English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1175-1187 DOI: 10.7536/PC200749 前一篇   后一篇

• 综述 •

HO2非均相摄取系数的测量与参数化

宋欢, 邹琦, 陆克定*()   

  1. 北京大学环境科学与工程学院 北京 100871
  • 收稿日期:2020-07-22 修回日期:2020-09-07 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 陆克定
  • 基金资助:
    国家自然科学基金项目(21976006); 国家自然科学基金项目(91844301)

Parameterization and Application of Hydroperoxyl Radicals(HO2) Heterogeneous Uptake Coefficient

Huan Song, Qi Zou, Keding Lu*()   

  1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
  • Received:2020-07-22 Revised:2020-09-07 Online:2021-07-20 Published:2020-12-28
  • Contact: Keding Lu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21976006); National Natural Science Foundation of China(91844301)

HO2自由基与环境大气气溶胶的非均相反应是HO2自由基的重要汇之一,对大气氧化能力有重要影响,对大气颗粒物的物化性质等进一步产生影响。HO2的非均相反应过程的定量描述对不同地区大气氧化性与臭氧生成能力等问题的探求具有重要意义。目前不同研究小组测量的摄取系数可相差3到5个数量级,深入探究不同条件下不同种类气溶胶对HO2自由基的非均相摄取机制,对摄取机制进行参数化表达,并准确测量摄取系数是量化其环境影响的关键。本文深入介绍了HO2非均相摄取的原理与参数化表达,总结了已有的研究结果与进展,对不同的影响因素进行总结分析,并对此领域未来的发展方向提出建议与展望。

The heterogeneous uptake reactions of hydroperoxyl radicals(HO2) on ambient atmospheric aerosols have been proposed to be a significant sink of HO2 radicals, thus could influence the atmospheric oxidation capacity and properties of atmospheric particles. The quantitative description of the heterogeneous reaction process of HO2 is of great significance to the exploration of atmospheric oxidation and ozone generation capacity in different regions. The HO2 uptake coefficients measured by different research groups can differ by 3 to 5 orders of magnitude. Exploration of the heterogeneous uptake mechanism of HO2 radical on different types of aerosols under different conditions, accurately parameterized expression of the uptake coefficient is the key to quantifying its environmental impacts. This article introduces the mechanism and parameterized expressions of HO2 heterogeneous uptake, reviews the existing research results and progress, summarizes and analyzes the different influencing factors, and makes suggestions and prospects for the future development.

Contents

1 Introduction

2 Research progress of HO2 radical heterogeneous reaction

3 Measurements of $\gamma_{HO_{2}}$ with aerosol particles

4 Factors influencing HO2 heterogeneous uptake

4.1 Effects of relative humidity and temperature on HO2 heterogeneous uptake

4.2 Promoting effect of transition metal ions on $\gamma_{HO_{2}}$

4.3 Effects of reaction time and initial HO2 concentration on $\gamma_{HO_{2}}$

4.4 Effect of aerosol pH on $\gamma_{HO_{2}}$

5 Parameterized expressions of HO2 heterogeneous uptake

5.1 Expression and characteristic time of each sub-step of heterogeneous reaction

5.2 Resistance model

5.3 Application of empirical equations of $\gamma_{HO_{2}}$ in the model

6 Conclusion

()
图1 不同介质与HO2非均相摄取系数的测量结果。SS为液面表面[28,29,17],TF为薄膜[30⇓~32],DA为矿质气溶胶[23,27,33],DIA为干无机气溶胶[34⇓~36],WIA为湿无机气溶胶[34⇓⇓~37],OA为有机气溶胶[23,24,38,39],Cu-SA为含铜离子耦合的硫酸盐气溶胶[12,34,35,37,40],Cu-CA为含铜离子耦合的氯盐气溶胶[34,36],EDTA/Cu为含铜离子耦合的EDTA气溶胶[40],OxA/Cu为含铜离子耦合的草酸气溶胶。从图中可以发现,HO2摄取系数随着反应介质不同有所区别,不含铜离子介质的摄取系数中值普遍在0.01至0.8之间,EDTA与草酸对HO2的非均相摄取有削减作用,其他有机气溶胶的摄取系数与无机气溶胶摄取系数差别不大。含铜离子的HO2非均相摄取系数普遍偏高可至集聚系数。
Fig. 1 Measurement results of heterogeneous uptake coefficients of different media and HO2. SS is the liquid surface[28,29,17], TF is the thin film[30⇓~32], DA is the mineral aerosol[23,27,33], DIA is the dry inorganic aerosol[34⇓~36], WIA is the wet inorganic aerosol[34⇓⇓~37], OA is the organic aerosol[23,24,38,39], Cu-SA is the sulfate aerosol containing copper ion[12,34,35,37,40], Cu-CA is a chloride aerosol coupled with copper ions[34,36], EDTA/Cu is an EDTA aerosol coupled with copper ions[40], and OxA/Cu is an oxalic acid aerosol coupled with copper ions[40]. It can be seen from the figure that the uptake coefficient of HO2 varies with different reaction media. The median uptake coefficient of media without copper ions is generally between 0.01 and 0.8. EDTA and oxalic acid can reduce the heterogeneous uptake of HO2. The uptake coefficient of other organic aerosols is not significantly different from that of inorganic aerosols. The heterogeneous uptake coefficient of HO2 containing copper ions is generally higher than the accumulation coefficient.
图2 HO2液相中的自反应二级速率常数与液相pH值的关系。在不考虑过渡金属、氮氧化物、有机物等物质的影响下,液相氢氧反应物与HO2的液相化学反应受到pH值的影响,在pH值为4~5时取到峰值,随后迅速下降。
Fig. 2 The relationship between the HO2 second-order rate constant of self-reaction in the liquid phase and the pH. Without considering the effects of transition metals, nitrogen oxides, organics and other substances, the liquid-phase chemical reaction between the liquid-phase hydroxide reactant and HO2 is affected by pH, which peaks at 4 to 5, and then drops rapidly.
图3 气液非均相反应中的传质过程示意图
Fig. 3 Schematic diagram of mass transfer process in gas-liquid heterogeneous reaction
表1 不同气溶胶表面 γ H O 2的经验化公式总结[69]
Table 1 Summary of empirical equations for γ H O 2 on different aerosol surfaces[69]
[1]
Levy H II. J. Geophys. Res., 1973, 78(24):5325.
[2]
Chameides W L, Davis D D. J. Geophys. Res., 1982, 87(C7):4863.
[3]
Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H. PNAS, 2019, 116(2):422.

doi: 10.1073/pnas.1812168116     URL    
[4]
Penkett S A. Nat. Phys. Sci., 1972, 240(101):105.

doi: 10.1038/physci240105a0     URL    
[5]
Zika R G, Saltzman E S. Geophys. Res. Lett., 1982, 9(3):231.

doi: 10.1029/GL009i003p00231     URL    
[6]
William L C, Douglas D D. Chem. Eng. News Archive, 1982, 60(40):38.
[7]
Graedel T E, Mandich M L, Weschler C J. J. Geophys. Res., 1986, 91(D4):5205.
[8]
Schwartz S E. J. Geophys. Res., 1984, 89(D7):11589.
[9]
Fuchs N A, Sutugin A G. Topics in Current Aerosol Research. Amsterdam: Elsevier, 1971: 1.
[10]
Bielski B H J, Cabelli D E, Arudi R L, Ross A B. J. Phys. Chem. Ref. Data, 1985, 14(4):1041.

doi: 10.1063/1.555739     URL    
[11]
Schwartz S A, Meyer G A. Spectrochimica Acta B: At. Spectrosc., 1986, 41(12):1287.
[12]
Mozurkewich M, McMurry P H, Gupta A, Calvert J G. J. Geophys. Res., 1987, 92(D4):4163.
[13]
Ross H B, Noone K J. J. Atmos. Chem., 1991, 12(2):121.

doi: 10.1007/BF00115775     URL    
[14]
Hanson D R, Ravishankara A R, Solomon S. J. Geophys. Res., 1994, 99(D2):3615.
[15]
Danckwerts P V. Trans. Faraday Soc., 1951, 47:1014.

doi: 10.1039/tf9514701014     URL    
[16]
Danckwerts P V, Lannus A. J. Electrochem. Soc., 1970, 117(10):369C.
[17]
Cooper P L, Abbatt J P D. J. Phys. Chem., 1996, 100(6):2249.

doi: 10.1021/jp952142z     URL    
[18]
Sander R. Surv. Geophys., 1999, 20(1):1.

doi: 10.1023/A:1006501706704     URL    
[19]
Jacob D. Atmos. Environ., 2000, 34(12/14):2131.

doi: 10.1016/S1352-2310(99)00462-8     URL    
[20]
Mao J, Fan S, Jacob D J, Travis K R. Atmos. Chem. Phys., 2013, 13(2):509.

doi: 10.5194/acp-13-509-2013     URL    
[21]
de Reus M, Fischer H, Sander R, Gros V, Kormann R, Salisbury G, van Dingenen R, Williams J, Zöllner M, Lelieveld J. Atmos. Chem. Phys., 2005, 5(7):1787.

doi: 10.5194/acp-5-1787-2005     URL    
[22]
Mao J, Jacob D J, Evans M J, Olson J R, Ren X, Brune W H, Clair J M S, Crounse J D, Spencer K M, Beaver M R, Wennberg P O, Cubison M J, Jimenez J L, Fried A, Weibring P, Walega J G, Hall S R, Weinheimer A J, Cohen R C, Chen G, Crawford J H, McNaughton C, Clarke A D, Jaeglé L, Fisher J A, Yantosca R M, Le Sager P, Carouge C. Atmos. Chem. Phys., 2010, 10(13):5823.

doi: 10.5194/acp-10-5823-2010     URL    
[23]
Bedjanian Y, Lelièvre S, Le Bras G. Phys. Chem. Chem. Phys., 2005, 7(2):334.

pmid: 19785156
[24]
Lakey P S J, George I J, Whalley L K, Baeza-Romero M T, Heard D E. Environ. Sci. Technol., 2015, 49(8):4878.

doi: 10.1021/acs.est.5b00948     pmid: 25811311
[25]
Zhou J, Murano K, Kohno N, Sakamoto Y, Kajii Y. Atmos. Environ., 2020, 223:117189.

doi: 10.1016/j.atmosenv.2019.117189     URL    
[26]
Taketani F, Kanaya Y, Pochanart P, Liu Y, Li J, Okuzawa K, Kawamura K, Wang Z, Akimoto H. Atmos. Chem. Phys., 2012, 12(24):11907.

doi: 10.5194/acp-12-11907-2012     URL    
[27]
Bedjanian Y, Romanias M N, El Zein A. Atmos. Chem. Phys., 2013, 13(13):6461.

doi: 10.5194/acp-13-6461-2013     URL    
[28]
Hanson D R, Burkholder J B, Howard C J, Ravishankara A R. J. Phys. Chem., 1992, 96(12):4979.

doi: 10.1021/j100191a046     URL    
[29]
Morita A. J. Geophys. Res., 2004, 109(D9):D09201.
[30]
Gershenzon M, Davidovits P, Jayne J T, Kolb C E, Worsnop D R. J. Phys. Chem. A, 2002, 106(34):7748.

doi: 10.1021/jp014146b     URL    
[31]
Remorov R G, Gershenzon Y M, Molina L T, Molina M J. J. Phys. Chem. A, 2002, 106(18):4558.

doi: 10.1021/jp013179o     URL    
[32]
Loukhovitskaya E, Bedjanian Y, Morozov I, Le Bras G. Phys. Chem. Chem. Phys., 2009, 11(36):7896.

doi: 10.1039/b906300e     pmid: 19727497
[33]
James A D, Moon D R, Feng W H, Lakey P S J, Frankland V L, Heard D E, Plane J M C. J. Geophys. Res. Atmos., 2017, 122(1):554.

doi: 10.1002/2016JD025882     URL    
[34]
Taketani F, Kanaya Y, Akimoto H. J. Phys. Chem. A, 2008, 112(11):2370.

doi: 10.1021/jp0769936     URL    
[35]
George I J, Matthews P S J, Whalley L K, Brooks B, Goddard A, Baeza-Romero M T, Heard D E. Phys. Chem. Chem. Phys., 2013, 15(31):12829.

doi: 10.1039/c3cp51831k     pmid: 23806979
[36]
Taketani F, Kanaya Y, Akimoto H. Atmos. Environ., 2009, 43(9):1660.

doi: 10.1016/j.atmosenv.2008.12.010     URL    
[37]
Thornton J. J. Geophys. Res., 2005, 110(D8):D08309.
[38]
Taketani F, Kanaya Y, Akimoto H. J. Phys. Chem. Lett., 2010, 1(11):1701.

doi: 10.1021/jz100478s     URL    
[39]
Taketani F, Kanaya Y, Akimoto H. Int. J. Chem. Kinet., 2013, 45(9):560.

doi: 10.1002/kin.20783     URL    
[40]
Lakey P S J, George I J, Baeza-Romero M T, Whalley L K, Heard D E. J. Phys. Chem. A, 2016, 120(9):1421.

doi: 10.1021/acs.jpca.5b06316     URL    
[41]
Thornton J A, Jaeglé L, McNeill V F. J. Geophys. Res., 2008, 113(D5):303.
[42]
Matthews P S J, Baeza-Romero M T, Whalley L K, Heard D E. Atmos. Chem. Phys., 2014, 14(14):7397.

doi: 10.5194/acp-14-7397-2014     URL    
[43]
Moon D R, Taverna G S, Anduix-Canto C, Ingham T, Chipperfield M P, Seakins P W, Baeza-Romero M T, Heard D E. Atmos. Chem. Phys., 2018, 18(1):327.

doi: 10.5194/acp-18-327-2018     URL    
[44]
Zou Q, Song H, Tang M J, Lu K D. Chin. Chemical Lett., 2019, 30(12):2236.

doi: 10.1016/j.cclet.2019.07.041     URL    
[45]
Rolston D E. Encyclopedia of Soil Science, Third Edition. CRC Press. 2017: 986.
[46]
Hernandez H. Standard Maxwell-boltzmann Distribution: Definition and Properties. 2017.
[47]
Lelieveld J, Crutzen P J. J. Atmos. Chem., 1991, 12(3):229.

doi: 10.1007/BF00048075     URL    
[48]
Chameides W L, Stelson A W. J. Geophys. Res., 1992, 97(D18):20565.
[49]
Schwartz S E, Freiberg J E. Atmos. Environ. 1967, 1981, 15(7):1129.

doi: 10.1016/0004-6981(81)90303-6     URL    
[50]
Jacob D J. J. Geophys. Res., 1986, 91(D9):9807.
[51]
Ammann M, Cox R A, Crowley J N. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume vi-heterogeneous reactions with liquid substrates. Atmos Chem Phys, 2013.
[52]
Kolb C E, Cox R A, Abbatt J P D, Ammann M, Davis E J, Donaldson D J, Garrett B C, George C, Griffiths P T, Hanson D R, Kulmala M, McFiggans G, Pöschl U, Riipinen I, Rossi M J, Rudich Y, Wagner P E, Winkler P M, Worsnop D R, O' Dowd C D. Atmos. Chem. Phys., 2010, 10(21):10561.

doi: 10.5194/acp-10-10561-2010     URL    
[53]
Davidovits P, Kolb C E, Williams L R, Jayne J T, Worsnop D R. Chem. Rev., 2006, 106(4):1323.

pmid: 16608183
[54]
Davidovits P, Kolb C E, Williams L R, Jayne J T, Worsnop D R. Chem. Rev., 2011, 111(4):cr100360b.
[55]
Smith S C, Lee J D, Bloss W J, Johnson G P, Ingham T, Heard D E. Atmos. Chem. Phys., 2006, 6(5):1435.

doi: 10.5194/acp-6-1435-2006     URL    
[56]
Kanaya Y, Hofzumahaus A, Dorn H P, Brauers T, Fuchs H, Holland F, Rohrer F, Bohn B, Tillmann R, Wegener R, Wahner A, Kajii Y, Miyamoto K, Nishida S, Watanabe K, Yoshino A, Kubistin D, Martinez M, Rudolf M, Harder H, Berresheim H, Elste T, Plass-Dülmer C, Stange G, Kleffmann J, Elshorbany Y, Schurath U. Atmos. Chem. Phys., 2012, 12(5):2567.

doi: 10.5194/acp-12-2567-2012     URL    
[57]
Mak J, Gross S, Bertram A K. Geophys. Res. Lett., 2007, 34(10):L10804.

doi: 10.1029/2007GL029756     URL    
[58]
Pöschl U, Rudich Y, Ammann M. Atmos. Chem. Phys., 2007, 7(23):5989.

doi: 10.5194/acp-7-5989-2007     URL    
[59]
Ammann M, Pöschl U. Atmos. Chem. Phys., 2007, 7(23):6025.

doi: 10.5194/acp-7-6025-2007     URL    
[60]
Tang M J, Schuster G, Crowley J N. Atmos. Chem. Phys., 2014, 14(1):245.

doi: 10.5194/acp-14-245-2014     URL    
[61]
Widmann J F, Davis E J. J. Aerosol Sci., 1997, 28(1):87.

doi: 10.1016/S0021-8502(96)00060-2     URL    
[62]
Hanson D R, Ravishankara A R. J. Phys. Chem., 1993, 97(47):12309.

doi: 10.1021/j100149a035     URL    
[63]
Hanson D R, Lovejoy E R. J. Phys. Chem., 1996, 100(16):6397.

doi: 10.1021/jp953250o     URL    
[64]
Hanson D R. J. Phys. Chem. B, 1997, 101(25):4998.

doi: 10.1021/jp970461f     URL    
[65]
Hu J H, Shi Q, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. J. Phys. Chem., 1995, 99(21):8768.

doi: 10.1021/j100021a050     URL    
[66]
Magi L, Schweitzer F, Pallares C, Cherif S, Mirabel P, George C. J. Phys. Chem. A, 1997, 101(27):4943.

doi: 10.1021/jp970646m     URL    
[67]
Utter R G, Burkholder J B, Howard C J, Ravishankara A R. J. Phys. Chem., 1992, 96(12):4973.

doi: 10.1021/j100191a045     URL    
[68]
Müller B, Heal M R. Phys. Chem. Chem. Phys., 2002, 4(14):3365.

doi: 10.1039/b202491h     URL    
[69]
MacIntyre H L, Evans M J. Atmos. Chem. Phys., 2011, 11(21):10965.

doi: 10.5194/acp-11-10965-2011     URL    
[70]
Ivanov A V, Trakhtenberg S, Bertram A K, Gershenzon Y M, Molina M J. J. Phys. Chem. A, 2007, 111(9):1632.

doi: 10.1021/jp066558w     URL    
[71]
Saathoff H, Moehler O, Schurath U, Kamm S, Dippel B, Mihelcic D. J. Aerosol Sci., 2003, 34(10):1277.

doi: 10.1016/S0021-8502(03)00363-X     URL    
[72]
Saathoff H, Naumann K H, Riemer N, Kamm S, Möhler O, Schurath U, Vogel H, Vogel B. Geophys. Res. Lett., 2001, 28(10):1957.

doi: 10.1029/2000GL012619     URL    
[73]
Dentener F J, Carmichael G R, Zhang Y, Lelieveld J, Crutzen P J. J. Geophys. Res., 1996, 101(D17):22869.
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 钟佳利, 王炜罡, 彭超, 马楠, 吴志军, 葛茂发. 大气气溶胶吸湿性及其对环境的影响[J]. 化学进展, 2022, 34(4): 801-814.
[3] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[4] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[5] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[6] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[7] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[8] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[9] 王海潮, 陆克定. 五氧化二氮(N2O5)非均相摄取系数的定量和参数化[J]. 化学进展, 2016, 28(6): 917-933.
[10] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[11] 马烨, 陈建民, 王琳. 大气有机硫酸酯化合物的特征及形成机制[J]. 化学进展, 2012, 24(11): 2277-2286.
[12] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
[13] 谢绍东 田晓雪. 挥发性和半挥发性有机物向二次有机气溶胶转化的机制*[J]. 化学进展, 2010, 22(04): 727-733.
[14] 陆克定 张远航. HOx自由基的实地测量及其化学机制解析*[J]. 化学进展, 2010, 22(0203): 500-514.
[15] 葛茂发,马春平. 活性卤素化学*[J]. 化学进展, 2009, 21(0203): 307-334.