English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1426-1439 DOI: 10.7536/PC200771 前一篇   后一篇

• 综述 •

基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用

韩文亮*(), 董林洋   

  1. 华侨大学化工学院环境科学与工程系 厦门 361021
  • 收稿日期:2020-07-31 修回日期:2020-09-10 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 韩文亮
  • 基金资助:
    国家自然科学基金项目(41203077); 福建省自然科学基金项目(2018J01065)

Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants

Wenliang Han(), Linyang Dong   

  1. Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University,Xiamen 361021, China
  • Received:2020-07-31 Revised:2020-09-10 Online:2021-08-20 Published:2020-12-28
  • Contact: Wenliang Han
  • Supported by:
    National Natural Science Foundation of China(41203077); Natural Science Foundation of Fujian, China(2018J01065)

基于硫酸根自由基(SO4.-)的先进(高级)氧化法(AOPs)因其对新型有机污染物的高降解能力和高适应性而受到越来越多的关注。相比羟基自由基(·OH),SO4.-的选择性更好、还原电位更高、半衰期更长、pH范围更宽且成本更低,因而能更有效的降解污染物。SO4.-可由过一硫酸盐(PMS)或过二硫酸盐(PDS)等过硫酸盐(PS)通过热、机械化学、过渡金属、碳质材料、碱、紫外(UV)或电化学等方法活化产生。本文分析了不同活化方法的优缺点及其应用于有机污染物降解上的研究进展,总结了SO4.-降解含不同官能团污染物的三种机理(加成作用、夺氢作用和直接电子转移),并综述了SO4.-降解持久性有机污染物(POPs)、“伪持久性有机污染物”——药物和个人护理品(PPCPs)及有机染料三大类有机污染物的降解途径、降解产物及其研究进展,最后展望了该技术未来的研究方向。

Advanced oxidation processes(AOPs) based on sulfate radical(SO4.-) have attracted more and more attention due to their high degradation ability and adaptability to new types of organic pollutants. Compared with hydroxyl radical(·OH), SO4.- has better selectivity, higher reduction potential, longer half-life, wider pH range and lower cost, so it can degrade pollutants more effectively. SO4.- can be produced by persulfate(PS) such as peroxymonosulfate(PMS), peroxydisulfate(PDS), etc. which are activated by thermal, mechanochemical, transition metal, carbonaceous materials, alkali, ultraviolet(UV), electrochemical methods, etc. Advantages and disadvantages of different activation methods and the research progress of their applications in the degradation of organic pollutants are analyzed. Three degradation mechanisms(addition, hydrogen abstraction and direct electron transfer) of pollutants with different functional groups by SO4.- are summarized. The degradation pathways, degradation products, and research progress of persistent organic pollutants(POPs), “pseudo-persistent organic pollutants”, i.e. pharmaceuticals and personal care products(PPCPs), and organic dyes by SO4.- are reviewed. Moreover, future research directions of this technique are prospected.

Contents

1 Introduction

2 Activation methods of persulfate(PS)

2.1 Thermal activation

2.2 Mechanochemical activation

2.3 Transition metal activation

2.4 Carbonaceous materials activation

2.5 Alkali activation

2.6 Ultraviolet(UV) activation

2.7 Electrochemical activation

3 Degradation of organic pollutants by sulfate radical

3.1 Persistent organic pollutants(POPs)

3.2 Pharmaceuticals and personal care products(PPCPs)

3.3 Organic dyes

4 Conclusion and outlook

()
图1 过渡金属活化PMS或PDS生成SO4.-的机制
Fig. 1 Mechanism of SO4.- produced by the activation of peroxymonosulfate(PMS) or peroxydisulfate(PDS) by transition metals
表1 过渡金属活化PS降解有机污染物
Table 1 Degradation of organic pollutants by transition metal activated PS
表2 UV活化PS降解有机污染物
Table 2 Degradation of organic pollutants by UV activated PS
表3 各种PS活化方法的优缺点
Table 3 Advantages and disadvantages of different PS activation methods
图2 SO4.-降解有机污染物的直接电子转移途径[78]
Fig. 2 Direct electron transfer pathway for the degradation of organic pollutants by SO4.-[78]
表4 SO4.-降解POPs
Table 4 Degradation of POPs by SO4.-
图3 SO4.-降解CB-28的途径[96,98]
Fig. 3 Degradation pathway of CB-28 by SO4.-[96,98]
图4 SO4.-降解BDE-209的途径[41,50,65]
Fig. 4 Degradation pathway of BDE-209 by SO4.-[41,50,65]
表5 SO4.-降解抗生素
Table 5 Degradation of antibiotics by SO4.-
表6 SO4.-降解有机染料
Table 6 Degradation of organic dyes by SO4.-
[1]
Han W L, Liu Y, Feng K W. Environ. Sci., 2020, 41(10): 4525.
(韩文亮, 刘豫, 冯凯文. 环境科学, 2020, 41(10): 4525.)
[2]
Han W L, Chen H M, Dong J J, Acta. Sci. Circumstant., 2020, 40(9): 3190.
(韩文亮, 陈海明. 董娟娟. 环境科学学报, 2020, 40(9): 3190.)
[3]
Han W L, Liu Y. Chem. In. Eng. Prog., 2021, 40(2): 1085.
(韩文亮, 刘豫. 化工进展, 2021, 40(2): 1085.)
[4]
Han W L, Zheng X Y. Acta. Sci. Circumstant., 2018, 38(2): 821.
(韩文亮. 郑小燕. 环境科学学报, 2018, 38(2): 821.)
[5]
Han W L, Chen H M. Chem. Ind. Eng. Prog., 2018, 37(1): 350.
(韩文亮, 陈海明. 化工进展, 2018, 37(1): 350.)
[6]
Han W L, Fan T, Xu B H, Feng J L, Zhang G, Wu M H, Yu Y X, Fu J M. Environ. Sci. Pollut. Res., 2016, 23(6): 5771.

doi: 10.1007/s11356-015-5792-9     URL    
[7]
Liu W H, Ji M, Zhang X, Yang J. Environm. Chem., 2007, 26(1): 58.
(刘卫华, 季民, 张昕, 杨洁. 环境化学, 2007, 26(1): 58.)
[8]
Gao L W, Minakata D, Wei Z S, Spinney R, Dionysiou D D, Tang C J, Chai L Y, Xiao R Y. Environ. Sci. Technol., 2019, 53(1): 342.

doi: 10.1021/acs.est.8b05129     URL    
[9]
Gu D M, Guo C S, Feng Q Y, Zhang Y, Xu J. Environm. Chem., 2018, 37(11): 2489.
(谷得明, 郭昌胜, 冯启言, 张远, 徐建. 环境化学, 2018, 37(11): 2489.)
[10]
Zhang S P, Chen Y, Bai S Q, Liu R P. Environ. Sci., 2019, 40(11): 5009.
(张少朋, 陈瑀, 白淑琴, 刘锐平. 环境科学, 2019, 40(11): 5009.)
[11]
Yang Y Z, Li Y P, Yang D W, Duan F, Cao H B, Environ. Sci., 2013, 34(7): 2658.
(杨岳主, 李玉平, 杨道武, 段锋, 曹宏斌. 环境科学, 2013, 34(7): 2658.)
[12]
Xu W J, Zhang G C, Zheng M X, Chen J, Wang K J. Prog. Chem., 2010, 22(5): 1002.
(徐武军, 张国臣, 郑明霞, 陈健, 王凯军. 化学进展, 2010, 22(5): 1002.)
[13]
Wang X F, Hu X L. Acta. Sci. Circumstant., 2008, 28(6): 1113.
(王西峰, (胡晓莲. 环境科学学报, 2008, 28(6): 1113.)
[14]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.

pmid: 14594393
[15]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334: 1502.

doi: 10.1016/j.cej.2017.11.059     URL    
[16]
Ferreira L C, Castro-AlfÉrez M, Nahim-Granados S, Polo-LÓpez M I, Lucas M S, Li Puma G, Fernández-Ibáñez P. Chem. Eng. J., 2020, 381: 122275.
[17]
Ghanbari F, Moradi M. Chem. Eng. J., 2017, 310: 41.

doi: 10.1016/j.cej.2016.10.064     URL    
[18]
Yang Q F, Jia N, Shen C S, Ma J Q, Wen Y Z. Environ. Sci. Pollut. Res., 2018, 25(34): 34190.
[19]
Guerra Rodríguez S, Rodríguez E, Singh D, Rodríguez Chueca J. Water, 2018, 10(12): 1828.

doi: 10.3390/w10121828     URL    
[20]
Zheng H, Bao J G, Huang Y, Xiang L J, Faheem , Ren B X, Du J K, Nadagouda M N, Dionysiou D D. Appl. Catal. B: Environ., 2019, 259: 118056.
[21]
Yang S Y, Chen Y Y, Xu H Z, Wang P, Liu Y H, Wang M D. Prog. Chem., 2008, 20(9): 1433.
(杨世迎, 陈友媛, 胥慧真, 王萍, 刘玉红, 王茂东. 化学进展, 2008, 20(9): 1433.)
[22]
Lian L S, Yao B, Hou S D, Fang J Y, Yan S W, Song W H. Environ. Sci. Technol., 2017, 51(5): 2954.

doi: 10.1021/acs.est.6b05536     URL    
[23]
Chesney A R, Booth C J, Lietz C B, Li L J, Pedersen J A. Environ. Sci. Technol., 2016, 50(13): 7095.

doi: 10.1021/acs.est.5b06294     URL    
[24]
Cai C, Zhang H, Zhong X, Hou L W. Water Res., 2014, 66: 473.

doi: 10.1016/j.watres.2014.08.039     URL    
[25]
Shah N S, He X X, Khan H M, Khan J A, O'Shea K E, Boccelli D L, Dionysiou D D. J. Hazard. Mater., 2013, 263: 584.

doi: 10.1016/j.jhazmat.2013.10.019     URL    
[26]
Chen J B, Zhou X F, Sun P Z, Zhang Y L, Huang C H. Environ. Sci. Technol., 2019, 53(20): 11774.
[27]
Wang Z Y, Shao Y S, Gao N Y, Xu B, An N, Lu X. Chem. Eng. J., 2020, 381: 122660.
[28]
Wang L, Peng L B, Xie L L, Deng P Y, Deng D Y. Environ. Sci. Technol., 2017, 51(12): 7055.

doi: 10.1021/acs.est.6b05477     pmid: 28548832
[29]
Ike I A, Orbell J D, Duke M. ACS Sustainable Chem. Eng., 2018, 6(3): 4345.

doi: 10.1021/acssuschemeng.7b04840     URL    
[30]
Hu L M, Zhang G S, Wang Q, Wang X J, Wang P. ACS Sustainable Chem. Eng., 2019, 7(13): 11662.
[31]
Huang A Z, Zhang Z M, Wang N, Zhu L H, Zou J. J. Hazard. Mater., 2016, 302: 158.

doi: 10.1016/j.jhazmat.2015.09.072     URL    
[32]
Wang N, Lv H, Zhou Y Q, Zhu L H, Hu Y, Majima T, Tang H Q. Environ. Sci. Technol., 2019, 53(14): 8302.

doi: 10.1021/acs.est.9b00486     pmid: 31149813
[33]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13): 3705.

pmid: 15296324
[34]
Fang G D, Wu W H, Deng Y M, Zhou D M. Chem. Eng. J., 2017, 323: 84.

doi: 10.1016/j.cej.2017.04.092     URL    
[35]
Liu Y, Guo W L, Guo H S, Ren X H, Xu Q. Sep. Purif. Technol., 2020, 230: 115848.
[36]
Zhang L, Zhao X F, Niu C G, Tang N, Guo H, Wen X J, Liang C, Zeng G M. Chem. Eng. J., 2019, 362: 851.

doi: 10.1016/j.cej.2019.01.078    
[37]
Wang H, Gao Q, Li H T, Han B, Xia K S, Zhou C G. Chem. Eng. J., 2019, 368: 377.

doi: 10.1016/j.cej.2019.02.124    
[38]
Deng J, Xu M Y, Chen Y J, Li J, Qiu C G, Li X Y, Zhou S Q. Chem. Eng. J., 2019, 366: 491.

doi: 10.1016/j.cej.2019.02.073     URL    
[39]
Wang Y, Chen S Y, Yang X, Huang X F, Yang Y H, He E K, Wang S Q, Qiu R L. Chem. Eng. J., 2017, 317: 613.

doi: 10.1016/j.cej.2017.02.070     URL    
[40]
Deng J M, Dong H R, Li L, Wang Y Y, Ning Q, Wang B, Zeng G M. Sep. Purif. Technol., 2019, 227: 115731.
[41]
Peng H J, Zhang W, Liu L, Lin K F. Chem. Eng. J., 2017, 307: 750.

doi: 10.1016/j.cej.2016.08.129     URL    
[42]
Chen X W, Yang B, Oleszczuk P, Gao Y Z, Yuan X J, Ling W T, Waigi M G. Chem. Eng. J., 2019, 364: 79.

doi: 10.1016/j.cej.2019.01.117     URL    
[43]
Liu M M, Hou L A, Li Q, Hu X J, Yu S L. RSC Adv., 2016, 6(42): 35216.
[44]
Chen L W, Zuo X, Zhou L, Huang Y, Yang S J, Cai T M, Ding D H. Chem. Eng. J., 2018, 345: 364.

doi: 10.1016/j.cej.2018.03.169     URL    
[45]
Hou L H, Li X M, Yang Q, Chen F, Wang S N, Ma Y H, Wu Y, Zhu X F, Huang X D, Wang D B. Sci. Total. Environ., 2019, 663: 453.

doi: 10.1016/j.scitotenv.2019.01.190     URL    
[46]
Kang J, Wu W C, Liu W X, Li J H, Dong C X. Bull. Environ. Contam. Toxicol., 2019, 103(1): 140.

doi: 10.1007/s00128-018-2511-5     URL    
[47]
Du J K, Bao J G, Liu Y, Kim S H, Dionysiou D D. Chem. Eng. J., 2019, 376: 119193.
[48]
Li J, Ren Y, Ji F Z, Lai B. Chem. Eng. J., 2017, 324: 63.

doi: 10.1016/j.cej.2017.04.104     URL    
[49]
Zhang J, Shao X T, Shi C, Yang S Y. Chem. Eng. J., 2013, 232: 259.

doi: 10.1016/j.cej.2013.07.108     URL    
[50]
Li H H, Zhu F, He S Y. Ecotoxicol. Environ. Saf., 2019, 183: 109540.
[51]
Zhang L B, Shen S Y. J. Ind. Eng. Chem., 2020, 83: 123.

doi: 10.1016/j.jiec.2019.11.020     URL    
[52]
Li J B, Hussain A, Li D X, Yang M, Xu S H. Environ. Sci. Pollut. Res., 2017, 24(8): 7264.

doi: 10.1007/s11356-017-8379-9     URL    
[53]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.)

doi: 10.7536/PC170310    
[54]
Sun T, Fu Y T, Li K, Xu Y M, Sun Y B. Environ. Sci., 2020, 41(7): 3426.
(孙彤, 付宇童, 李可, 徐应明, 孙约兵. 环境科学, 2020, 41(7): 3426.)
[55]
Liang J, Xu X Y, Qamar Zaman W, Hu X F, Zhao L, Qiu H, Cao X D. Chem. Eng. J., 2019, 375: 121908.
[56]
Wang B, Li Y N, Wang L. Chemosphere, 2019, 237: 124454.
[57]
Pi Z J, Li X M, Wang D B, Xu Q X, Tao Z, Huang X D, Yao F B, Wu Y, He L, Yang Q. J. Clean. Prod., 2019, 235: 1103.

doi: 10.1016/j.jclepro.2019.07.037     URL    
[58]
Yang C D, Zong Y T, Lu S G. Environ. Sci., 2020, 41(4): 1914.
(杨彩迪, 宗玉统, 卢升高. 环境科学, 2020, 41(4): 1914.)
[59]
Liu C, Chen L W, Ding D H, Cai T M. Appl. Catal. B: Environ., 2019, 254: 312.

doi: 10.1016/j.apcatb.2019.05.014     URL    
[60]
Li X T, Wang J, Duan X G, Li Y, Fan X B, Zhang G L, Zhang F B, Peng W C. ACS Catal., 2021, 11(8): 4848.

doi: 10.1021/acscatal.0c05089     URL    
[61]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817     URL    
[62]
Xiao P F, An L, Han S. Chem. Ind. Eng. Prog., 2020, 39(8): 3293.
(肖鹏飞, 安璐, 韩爽. 化工进展, 2020, 39(8): 3293.)
[63]
Dominguez C M, Rodriguez V, Montero E, Romero A, Santos A. Sep. Purif. Technol., 2020, 241: 116679.
[64]
Wang Y F, Li Y B, Wang Y B, Qi F J, Zhao K, Tian S C, Guo T, Guan W, Zhao X. Environ. Sci., 2017, 38(3): 1061.
(王云飞, 李一兵, 王彦斌, 齐璠静, 赵凯, 田世超, 郭涛, 关伟, 赵旭. 环境科学, 2017, 38(3): 1061.)
[65]
Peng H J, Xu L Y, Zhang W, Liu F W, Lu X, Lu W, Danish M, Lin K F. Sci. Total. Environ., 2017, 574: 307.

doi: 10.1016/j.scitotenv.2016.09.057     URL    
[66]
Ge Y J, Cai X W, Lin H, Xu M Y, Shen Y T, Zhou D, Qian M J, Deng J. Environm. Sci., 2017, 38(12): 5116.
(葛勇建, 蔡显威, 林翰, 徐梦苑, 沈一挺, 周丹, 钱梦洁, 邓靖. 环境科学, 2017, 38(12): 5116.)
[67]
Serna-Galvis E A, Ferraro F, Silva-Agredo J, Torres-Palma R A. Water Res., 2017, 122: 128.

doi: S0043-1354(17)30429-3     pmid: 28599158
[68]
Albini A, Monti S. Chem. Soc. Rev., 2003, 32(4): 238.

doi: 10.1039/b209220b     URL    
[69]
Tan C Q, Gao N Y, Deng Y, Zhang Y J, Sui M H, Deng J, Zhou S Q. J. Hazard. Mater., 2013, 260: 1008.

doi: 10.1016/j.jhazmat.2013.06.060     URL    
[70]
Liu X W, Zhang T Q, Zhou Y C, Fang L, Shao Y. Chemosphere, 2013, 93(11): 2717.

doi: 10.1016/j.chemosphere.2013.08.090     URL    
[71]
Rodríguez-Blanco L A J, Ocampo-PÉrez R, GÓmez-Durán C F A, Mojica-Sánchez J P, Razo-Hernández R S. Environ. Sci. Pollut. Res., 2020, 27(33): 41609.
[72]
Song H R, Yan L X, Ma J, Jiang J, Cai G Q, Zhang W J, Zhang Z X, Zhang J M, Yang T. Water Res., 2017, 116: 182.

doi: 10.1016/j.watres.2017.03.035     URL    
[73]
Shin Y U, Yoo H Y, Ahn Y Y, Kim M S, Lee K, Yu S, Lee C, Cho K, Kim H I, Lee J. Appl. Catal. B: Environ., 2019, 254: 156.

doi: 10.1016/j.apcatb.2019.04.060     URL    
[74]
Song H R, Yan L X, Jiang J, Ma J, Zhang Z X, Zhang J M, Liu P X, Yang T. Water Res., 2018, 128: 393.

doi: 10.1016/j.watres.2017.10.018     URL    
[75]
Song H R, Yan L X, Jiang J, Ma J, Pang S Y, Zhai X D, Zhang W, Li D. Chem. Eng. J., 2018, 344: 12.

doi: 10.1016/j.cej.2018.03.050     URL    
[76]
Liu Y M, Fan X F, Quan X, Fan Y F, Chen S, Zhao X Y. Environ. Sci. Technol., 2019, 53(9): 5195.

doi: 10.1021/acs.est.8b06130     URL    
[77]
Farhat A, Keller J, Tait S, Radjenovic J. Environ. Sci. Technol., 2015, 49(24): 14326.
[78]
Li X J, Liao F Z, Ye L M, Liu Z L. Chem. Ind. Eng. Prog., 2019, 38(10): 4712.
(李小娟, 廖凤珍, 叶兰妹, 刘政霖. 化工进展, 2019, 38(10): 4712.)
[79]
Xiao R Y, Ye T T, Wei Z S, Luo S, Yang Z H, Spinney R. Environ. Sci. Technol., 2015, 49(22): 13394.
[80]
Luo S, Wei Z S, Dionysiou D D, Spinney R, Hu W P, Chai L Y, Yang Z H, Ye T T, Xiao R Y. Chem. Eng. J., 2017, 327: 1056.

doi: 10.1016/j.cej.2017.06.179     URL    
[81]
Lin H, Zhang H. Prog. Chem., 2015, 27(8): 1123.
(林恒, (张晖. 化学进展, 2015, 27(8): 1123.)

doi: 10.7536/PC141233    
[82]
Zhao Q X, Mao Q M, Zhou Y Y, Wei J H, Liu X C, Yang J Y, Luo L, Zhang J C, Chen H, Chen H B, Tang L. Chemosphere, 2017, 189: 224.

doi: 10.1016/j.chemosphere.2017.09.042     URL    
[83]
Antoniou M G, de la Cruz A A, Dionysiou D D. Appl. Catal. B: Environ., 2010, 96(3/4): 290.

doi: 10.1016/j.apcatb.2010.02.013     URL    
[84]
Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist R L, Bjerg P L. Crit. Rev. Environ. Sci. Technol., 2010, 40(1): 55.

doi: 10.1080/10643380802039303     URL    
[85]
Li H, Li J, Song P, Cheng Y X, Jiao L X, Yang Y Z. Environ. Sci., 2021, 42(1): 147.

doi: 10.1021/es071553d     URL    
(李慧, 李捷, 宋鹏, 程云轩, 焦立新, 杨亚铮. 环境科学, 2021, 42(1): 147.)
[86]
Chakraborty P, Gadhavi H, Prithiviraj B, Mukhopadhyay M, Khuman S N, Nakamura M, Spak S N. Environ. Sci. Technol., 2021, 55(14): 9469.

doi: 10.1021/acs.est.1c01460     URL    
[87]
Khan S, He X X, Khan H M, Boccelli D, Dionysiou D D. J. Photochem. Photobiol. A: Chem., 2016, 316: 37.

doi: 10.1016/j.jphotochem.2015.10.004     URL    
[88]
Zhao Y K, Wang Y Y, Ji H W, Ma W H, Chen C C, Zhao J C. Prog. Chem., 2017, 29(9): 911.
(赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城, 赵进才. 化学进展, 2017, 29(9): 911.

doi: 10.7536/PC170510    
[89]
Wang R, Lu G N, Lin H Z, Huang K B, Tang T, Xue X L, Yang X J, Yin H, Dang Z. Environ. Pollut., 2017, 222: 331.

doi: S0269-7491(16)31229-5     pmid: 28034557
[90]
Dominguez C M, Romero A, Lorenzo D, Santos A. J. Environ. Manag., 2020, 261: 110240.
[91]
Fang G D, Dionysiou D D, Wang Y, Al-Abed S R, Zhou D M. J. Hazard. Mater., 2012, 227-228: 394.
[92]
Yang F, Li Q Q, Su G J, Huang X C, Li B K, Zhao Y H, Miao X, Zheng M H. Chemosphere, 2016, 150: 445.

doi: S0045-6535(15)30580-4     pmid: 26791419
[93]
Peng H J, Xu L Y, Zhang W, Liu L, Liu F W, Lin K F, Lu Q. Environ. Sci. Pollut. Res., 2017, 24(3): 2442.

doi: 10.1007/s11356-016-7965-6     URL    
[94]
Dombrowski P M, Kakarla P, Caldicott W, Chin Y, Sadeghi V, Bogdan D, Barajas-Rodriguez F, Chiang S Y D. Remediat. J., 2018, 28(2): 135.

doi: 10.1002/rem.2018.28.issue-2     URL    
[95]
Lee Y C, Li Y F, Chen M J, Chen Y C, Kuo J, Lo S L. Water Res., 2020, 174: 115618.
[96]
Qin W X, Fang G D, Wang Y J, Zhou D M. Chem. Eng. J., 2018, 348: 526.

doi: 10.1016/j.cej.2018.04.215     URL    
[97]
Zhu C Y, Fang G D, Dionysiou D D, Liu C, Gao J, Qin W X, Zhou D M. J. Hazard. Mater., 2016, 316: 232.

doi: 10.1016/j.jhazmat.2016.05.040     URL    
[98]
Fang G D, Wu W H, Liu C, Dionysiou D D, Deng Y M, Zhou D M. Appl. Catal. B: Environ., 2017, 202: 1.
[99]
Bruton T A, Sedlak D L. Chemosphere, 2018, 206: 457.

doi: 10.1016/j.chemosphere.2018.04.128     URL    
[100]
Park S, Lee L S, Medina V F, Zull A, Waisner S. Chemosphere, 2016, 145: 376.

doi: 10.1016/j.chemosphere.2015.11.097     URL    
[101]
Yang S W, Cheng J H, Sun J, Hu Y, Liang X. PLoS One, 2013, 8(10): e74877.

doi: 10.1371/journal.pone.0074877     URL    
[102]
Qin W X, Fang G D, Wang Y J, Wu T L, Zhu C Y, Zhou D M. Chemosphere, 2016, 148: 68.

doi: 10.1016/j.chemosphere.2016.01.020     URL    
[103]
Rastogi A, Al-Abed S R, Dionysiou D D. Appl. Catal. B: Environ., 2009, 85(3/4): 171.

doi: 10.1016/j.apcatb.2008.07.010     URL    
[104]
Yao C H, Zhang Y Q, Du M M, Du X D, Huang S B. Chem. Eng. J., 2019, 362: 262.

doi: 10.1016/j.cej.2019.01.040     URL    
[105]
Su C, Cui Y. Environm. Sci., 2020, 41(11): 4081.
(苏超, 崔严. 环境科学, 2020, 41(11): 4081.)
[106]
Awfa D, Ateia M, Fujii M, Johnson M S, Yoshimura C. Water Res., 2018, 142: 26.

doi: 10.1016/j.watres.2018.05.036     URL    
[107]
Su C, Cui Y, Liu D, Zhang H, Baninla Y. Sci. Total. Environ., 2020, 720: 137652.
[108]
Wang S L, Zhou N. Ultrason. Sonochemistry, 2016, 29: 156.

doi: 10.1016/j.ultsonch.2015.09.008     URL    
[109]
Mahdi Ahmed M, Barbati S, Doumenq P, Chiron S. Chem. Eng. J., 2012, 197: 440.

doi: 10.1016/j.cej.2012.05.040     URL    
[110]
Deng J, Feng S F, Zhang K J, Li J, Wang H Y, Zhang T Q, Ma X Y. Chem. Eng. J., 2017, 308: 505.

doi: 10.1016/j.cej.2016.09.075     URL    
[111]
Chen C, Liu L, Li Y X, Li W, Zhou L X, Lan Y Q, Li Y. Chem. Eng. J., 2020, 384: 123257.
[112]
Ismail L, Ferronato C, Fine L, Jaber F, Chovelon J M. Appl. Catal. B: Environ., 2017, 201: 573.

doi: 10.1016/j.apcatb.2016.08.046     URL    
[113]
Qian Y J, Xue G, Chen J B, Luo J M, Zhou X F, Gao P, Wang Q. J. Hazard. Mater., 2018, 354: 153.

doi: 10.1016/j.jhazmat.2018.05.004     URL    
[114]
Velosa A C, Nascimento C A O. Environ. Sci. Pollut. Res., 2017, 24(7): 6270.

doi: 10.1007/s11356-016-7036-z     URL    
[115]
Zhang X, Deng H H, Zhang G Q, Yang F L, Yuan G G. Chem. Eng. J., 2020, 381: 122717.
[116]
Isari A A, Payan A, Fattahi M, Jorfi S, Kakavandi B. Appl. Surf. Sci., 2018, 462: 549.

doi: 10.1016/j.apsusc.2018.08.133     URL    
[117]
Jeon P, Park S M, Baek K. Korean J. Chem. Eng., 2017, 34(5): 1305.

doi: 10.1007/s11814-017-0062-9     URL    
[118]
Zhao X F, Niu C G, Zhang L, Guo H, Wen X J, Liang C, Zeng G M. Chemosphere, 2018, 204: 11.

doi: 10.1016/j.chemosphere.2018.04.023     URL    
[119]
Lyu C, Ju L N, Yang X J, Song L, Liu N. J. Mater. Sci.: Mater. Electron., 2020, 31(6): 4797.
[120]
Wei J, Li X M, Yang Q, Wu Y, Huang X D, Tao Z, Xu Q X, Zhu X F, Wang D B. Environ. Sci. Pollut. Res., 2019, 26(13): 12963.
[121]
Ji Y F, Yang Y, Wang L, Lu J H, Ferronato C, Chovelon J M. Environ. Chem. Lett., 2019, 17(2): 1111.

doi: 10.1007/s10311-018-00836-y     URL    
[122]
Yi Q Y, Liu W Y, Tan J L, Yang B, Xing M Y, Zhang J L. Chemosphere, 2020, 244: 125539.
[1] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[2] 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 27(8): 1123-1132.
[3] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[4] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.
[5] 武国华, 孔凡太, 翁坚, 戴松元, 奚小网, 张昌能. 有机染料及其在染料敏化太阳电池中的应用[J]. 化学进展, 2011, 23(9): 1929-1935.
[6] 李祥高, 吕海军, 王世荣, 郭俊杰, 李靖. 染料敏化太阳能电池用敏化剂[J]. 化学进展, 2011, 23(0203): 569-588.
[7] 马玲玲 徐殿斗 陈扬 柴之芳. 短链氯化石蜡分析方法*[J]. 化学进展, 2010, 22(04): 720-726.
[8] 张干,刘向. 大气持久性有机污染物(POPs)被动采样*[J]. 化学进展, 2009, 21(0203): 297-306.
[9] 郭丽,巴特,郑明辉. 多氯萘的研究*[J]. 化学进展, 2009, 21(0203): 377-389.
[10] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.
[11] 郑冰,牛海军,白续铎. 有机染料敏化纳米晶太阳能电池*[J]. 化学进展, 2008, 20(06): 828-840.
[12] 王斌,余刚,黄俊,胡洪营. QSAR/QSPR在POPs归趋与风险评价中的应用*[J]. 化学进展, 2007, 19(10): 1612-1619.
[13] 牛军峰,余刚,刘希涛. 水相中POPs光化学降解研究进展*[J]. 化学进展, 2005, 17(05): 938-948.
[14] 商振华,周良模. 膜亲和色谱的现状、发展和应用[J]. 化学进展, 1995, 7(01): 47-.