, 49(4): 793.

doi: 10.1016/j.eurpolymj.2012.11.011     URL    
[39]
Ragupathy L, Ziener U, Dyllick-Brenzinger R, von Vacano B, Landfester K. J. Mol. Catal. B Enzym., 2012, 76: 94.

doi: 10.1016/j.molcatb.2011.11.019     URL    
[40]
Reyhani A, McKenzie T G, Fu Q, Qiao G G. Aust. J. Chem., 2019, 72(7): 479.

doi: 10.1071/CH19109    
[41]
Yeow J, Chapman R, Gormley A J, Boyer C. Chem. Soc. Rev., 2018, 47(12): 4357.

doi: 10.1039/C7CS00587C     URL    
[42]
Ma K, An Z S. Macromol. Rapid Commun., 2016, 37(19): 1632.

doi: 10.1002/marc.201670077     URL    
[43]
Penfold N J W, Yeow J, Boyer C, Armes S P. ACS Macro Lett., 2019, 8(8): 1029.

doi: 10.1021/acsmacrolett.9b00464     URL    
[44]
Wang X, Shen L, An Z. Prog. Polym. Sci., 2018, 83: 1.

doi: 10.1016/j.progpolymsci.2018.05.003     URL    
[45]
Ng Y H, di Lena F, Chai C L L. Polym. Chem., 2011, 2(3): 589.

doi: 10.1039/C0PY00139B     URL    
[46]
Ng Y H, di Lena F, Chai C L L. Chem. Commun., 2011, 47(22): 6464.

doi: 10.1039/c1cc10989h     URL    
[47]
Simakova A, MacKenzie M, Averick S E, Park S, Matyjaszewski K. Angew. Chem. Int. Ed., 2013, 52(46): 12148.
[48]
Fang C, Fantin M, Pan X C, de Fiebre K, Coote M L, Matyjaszewski K, Liu P. J. Am. Chem. Soc., 2019, 141(18): 7486.

doi: 10.1021/jacs.9b02158     URL    
[49]
Wang Z H, Pan X C, Li L C, Fantin M, Yan J J, Wang Z Y, Wang Z H, Xia H S, Matyjaszewski K. Macromolecules, 2017, 50(20): 7940.

doi: 10.1021/acs.macromol.7b01597     URL    
[50]
Wang Z H, Pan X C, Yan J J, Dadashi-Silab S, Xie G J, Zhang J N, Wang Z H, Xia H S, Matyjaszewski K. ACS Macro Lett., 2017, 6(5): 546.

doi: 10.1021/acsmacrolett.7b00152     URL    
[51]
Dadashi-Silab S, Pan X C, Matyjaszewski K. Macromolecules, 2017, 50(20): 7967.

doi: 10.1021/acs.macromol.7b01708     URL    
[52]
Liu Z F, Lv Y, Zhu A Q, An Z S. ACS Macro Lett., 2018, 7(1): 1.

doi: 10.1021/acsmacrolett.7b00950     URL    
[53]
Slagman S, Zuilhof H, Franssen M C R. ChemBioChem, 2018, 19(4): 288.

doi: 10.1002/cbic.201700518     pmid: 29111574
[54]
Grigoras A G. Biochem. Eng. J., 2017, 117: 1.
[55]
Liu X H, Zheng H L, Li Y, Wang L P, Wang C E. Fibers Polym., 2019, 20(3): 520.

doi: 10.1007/s12221-019-8650-4     URL    
[56]
Szczepaniak G, Fu L Y, Jafari H, Kapil K, Matyjaszewski K. Acc. Chem. Res., 2021, 54(7): 1779.

doi: 10.1021/acs.accounts.1c00032     URL    
[57]
Iwata H, Hata Y, Matsuda T, Ikada Y. J. Polym. Sci. A Polym. Chem., 1991, 29(8): 1217.

doi: 10.1002/pola.1991.080290818     URL    
[58]
Oytun F, Kahveci M U, Yagci Y. J. Polym. Sci. A Polym. Chem., 2013, 51(8): 1685.

doi: 10.1002/pola.26554     URL    
[59]
Chapman R, Gormley A J, Herpoldt K L, Stevens M M. Macromolecules, 2014, 47(24): 8541.

doi: 10.1021/ma5021209     URL    
[60]
He J, Cao J P, Chen Y, Zhang L, Tan J B. ACS Macro Lett., 2020, 9(4): 533.

doi: 10.1021/acsmacrolett.0c00151     URL    
[61]
Xu Q, Zhang Y X, Li X L, He J, Tan J B, Zhang L. Polym. Chem., 2018, 9(39): 4908.

doi: 10.1039/C8PY01053F     URL    
[62]
Wang Y, Fu L Y, Matyjaszewski K. ACS Macro Lett., 2018, 7(11): 1317.

doi: 10.1021/acsmacrolett.8b00711     pmid: 31815054
[63]
Mariconti M, Morel M, Baigl D, Rudiuk S. Biomacromolecules, 2021, 22(8): 3431.

doi: 10.1021/acs.biomac.1c00501     pmid: 34260203
[64]
Liu D D, He J, Zhang L, Tan J B. ACS Macro Lett., 2019, 8(12): 1660.

doi: 10.1021/acsmacrolett.9b00870     URL    
[65]
Messina M S, Messina K M M, Bhattacharya A, Montgomery H R, Maynard H D. Prog. Polym. Sci., 2020, 100: 101186.
[66]
Carlsson G H, Nicholls P, Svistunenko D, Berglund G I, Hajdu J. Biochemistry, 2005, 44(2): 635.

pmid: 15641789
[67]
Sigg S J, Seidi F, Renggli K, Silva T B, Kali G, Bruns N. Macromol. Rapid Commun., 2011, 32(21): 1710.

doi: 10.1002/marc.201100349     URL    
[68]
Dinu M V, Spulber M, Renggli K, Wu D L, Monnier C A, Petri-Fink A, Bruns N. Macromol. Rapid Commun., 2015, 36(6): 576.

doi: 10.1002/marc.201570025     URL    
[69]
Renggli K, Sauter N, Rother M, Nussbaumer M G, Urbani R, Pfohl T, Bruns N. Polym. Chem., 2017, 8(14): 2133.

doi: 10.1039/C6PY02155G     URL    
[70]
Qi M Y, Pan H, Shen H D, Xia X M, Wu C, Han X K, He X Y, Tong W, Wang X, Wang Q G. Angew. Chem. Int. Ed., 2020, 59(29): 11748.
[71]
Kosmachevskaya O V, Topunov A F. Appl. Biochem. Microbiol., 2009, 45(6): 563.

doi: 10.1134/S0003683809060015     URL    
[72]
Reeder B J. Antioxid. Redox Signal., 2010, 13(7): 1087.

doi: 10.1089/ars.2009.2974     URL    
[73]
Everse J, Hsia N. Free. Radic. Biol. Med., 1997, 22(6): 1075.

doi: 10.1016/S0891-5849(96)00499-6     URL    
[74]
Pollard J, Rifaie-Graham O, Raccio S, Davey A, Balog S, Bruns N. Anal. Chem., 2020, 92(1): 1162.

doi: 10.1021/acs.analchem.9b04290     pmid: 31790204
[75]
Silva T B, Spulber M, Kocik M K, Seidi F, Charan H, Rother M, Sigg S J, Renggli K, Kali G, Bruns N. Biomacromolecules, 2013, 14(8): 2703.

doi: 10.1021/bm400556x     URL    
[76]
Divandari M, Pollard J, Dehghani E, Bruns N, Benetti E M. Biomacromolecules, 2017, 18(12): 4261.

doi: 10.1021/acs.biomac.7b01313     pmid: 29086550
[77]
Magenau A J D, Strandwitz N C, Gennaro A, Matyjaszewski K. Science, 2011, 332(6025): 81.

doi: 10.1126/science.1202357     pmid: 21454784
[78]
Sun Y, Zhang J M, Li J, Zhao M Y, Liu Y T. RSC Adv., 2017, 7(45): 28461.
[79]
Hajizadeh S, Bülow L, Ye L. ACS Omega, 2021, 6(15): 10462.
[80]
Yamashita K, Yamamoto K, Kadokawa J I. Polymer, 2013, 54(7): 1775.

doi: 10.1016/j.polymer.2013.01.043     URL    
[81]
Fu L Y, Simakova A, Fantin M, Wang Y, Matyjaszewski K. ACS Macro Lett., 2018, 7(1): 26.

doi: 10.1021/acsmacrolett.7b00909     URL    
[82]
Zhou H, Jiang W, An N, Zhang Q P, Xiang S D, Wang L P, Tang J. RSC Adv., 2015, 5(53): 42728.
[83]
Jiang W, Wang X H, Chen J W, Liu Y, Han H B, Ding Y, Li Q S, Tang J. ACS Appl. Mater. Interfaces, 2017, 9(32): 26948.
[84]
Witayakran S, Ragauskas A. Adv. Synth. Catal., 2009, 351(9): 1187.

doi: 10.1002/adsc.200800775     URL    
[85]
Gao G Z, Karaaslan M A, Kadla J F, Ko F. Green Chem., 2014, 16(8): 3890.

doi: 10.1039/C4GC00757C     URL    
[86]
Yin K, Zhang Z X, Yang L, Hirano S I. J. Power Sources, 2014, 258: 150.

doi: 10.1016/j.jpowsour.2014.02.057     URL    
[87]
Asayama S, Hakamatani T, Kawakami H. Bioconjugate Chem., 2010, 21(4): 646.

doi: 10.1021/bc900411m     URL    
[88]
Rinkenauer A C, Schubert S, Traeger A, Schubert U S. J. Mater. Chem. B, 2015, 3(38): 7477.

doi: 10.1039/c5tb00782h     pmid: 32262631
[89]
Santanakrishnan S, Hutchinson R A. Macromol. Chem. Phys., 2013, 214(10): 1140.

doi: 10.1002/macp.201300044     URL    
[90]
Bessbousse H, Rhlalou T, Verchère J F, Lebrun L. Chem. Eng. J., 2010, 164(1): 37.

doi: 10.1016/j.cej.2010.08.004     URL    
[91]
Fodor C, Gajewska B, Rifaie-Graham O, Apebende E A, Pollard J, Bruns N. Polym. Chem., 2016, 7(43): 6617.

doi: 10.1039/C6PY01261B     URL    
[92]
Zhang A T, Meng X C, Bao C Y, Zhang Q. Polym. Chem., 2020, 11(8): 1525.

doi: 10.1039/C9PY01815H     URL    
[93]
Kovaliov M, Zhang B R, Konkolewicz D, Szczéniak K, Jurga S, Averick S. Polym. Int., 2021, 70(6): 775.

doi: 10.1002/pi.6127     URL    
[94]
Gajewska B, Raccio S, Rodriguez K J, Bruns N. Polym. Chem., 2019, 10(1): 125.

doi: 10.1039/C8PY01492B     URL    
[95]
Lv C N, Li N, Du Y X, Li J H, Pan X C. Chin. J. Polym. Sci., 2020, 38(11): 1178.

doi: 10.1007/s10118-020-2441-7     URL    
[96]
Li N, Pan X C. Chin. J. Polym. Sci., 2021, 39(9): 1084.

doi: 10.1007/s10118-021-2597-9     URL    
[97]
Lv C N, He C Z, Pan X C. Angew. Chem. Int. Ed., 2018, 57(30): 9430.

doi: 10.1002/anie.201805212     URL    
[98]
Enciso A E, Fu L Y, Russell A J, Matyjaszewski K. Angew. Chem. Int. Ed., 2018, 57(4): 933.

doi: 10.1002/anie.201711105     pmid: 29240973
[99]
Liu Z F, Lv Y, An Z S. Angew. Chem. Int. Ed., 2017, 56(44): 13852.
[100]
Zhang B H, Wang X J, Zhu A Q, Ma K, Lv Y, Wang X, An Z S. Macromolecules, 2015, 48(21): 7792.

doi: 10.1021/acs.macromol.5b01893     URL    
[101]
Lv Y, Liu Z F, Zhu A Q, An Z S. J. Polym. Sci. A Polym. Chem., 2017, 55(1): 164.

doi: 10.1002/pola.28380     URL    
[102]
Tan J B, Liu D D, Bai Y H, Huang C D, Li X L, He J, Xu Q, Zhang L. Macromolecules, 2017, 50(15): 5798.

doi: 10.1021/acs.macromol.7b01219     URL    
[103]
Tan J B, Xu Q, Li X L, He J, Zhang Y X, Dai X C, Yu L L, Zeng R M, Zhang L. Macromol. Rapid Commun., 2018, 39(9): 1870022.
[104]
Yu L L, Zhang Y X, Dai X C, Xu Q, Zhang L, Tan J B. Chem. Commun., 2019, 55(79): 11920.
[105]
Tan J B, Dai X C, Zhang Y X, Yu L L, Sun H, Zhang L. ACS Macro Lett., 2019, 8(2): 205.

doi: 10.1021/acsmacrolett.9b00007     URL    
[106]
Enciso A E, Fu L Y, Lathwal S, Olszewski M, Wang Z H, Das S R, Russell A J, Matyjaszewski K. Angew. Chem. Int. Ed., 2018, 57(49): 16157.
[107]
Luo J Y, Ma L, Svec F, Tan T W, Lv Y Q. Biotechnol. J., 2019, 14(10): 1900028.
[108]
Zhou F F, Li R Y, Wang X, Du S M, An Z S. Angew. Chem. Int. Ed., 2019, 58(28): 9479.

doi: 10.1002/anie.201904413     URL    
[109]
Li R Y, An Z S. Angew. Chem. Int. Ed., 2020, 59(49): 22258.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
阅读次数
全文


摘要

酶催化原子转移自由基聚合