English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 596-609 DOI: 10.7536/PC200525 前一篇   后一篇

• 综述 •

接枝改性PVDF基含氟聚合物

衡婷婷1, 张慧1, 陈明学1, 胡欣1,*(), 方亮1,*(), 陆春华1,*()   

  1. 1 南京工业大学材料科学与工程学院 材料化学工程国家重点实验室 江苏先进无机功能复合材料协同创新中心 江苏先进生物与化学制造协同创新中心 南京 211800
  • 收稿日期:2020-05-12 修回日期:2020-07-18 出版日期:2021-04-20 发布日期:2020-12-28
  • 通讯作者: 胡欣, 方亮, 陆春华
  • 基金资助:
    国家自然科学基金项目(21604037); 江苏省高等学校优势学科建设工程项目(PAPD); 江苏省高校青蓝工程和江苏省六大人才高峰项目(XCL-029)

Graft Modification of PVDF-Based Fluoropolymers

Tingting Heng1, Hui Zhang1, Mingxue Chen1, Xin Hu1(), Liang Fang1(), Chunhua Lu1()   

  1. 1 College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University,Nanjing 211800, China
  • Received:2020-05-12 Revised:2020-07-18 Online:2021-04-20 Published:2020-12-28
  • Contact: Xin Hu, Liang Fang, Chunhua Lu
  • Supported by:
    the National Natural Science Foundation of China(21604037); the Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD); the Qing Lan Project, and the Six Talent Peaks project in Jiangsu Province(XCL-029)

聚偏氟乙烯(PVDF基)含氟聚合物由于其独特的性能受到了广泛的关注。将功能化链段引入PVDF基含氟聚合物可以进一步提升其性能并拓展其应用领域。相较于物理共混法和直接共聚改性法,通过接枝改性法将功能化单体引入含氟聚合物的侧链具有更显著的优势,可便捷、高效地得到组成精确,结构可控的接枝共聚物。本文综述了通过活性自由基聚合(包括ATRP、SET-LRP、有机催化原子转移自由基聚合(O-ATRP)、光诱导Cu(Ⅱ)介导RDRP)和高能射线辐射(γ射线,紫外,电子束)等对PVDF基含氟聚合物功能化接枝改性的方法,并对其发展趋势以及改性聚合物的应用前景进行了展望。

Poly(vinylidene fluoride)(PVDF)-based fluoropolymers have received widespread attention due to their unique properties. Poly(vinylidene fluoride)(PVDF)-based fluoropolymers have received widespread attention due to their unique properties. Incorporation of functional segments on PVDF-based fluoropolymers has been an important way to improve their performance and expand the application areas. Compared with the physical blending and the direct copolymerization approaches, significant advantages have been witnessed by employing the graft modification method, which provides an easy and efficient way to obtain well-defined fluoro-copolymer with precise compositions. This review highlights the methods of functional graft modification of PVDF-based fluoropolymers via living radical polymerization (including atom transfer radical polymerization (ATRP), single electron transfer-living radical polymerization (SET-LRP), organocatalyzed atom transfer radical polymerization (O-ATRP), photo-induced Cu(Ⅱ)-mediated reversible deactivation radical polymerization (RDRP) and high energy ray radiation (γ-ray, ultraviolet, electron beam)). The opportunities and applications are proposed for the further development.

Contents

1 Introduction

2 Graft modification of PVDF-based fluoropolymers via atom transfer radical polymerization(ATRP)

2.1 Graft modification of PVDF via ATRP

2.2 Graft modification of P(VDF-co-CTFE) via ATRP

2.3 Graft modification of poly(chlorotrifluoroethyl-ene)(PCTFE) via ATRP

2.4 Graft modification of poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)(P(VDF-co-TrFE-co-CTFE)) via ATRP

2.5 Graft modification of P(VDF-co-HFP) via ATRP

3 Graft modification of PVDF-based fluoropolymers via single electron transfer-living radical polymerization(SET-LRP)

3.1 Graft modification of PVDF via SET-LRP

3.2 Graft modification of P(VDF-co-CTFE) via SET-LRP

4 Graft modification of PVDF-based fluoropolymers via photo-induced Cu(Ⅱ)-mediated RDRP

4.1 Graft modification of PVDF via photo-induced Cu(Ⅱ)-mediated RDRP

4.2 Graft modification of P(VDF-co-CTFE) via photo-induced Cu(Ⅱ)-mediated RDRP

5 Graft modification of PVDF-based fluoropolymers via organocatalyzed atom transfer radical polymerization(O-ATRP)

6 Graft modification of PVDF-based fluoropolymers via radical polymerization

6.1 Graft modification of PVDF via reaction of initiator and double bond

6.2 Graft modification of PVDF via irradiation

7 Conclusion and outlook

()
图1 PVDF-g-PHEA的聚合工艺
Fig.1 Polymerization process of PVDF-g-PHEA
图2 采用ATRP法合成了P(VDF-co-CTFE)-g-PS接枝共聚物,并与nBu3SnH脱氯
Fig.2 Synthesis of the P(VDF-co-CTFE)-g-PS graft copolymers using ATRP, followed by dechlorination with nBu3SnH
图3 由PCTFE低聚物引发的苯乙烯的ATRP[45]
Fig.3 ATRP of styrene initiated by PCTFE oligomer[45]
图4 ATRP法合成P(VDF-co-TrFE-co-CTFE)-g-PS接枝共聚物,再与nBu3SnH脱氯
Fig.4 Synthesis of P(VDF-co-TrFE-co-CTFE)-g-PS graft copolymer using ATRP, followed by dechlorination with nBu3SnH
图5 P(VDF-co-HFP)-g-PSPMA的合成[51]
Fig.5 Synthetic procedure of proton conductive P(VDF-co-HFP)-g-PSPMA copolymer[51]
图6 P(VDF-co-HFP)-g-PPEGMA的合成路线[52]
Fig.6 Synthesis route of P(VDF-co-HFP)-g-PPEGMA[52]
图7 以C—F键为活性位点的SET-CRP机理[53]
Fig.7 The mechanism of SET-CRP using C—F bonds as active sites[53]
图8 由P(VDF-co-CTFE)引发的MMA和AN的SET-LRP和铜管反应器的示意图[25]
Fig.8 SET-LRP of MMA and AN initiated with P(VDF-co-CTFE) and a schematic diagram of the copper tubular reactor[25]
图9 PVDF-g-THFMA共聚物的合成[82]
Fig.9 Synthesis of the PVDF-g-THFMA copolymer[82]
图10 光诱导Cu(Ⅱ)介导RDRP制备P(VDF-co-CTFE)-g-PAN[83,84]
Fig.10 Photoinduced Cu(Ⅱ)-mediate RDRP to P(VDF-co-CTFE)-g-PAN[83,84]
图11 P(VDF-co-CTFE)-g-PMA、P(VDF-co-CTFE)-g-PBA和P(VDF-co-CTFE)-g-(PMMA-b-PMA)的合成[85]
Fig.11 Synthesis of P(VDF-co-CTFE)-g-PMA、P(VDF-co-CTFE)-g-PBA and P(VDF-co-CTFE)-g-(PMMA-b-PMA)[85]
图12 两亲性共聚物的合成和季铵盐化过程[89]
Fig.12 Schematic diagram illustrating the process of the amphiphilic copolymer synthesis, and quaternization[89]
图13 PVDF-g-St膜的制备和提取工艺[90]
Fig.13 Process for the preparation and extraction of the PVDF-g-St film[90]
图14 PVDF-g-PSSA的磺化接枝反应方案[91]
Fig.14 Reaction scheme for the sulfonation and grafting of PVDF-g-PSSA[91]
图15 臭氧预处理,PVDF与PMA的接枝共聚以及通过相转化制备“可点击”表面的PVDF-g-PPMA膜的过程示意图[37]
Fig.15 Schematic illustration of the processes of ozone pretreatment, graft copolymerization of PVDF with PMA, andpreparation of PVDF-g-PPMA membrane with “Clickable” surface by phase inversion [37]
表1 通过ATRP、SET-LRP、光诱导Cu(Ⅱ)介导RDRP、O-ATRP、传统自由基聚合和辐射聚合等方法功能化接枝改性含氟共聚物
Table 1 Functionalized graft-modified fluorocopolymers by ATRP, SET-LRP, photo-induced Cu(Ⅱ)-mediated RDRP, O-ATRP, traditional radical polymerization and radiation polymerization
Reactions Advantages Drawbacks Graft product Ref
ATRP mild polymerization conditions, wide range of monomers, high reaction rate, strong molecular design ability, and adjustable grafting amount Due to the unavoidable metal residues, there are potential risks when used in the fields of electricity, biology and environmental materials. The high temperature and the participation of N-containing ligands in the polymerization process may lead to side reactions such as elimination and hydrogenation PVDF-g-PHEA 40
PVDF-g-PSPMA/PSSA 41
PVDF-g-POEM/PAA 42,43
P(VDF-co-CTFE)-g-PS 44
P(VDF-co-CTFE)-g-PAA/PS 45
PCTFE-g-PS 46,47
P(VDF-co-TrFE-co-CTFE)-g-PS/SPS 48~50
P(VDF-co-CTFE)-g-PEMA/PMMA/PBMA 51,52
P(VDF-co-TrFE-co-CTFE)-g-P(St-MMA)
P(VDF-co-HFP)-g-PSPMA/PPEGMA
SET-LRP mild reaction conditions, the amount of metal catalyst is small and easy to remove, side reactions such as elimination can be avoided expensive Me6-TREN as ligand PVDF-g-PMMA 53
P(VDF-co-CTFE)-g-PAN/PMMA
P(VDF-co-CTFE)-g-PMMA
21,25
22
Photo-RDRP good space-time control, fast reaction rate, mild reaction conditions and high grafting efficiency expensive Me6-TREN as ligand PVDF-g-THFMA 82
P(VDF-co-CTFE)-g-PAN/PMMA 83,84
O-ATRP Metal residue can be totally avoided, good controllability, grafting amount may be adjusted by tuning conditions Medium reaction efficiency and low graft P(VDF-co-CTFE)-g-PMA/PBA/PMMA 85
P(VDF-co-CTFE)-g-(PMMA-b-PMA)
P(VDF-co-CTFE)-g-PMMA 86
P(VDF-co-CTFE)-g-PMMA/PGMA 87
Traditional Radical Polymerization Mild polymerization conditions, water resistance, suitable for various polymerization methods, suitable for a wide range of monomers The microstructure, degree of polymerization and polydispersity of polymer can not be controlled PVDF-g-P(Sty-co-VBC)/PDMAPMA 88,89
Radiation Polymerization Strong penetration
High activation efficiency
Solid state polymerizable
The high energy ray is uncontrollable and the matrix structure is easy to be damaged PVDF-g-PPMA/St/PHEMA/PS/PSSA/AN 37,90~96
[1]
Song X M, Yao W Q, Lu G L, Li Y J, Huang X Y. Polym. Chem., 2013, 4(9): 2864.
[2]
Feng C, Lu G L, Sun G, Liu X W, Huang X Y. Polym. Chem., 2014, 5(20): 6027.
[3]
Xu B B, Feng C, Huang X Y. Nat. Commun., 2017, 8: 333.

URL     pmid: 28839135
[4]
Que Y R, Huang Z, Feng C, Yang Y, Huang X Y. ACS Macro Lett., 2016, 5(12): 1339.
[5]
Que Y R, Liu Y J, Tan W, Feng C, Shi P, Li Y J, Huang X Y. ACS Macro Lett., 2016, 5(2): 168.
[6]
Feng C, Huang X Y. Acc. Chem. Res., 2018, 51(9): 2314.
[7]
Que Y R, Feng C, Zhang S, Huang X Y. J. Phys. Chem. C, 2015, 119(4): 1960.
[8]
Que Y R, Feng C, Lu G L, Huang X Y. ACS Appl. Mater. Interfaces, 2017, 9(17): 14647.

URL     pmid: 28403612
[9]
Jiang X Y, Jiang X, Lu G L, Feng C, Huang X Y. Polym. Chem., 2014, 5(17): 4915.
[10]
Sun F X, Feng C, Liu H Y, Huang X Y. Polym. Chem., 2016, 7(45): 6973.
[11]
Ni Y Y, Tian C, Zhang L F, Cheng Z P, Zhu X L. ACS Macro Lett., 2019, 8(11): 1419.
[12]
Li Z, Chen W J, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2015, 6(28): 5030.
[13]
Peng J Y, Tian C, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2017, 8(9): 1495.
[14]
Peng J Y, Xu Q H, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2019, 10(16): 2064.
[15]
Corrigan N, Rosli D, Jones J W J, Xu J T, Boyer C. Macromolecules, 2016, 49(18): 6779.
[16]
Liu X D, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2016, 7(3): 689.
[17]
Huang Z C, Gu Y, Liu X D, Zhang L F, Cheng Z P, Zhu X L. Macromol. Rapid Commun., 2017, 38(10): 1600461.
[18]
Ma W C, Zhang X H, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T. Polym. Chem., 2017, 8(23): 3574.
[19]
Pan X C, Lamson M, Yan J J, Matyjaszewski K. ACS Macro Lett., 2015, 4(2): 192.
[20]
Yang Q, Zhang X H, Ma Y H, Chen D, Yang W T. J. Polym. Sci. Part A: Polym. Chem., 2018, 56(18): 2072.
[21]
Hu X, Li J J, Li H Y, Zhang Z C. J. Polym. Sci. A Polym. Chem., 2012, 50(15): 3126.
[22]
Hu X, Li J J, Li H Y, Zhang Z C. J. Polym. Sci. Part A: Polym. Chem., 2013, 51(20): 4378.
[23]
Chan N, Cunningham M F, Hutchinson R A. J. Polym. Sci. Part A: Polym. Chem., 2013, 51(15): 3081.
[24]
Burns J A, Houben C, Anastasaki A, Waldron C, Lapkin A A, Haddleton D M. Polym. Chem., 2013, 4(17): 4809.
[25]
Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K. Polym. Chem., 2016, 7(2): 474.
[26]
Zhu N, Hu X, Fang Z, Guo K. ChemPhotoChem, 2018, 2(10): 831.
[27]
Cui P, Song C T, Zhang X H, Chen D, Ma Y H, Yang W T. Ind. Eng. Chem. Res., 2019, 58(47): 21864.
[28]
Treat N J, Sprafke H, Kramer J W, Clark P G, Barton B E, Read de Alaniz J, Fors B P, Hawker C J. J. Am. Chem. Soc., 2014, 136(45): 16096.

doi: 10.1021/ja510389m     URL     pmid: 25360628
[29]
Miyake G M, Theriot J C. Macromolecules, 2014, 47(23): 8255.
[30]
Yang Q, Zhang X H, Ma W C, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T. J. Polym. Sci. Part A: Polym. Chem., 2018, 56(2): 229.
[31]
Cai T, Neoh K G, Kang E T, Teo S L M. Langmuir, 2011, 27(6): 2936.

URL     pmid: 21341769
[32]
Gebrekrstos A, Prasanna Kar G, Madras G, Misra A, Bose S. Polymer, 2019, 181: 121764.
[33]
Grasselli M, Betz N. Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms, 2005, 236(1/4): 201.
[34]
Cai T, Wang R, Neoh K G, Kang E T. Polym. Chem., 2011, 2(8): 1849.
[35]
Dumas L, Fleury E, Portinha D. Polymer, 2014, 55(11): 2628.
[36]
Li X, Hu X F, Cai T. Langmuir, 2017, 33(18): 4477.

doi: 10.1021/acs.langmuir.7b00191     URL     pmid: 28452489
[37]
Cai T, Neoh K G, Kang E T. Macromolecules, 2011, 44(11): 4258.

doi: 10.1021/ma2002728     URL    
[38]
Cai T, Yang W J, Neoh K G, Kang E T. Ind. Eng. Chem. Res., 2012, 51(49): 15962.

doi: 10.1021/ie302762w     URL    
[39]
Cai T, Wang R, Yang W J, Lu S J, Neoh K G, Kang E T. Soft Matter, 2011, 7(23): 11133. 137414ba-0eef-48b4-98b6-a22a7fd99d17

doi: 10.1039/c1sm06039b     URL    
[40]
Kim K M, Woo S, Lee J, Park H, Park J, Min B. Appl. Sci., 2015, 5(4): 1992.

doi: 10.3390/app5041992     URL    
[41]
Kim Y W, Lee D K, Lee K J, Kim J H. Eur. Polym. J., 2008, 44(3): 932.

doi: 10.1016/j.eurpolymj.2007.12.020     URL    
[42]
Shen J L, Zhang Q, Yin Q, Cui Z L, Li W X, Xing W H. J. Membr. Sci., 2017, 521: 95.

doi: 10.1016/j.memsci.2016.09.006     URL    
[43]
Lee J I, Kang H, Park K H, Shin M, Hong D, Cho H J, Kang N R, Lee J, Lee S M, Kim J Y, Kim C K, Park H, Choi N S, Park S, Yang C. Small, 2016, 12(23): 3119.

URL     pmid: 27119208
[44]
Guan F X, Yang L Y, Wang J, Guan B, Han K, Wang Q, Zhu L. Adv. Funct. Mater., 2011, 21(16): 3176.

doi: 10.1002/adfm.201002015     URL    
[45]
Zhang M F, Russell T P. Macromolecules, 2006, 39(10): 3531.

doi: 10.1021/ma060128m     URL    
[46]
Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L. Macromolecules, 2011, 44(7): 2190.

doi: 10.1021/ma102910v     URL    
[47]
Tan S B, Yang Q H, Zhang Z C. Acta Polym. Sin., 2010,(11): 1269.
谭少博, 杨庆浩, 张志成. 高分子学报, 2010,(11): 1269.
[48]
Li J J, Hu X, Gao G X, Ding S J, Li H Y, Yang L J, Zhang Z C. J. Mater. Chem. C, 2013, 1(6): 1111.

doi: 10.1039/C2TC00431C     URL    
[49]
Li J J, Tan S B, Ding S J, Li H Y, Yang L J, Zhang Z C. J. Mater. Chem., 2012, 22(44): 23468.

doi: 10.1039/c2jm35532a     URL    
[50]
Liu J J, Liao J N, Liao Y, Zhang Z C. Polym. Chem., 2019, 10(25): 3547.

doi: 10.1039/C9PY00540D     URL    
[51]
Xiao S Q, Chen Y W, Zhou W H, Zhang X L, He X H. The Chinese Journal of Process Engineerin, 2008, 8(6): 1223.
肖书琴, 陈义旺, 周魏华, 张小林, 贺晓慧. 过程工程学报, 2008, 8(6): 1223. d004385e-69a5-41fe-bb2b-6390df4fd867
[52]
Yu S C, Chen L, Chen Y W, Tong Y F. Appl. Surf. Sci., 2012, 258(11): 4983. 09692411-367b-4dfe-9760-408cb821c2b3

doi: 10.1016/j.apsusc.2012.01.146     URL    
[53]
Tan S B, Zhang Y A, Niu Z J, Zhang Z C. Macromol. Rapid Commun., 2018, 39(4): 1700561.

doi: 10.1002/marc.v39.4     URL    
[54]
Sackmann E K, Fulton A L, Beebe D J. Nature, 2014, 507(7491): 181. b2ab6b3f-b1ea-45c5-9013-9d1e71db1f0d

doi: 10.1038/nature13118     URL    
[55]
Tsubogo T, Oyamada H, Kobayashi S. Nature, 2015, 520(7547): 329.

URL     pmid: 25877201
[56]
Kim H, Nagaki A, Yoshida J I. Nat. Commun., 2011, 2: 264.

URL     pmid: 21468016
[57]
Elvira K S, i Solvas X C, Wootton R C R, de Mello A J. Nat. Chem., 2013, 5(11): 905.

URL     pmid: 24153367
[58]
Reis M H, Leibfarth F A, Pitet L M. ACS Macro Lett., 2020, 9(1): 123.

doi: 10.1021/acsmacrolett.9b00933     URL    
[59]
Nagaki A, Miyazaki A, Yoshida J I. Macromolecules, 2010, 43(20): 8424.

doi: 10.1021/ma101663x     URL    
[60]
Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J I. J. Am. Chem. Soc., 2004, 126(45): 14702.

doi: 10.1021/ja044879k     URL     pmid: 15535678
[61]
Zhao W R, Hu X, Zhu N, Fang Z, Guo K. Progress in Chemistry, 2018, 30(9): 1330.
赵婉如, 胡欣, 朱宁, 方正, 郭凯. 化学进展, 2018, 30(9): 1330.
[62]
Iwasaki T, Yoshida J I. Macromolecules, 2005, 38(4): 1159.

doi: 10.1021/ma048369m     URL    
[63]
Noda T, Grice A J, Levere M E, Haddleton D M. Eur. Polym. J., 2007, 43(6): 2321.

doi: 10.1016/j.eurpolymj.2007.03.010     URL    
[64]
Ramsey B L, Pearson R M, Beck L R, Miyake G M. Macromolecules, 2017, 50(7): 2668.

URL     pmid: 29051672
[65]
Ramakers G, Krivcov A, Trouillet V, Welle A, Möbius H, Junkers T. Macromol. Rapid Commun., 2017, 38(21): 1700423.

doi: 10.1002/marc.v38.21     URL    
[66]
Hu X, Zhu N, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80: 177.

doi: 10.1016/j.eurpolymj.2016.04.006     URL    
[67]
Kuroki A, Martinez-Botella I, Hornung C H, Martin L, Williams E G L, Locock K E S, Hartlieb M, Perrier S. Polym. Chem., 2017, 8(21): 3249.

doi: 10.1039/C7PY00630F     URL    
[68]
Diehl C, Laurino P, Azzouz N, Seeberger P H. Macromolecules, 2010, 43(24): 10311.

doi: 10.1021/ma1025253     URL    
[69]
Corrigan N, Almasri A, Tailades W, Xu J T, Boyer C. Macromolecules, 2017, 50(21): 8438.

doi: 10.1021/acs.macromol.7b01890     URL    
[70]
Fukuyama T, Kajihara Y, Ryu I, Studer A. Synthesis, 2012, 44(16): 2555.

doi: 10.1055/s-0031-1290780     URL    
[71]
Gong H H, Zhao Y C, Shen X W, Lin J, Chen M. Angew. Chem. Int. Ed., 2018, 57(1): 333.

doi: 10.1002/anie.201711053     URL    
[72]
Hu X, Zhu N, Fang Z, Guo K. React. Chem. Eng., 2017, 2(1): 20.

doi: 10.1039/C6RE00206D     URL    
[73]
Kundu S, Bhangale A S, Wallace W E, Flynn K M, Guttman C M, Gross R A, Beers K L. J. Am. Chem. Soc., 2011, 133(15): 6006.

URL     pmid: 21438577
[74]
Bhangale A S, Beers K L, Gross R A. Macromolecules, 2012, 45(17): 7000.

doi: 10.1021/ma301178k     URL    
[75]
Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80: 234.

doi: 10.1016/j.eurpolymj.2016.04.010     URL    
[76]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Chem. Eng. J., 2018, 333: 43.

doi: 10.1016/j.cej.2017.09.143     URL    
[77]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Macromol. Rapid Commun., 2018, 39(8): 1700807.
[78]
Huang W J, Zhu N, Liu Y H, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K. Chem. Eng. J., 2019, 356: 592.
[79]
Liu Y H, Hu X, Zhu N, Guo K. Progress in Chemistry, 2018, 30(8): 1133.
刘一寰, 胡欣, 朱宁, 郭凯. 化学进展, 2018, 30(8): 1133.
[80]
Zhu N, Zhang Z L, Feng W Y, Zeng Y Q, Li Z Y, Fang Z, Zhang K, Li Z J, Guo K. RSC Adv., 2015, 5(40): 31554.
[81]
Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K. Polymer, 2016, 84: 391.
[82]
Lei H D, Liu L, Huang L K, Li W X, Xing W H. Polymer, 2018, 157: 1.
[83]
Hu X, Cui G P, Zhu N, Zhai J L, Guo K. Polymers, 2018, 10(1): 68.
[84]
Hu X, Cui G P, Zhang Y J, Zhu N, Guo K. Eur. Polym. J., 2018, 100: 228.

doi: 10.1016/j.eurpolymj.2018.01.033     URL    
[85]
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K. Macromol. Rapid Commun., 2017, 38(21): 1700399.

doi: 10.1002/marc.v38.21     URL    
[86]
Tan S B, Xiong J, Zhao Y F, Liu J J, Zhang Z C. J. Mater. Chem. C, 2018, 6(15): 4131.

doi: 10.1039/C8TC00781K     URL    
[87]
Hu X, Li N, Heng T T, Fang L, Lu C H. React. Funct. Polym., 2020, 150: 104541.
[88]
Sharma P P, Yadav V, Rajput A, Kulshrestha V. Desalination, 2018, 444: 35.
[89]
Liu L, Huang L K, Shi M L, Li W X, Xing W H. J. Appl. Polym. Sci., 2019, 136(42): 48049.
[90]
Chen J H, Seko N. Polymers, 2019, 11(7): 1098.
[91]
Cohen E, Ophir A. J. Appl. Polym. Sci., 2012, 126(2): 442.
[92]
Thakur V K, Tan E J, Lin M F, Lee P S. J. Mater. Chem., 2011, 21(11): 3751.
[93]
Thakur V K, Tan E J, Lin M F, Lee P S. Polym. Chem., 2011, 2(9): 2000.
[94]
Golcuk S, Muftuoglu A E, Celik S U, Bozkurt A. J. Polym. Res., 2013, 20(5): 144.
[95]
Deng Q L, Chen Y W, Sun W. Surf. Rev. Lett., 2007, 14(1): 23.
[96]
Peng Q, Lu S Q, Chen D Z, Wu X Q, Fan P F, Zhong R, Xu Y W. Macromol. Biosci., 2007, 7(9/10): 1149.
[1] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[2] 郭晓峰, 潘翔宇, 魏晓虎, 冯岸超*, 汤华燊*. 刺激响应梯度聚合物[J]. 化学进展, 2017, 29(10): 1184-1194.
[3] 李东翰, 齐士成, 张孝阿, 廖明义. 低分子量含氟聚合物的制备、官能化及特性[J]. 化学进展, 2016, 28(5): 673-685.
[4] 张勇杰, 李化毅, 曲敏杰, 冯钠, 杨威, 张翀. 结构明确聚烯烃接枝共聚物:合成、结构与性能[J]. 化学进展, 2016, 28(11): 1634-1647.
[5] 尤树森, 杨万泰, 尹梅贞* . 刺激响应型功能聚合物的合成及应用[J]. 化学进展, 2012, 24(11): 2198-2211.
[6] 李光, 白如科. 叠氮聚合物的合成[J]. 化学进展, 2011, 23(8): 1692-1699.
[7] 袁伟忠, 张锦春, 魏静仁. 点击化学与活性自由基聚合联用构建特殊结构聚合物[J]. 化学进展, 2011, 23(4): 760-771.
[8] 何乃普, 何玉凤, 王荣民, 宋鹏飞, 周云. 蛋白质高分子结合体[J]. 化学进展, 2010, 22(12): 2388-2396.
[9] 钱涛 汪涓涓 张庆华 詹晓力 陈丰秋. 原子转移自由基细乳液聚合*[J]. 化学进展, 2010, 22(04): 663-668.
[10] 丁敏 郭丽华 张玲 伍青. 荧光技术在两亲性聚合物研究中的应用*[J]. 化学进展, 2010, 22(0203): 458-464.
[11] 闫强 袁金颖 康燕 尹应武. 纤维素接枝共聚物的合成与功能*[J]. 化学进展, 2010, 22(0203): 449-457.
[12] 王琼燕 张庆华 詹晓力 陈丰秋. 低表面能侧基含氟聚合物*[J]. 化学进展, 2009, 21(10): 2183-2187.
[13] 浦鸿汀,蔡相宇,万德成,杨根金. N-乙烯酰胺的活性自由基聚合进展*[J]. 化学进展, 2008, 20(10): 1572-1577.
[14] 葛学平,白如科. γ- 射线辐射活性自由基聚合研究*[J]. 化学进展, 2007, 19(9): 1406-1412.
[15] 陈卉,马会茹,官建国. 水溶性导电聚苯胺的制备*[J]. 化学进展, 2007, 19(11): 1770-1775.
阅读次数
全文


摘要

接枝改性PVDF基含氟聚合物