English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 791-799 DOI: 10.7536/PC181040 前一篇   后一篇

• •

有机催化原子转移自由基聚合

李宁, 胡欣**(), 方亮, 寇佳慧, 倪亚茹, 陆春华**()   

  1. 南京工业大学 材料科学与工程学院 材料化学工程国家重点实验室 江苏先进无机功能复合材料协同创新中心 江苏先进生物与化学制造协同创新中心 南京 210009
  • 收稿日期:2018-11-01 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 胡欣, 陆春华
  • 基金资助:
    国家自然科学基金项目(21604037); 国家自然科学基金项目(51872138); 国家自然科学基金项目(51503098); 江苏省高等学校优势学科建设工程项目; 江苏省高校青蓝工程; 江苏省六大人才高峰项目(XCL-029)

Organocatalyzed Atom Transfer Radical Polymerization

Ning Li, Xin Hu**(), Liang Fang, Jiahui Kou, Yaru Ni, Chunhua Lu**()   

  1. College of Materials Science and Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 210009, China
  • Received:2018-11-01 Online:2019-06-15 Published:2019-04-26
  • Contact: Xin Hu, Chunhua Lu
  • About author:
    ** E-mail: (Xin Hu);
  • Supported by:
    National Natural Science Foundation of China(21604037); National Natural Science Foundation of China(51872138); National Natural Science Foundation of China(51503098); Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD); Qing Lan Project; Six Talent Peaks Project in Jiangsu Province(XCL-029)

过渡金属催化的原子转移自由基聚合(ATRP)是合成结构可控聚合物的重要方法之一,尽管一系列改进ATRP方法可将催化剂的浓度降至ppm级,但不可避免的金属残留仍然是制约ATRP应用的主要瓶颈。近年来,科学家提出并发展了有机催化原子转移自由基聚合(O-ATRP),从根本上规避了金属催化剂的使用与残留。本文对有机催化原子转移自由基聚合的概念、催化体系和聚合机理进行了介绍,同时综述了该新聚合方法在高分子合成与材料制备方面的应用。

Atom transfer radical polymerization(ATRP) is one of the most robust and versatile tools for the synthesis of well-defined polymers. The traditional ATRP have to be conducted with high concentration of metal catalyst to compensate for the unavoidable radical termination reaction. A series of ATRP variants have been developed to reduce the metal catalyst concentration to 100 ppm or below. However, the contamination of the metal residue still remains. Organocatalyzed ATRP(O-ATRP) provides a green and reliable route to functionalized well-defined polymer without metal residue. The development of organic photoredox catalyst system is the key point of O-ATRP. This review highlights the recent progress in O-ATRP, including the various organic photoredox catalyst systems and polymerization mechanism. Moreover, the applications of O-ATRP in polymer synthesis are discussed.

()
图1 无金属ATRP的有机催化剂结构式[59]
Fig. 1 Structures of organocatalysts in metal-free ATRP[59]
图2 10-苯基吩噻嗪作为催化剂的无金属ATRP[39]
Fig. 2 Proposed mechanism for metal-free ATRP with 10-phenylphenothiazine(PTH) photocatalyst[39]
图3 吩噻嗪衍生物结构式[60]
Fig. 3 Structures of phenothiazine catalysts studied in metal-free ATRP[60]
图4 二萘嵌苯催化的光诱导ATRP[38]
Fig. 4 Metal-free light-mediated ATRP using perylene as an organic photocatalyst[38]
图5 N-苯基取代基的5,10-二氢吩嗪催化剂结构 (1: 5,10-二对甲氧基苯-5,10-二氢吩嗪;2:5,10-二苯基-5,10-二氢吩嗪;3:5,10-二对三氟甲基苯-5,10-二氢吩嗪;4: 5,10-二对腈基苯-5,10-二氢吩嗪;5: 5,10-二(2-萘基)-5,10-二氢吩嗪;6: 5,10-二(1-萘基)-5,10-二氢吩嗪)以及催化ATRP聚合机理[64]
Fig. 5 PC development for O-ATRP(top and mid).A proposed mechanism for ATRP mediated by a PC via photoexcitation to 1PC*, intersystem crossing(ISC)to the triplet state 3PC*, ET to form the radical cation doublet 2PC·+, and back ET to regenerate PC(bottom) and reversibly terminate polymerization[64]
图6 10-苯基吩口恶嗪,5,10-二苯基二氢吩嗪和10-苯基吩噻嗪的几何重组能和还原电位以及吩口恶嗪衍生物的最大吸收波长以及消光系数[65]
Fig. 6 Geometric reorganization energies and reduction potentials(vs SCE) for 10-phenylphenoxazine, diphenyl dihydrophenazine, and 10-phenylphenothiazine(top). Extinction coefficients at λmax with the visible absorbance spectrum of functionalized phenoxazine(bottom)[65]
图7 荧光素催化的光诱导无金属ATRP[41]
Fig. 7 Proposed mechanism for metal-free photo-ATRP mediated by ?uorescein(FL) in the presence of tertiary-amine reducing agent[41]
图8 染料/胺体系引发光诱导无金属ATRP[66]
Fig. 8 Proposed mechanism of photoinduced, metal-free ATRP using dye/amine initiating system[66]
图9 光诱导4CzIPN催化ATRP机理[68]
Fig. 9 Proposed mechanism of photomediated ATRP with 4CzIPN organic molecules as catalysts[68]
图10 对茴香醛调控的光诱导ATRP机理[42]
Fig. 10 Proposed mechanism of photomediated ATRP with benzaldehydic organic molecules as catalysts[42]
图11 连续流光诱导O-ATRP装置示意图[82]
Fig. 11 Photomediated flow reactors offer significant advantages to batch systems[82]
图12 (a)表面引发无金属ATRP反应结构式;(b)表面引发无金属ATRP示意图;(c)聚合动力学[84]
Fig. 12 (a) Chemical scheme and conditions for metal-free ATRP using α-bromoisobutyrate-based initiator-functionalized silicon substrates.(b) Illustration of surface-initiated, metal-free ATRP.(c) Plot of brush height as a function of irradiation time using varied light intensities in the benchtop chamber[84]
图13 流动化学技术合成含氟嵌段共聚物[86]
Fig. 13 Flow setup for the synthesis of a semifluorinated block copolymer[86]
图14 无金属催化的ATRP原位制备Fe3O4@PMMA核@壳结构纳米杂化材料的合成路线[89]
Fig. 14 Schematic stepwise representation of the synthetic route to core/shell PMMA-capped Fe3O4 nanoparticles by metal-free ATRP based on PTH as photocatalyst[89]
[1]
Matyjaszewski K, Tsarevsky N V . J. Am. Chem. Soc., 2014,136(18):6513. https://www.ncbi.nlm.nih.gov/pubmed/24758377

doi: 10.1021/ja408069v     URL     pmid: 24758377
[2]
Matyjaszewski K . Macromolecules, 2012,45(10):4015.
[3]
Abreu C M R, Mendonça P V, Serra A C, Popov A V, Matyjaszewski K, Guliashvili T, Coelho J F J . ACS Macro Lett., 2012,1(11):1308.
[4]
Hentschel J, Bleek K, Ernst O, Lutz J, Börner H G . Macromolecules, 2008,41(4):1073.
[5]
Wang M Q, Jiang X W, Luo Y J, Zhang L F, Cheng Z P, Zhu X L . Polym. Chem., 2017,8(38):5918.
[6]
Sciannamea V, Jérôme R, Detrembleur C . Chem. Rev., 2008,108(3):1104. https://www.ncbi.nlm.nih.gov/pubmed/18254646

doi: 10.1021/cr0680540     URL     pmid: 18254646
[7]
Audran G, Bagryanskaya E G, Brémond P, Edeleva M V, Marque S R A, Parkhomenko D A, Rogozhnikova O Y, Tormyshev V M, Tretyakov E V, Trukhin D V, Zhivetyeva S I . Polym. Chem., 2016,7(42):6490. https://www.ncbi.nlm.nih.gov/pubmed/28989533

doi: 10.1039/C6PY01303A     URL     pmid: 28989533
[8]
Nicolaÿ R, Kwak Y, Matyjaszewski K . Angewandte Chemie International Edition, 2010,49(3):541. https://www.ncbi.nlm.nih.gov/pubmed/20013835

doi: 10.1002/anie.200905340     URL     pmid: 20013835
[9]
Jakubowski W, Min K, Matyjaszewski K . Macromolecules, 2006,39(1):39.
[10]
Jakubowski W, Matyjaszewski K . Angewandte Chemie International Edition, 2006,45(27):4482. https://www.ncbi.nlm.nih.gov/pubmed/16770821

doi: 10.1002/anie.200600272     URL     pmid: 16770821
[11]
Simakova A, Averick S E, Konkolewicz D, Matyjaszewski K . Macromolecules, 2012,45(16):6371.
[12]
Kwak Y, Magenau A J D, Matyjaszewski K . Macromolecules, 2011,44(4):811. https://www.ncbi.nlm.nih.gov/pubmed/11315920

doi: 10.1002/1529-0131(200104)44:4【-逻*辑*与-】lt;811::AID-ANR137【-逻*辑*与-】gt;3.0.CO;2-F     URL     pmid: 11315920
[13]
Matyjaszewski K, Dong H C, Jakubowski W, Pietrasik J, Kusumo A . Langmuir, 2007,23(8):4528. https://www.ncbi.nlm.nih.gov/pubmed/17371060

doi: 10.1021/la063402e     URL     pmid: 17371060
[14]
Bhut B V, Conrad K A, Husson S M . J. Membrane Sci., 2012,390/391:43.
[15]
Liu X H, Li Y, Chu Z Y, Fang Y C, Zheng H L . J. Appl. Biomater. Func., 2018,16(1_suppl):163. https://www.ncbi.nlm.nih.gov/pubmed/29618253

doi: 10.1177/2280800018757337     URL     pmid: 29618253
[16]
Konkolewicz D, Magenau A J D, Averick S E, Simakova A, He H K, Matyjaszewski K . Macromolecules, 2012,45(11):4461. https://pubs.acs.org/doi/10.1021/ma300887r

doi: 10.1021/ma300887r     URL    
[17]
Cohen-Karni D, Kovaliov M, Ramelot T, Konkolewicz D, Graner S, Averick S . Polym. Chem., 2017,8(27):3992. http://xlink.rsc.org/?DOI=C7PY00669A

doi: 10.1039/C7PY00669A     URL    
[18]
Fleischmann S, Rosen B M, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(5):1190. http://doi.wiley.com/10.1002/pola.v48%3A5

doi: 10.1002/pola.v48:5     URL    
[19]
Nguyen N H, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2011,49(22):4756. http://doi.wiley.com/10.1002/pola.v49.22

doi: 10.1002/pola.v49.22     URL    
[20]
Fleischmann S, Percec V . Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(10):2243.
[21]
Zhang Z B, Wang W X, Xia H D, Zhu J, Zhang W, Zhu X L . Macromolecules, 2009,42(19):7360. https://www.ncbi.nlm.nih.gov/pubmed/18939571

doi: 10.1021/es800306m     URL     pmid: 18939571
[22]
Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, Sienkowska M J, Monteiro M J, Sahoo S . J. Am. Chem. Soc., 2006,128(43):14156. https://www.ncbi.nlm.nih.gov/pubmed/17061900

doi: 10.1021/ja065484z     URL     pmid: 17061900
[23]
Guliashvili T, Mendonça P V, Serra A C, Popov A V, Coelho J F J . Chemistry - A European Journal, 2012,18(15):4607.
[24]
Konkolewicz D, Wang Y, Zhong M J, Krys P, Isse A A, Gennaro A, Matyjaszewski K . Macromolecules, 2013,46(22):8749.
[25]
Bortolamei N, Isse A A, Magenau A J D, Gennaro A, Matyjaszewski K . Angewandte Chemie International Edition, 2011,50(48):11391. https://www.ncbi.nlm.nih.gov/pubmed/21922623

doi: 10.1002/anie.201105317     URL     pmid: 21922623
[26]
Park S, Chmielarz P, Gennaro A, Matyjaszewski K . Angewandte Chemie International Edition, 2015,54(8):2388. https://www.ncbi.nlm.nih.gov/pubmed/25565188

doi: 10.1002/anie.201410598     URL     pmid: 25565188
[27]
Discekici E H, Anastasaki A, Kaminker R, Willenbacher J, Truong N P, Fleischmann C, Oschmann B, Lunn D J, Read De Alaniz J, Davis T P, Bates C M, Hawker C J .J. Am. Chem. Soc., 2017,139(16):5939.
[28]
Taskin O S, Yilmaz G, Tasdelen M A, Yagci Y . Polym. Int., 2014,63(5):902.
[29]
Konkolewicz D, Schröder K, Buback J, Bernhard S, Matyjaszewski K . ACS Macro Lett., 2012,1(10):1219.
[30]
Tasdelen M A, Ciftci M, Yagci Y . Macromol. Chem. Phys., 2012,213(13):1391. http://doi.wiley.com/10.1002/macp.201200204

doi: 10.1002/macp.201200204     URL    
[31]
Dadashi-Silab S, Doran S, Yagci Y . Chem. Rev., 2016,116(17):10212. https://www.ncbi.nlm.nih.gov/pubmed/26745441

doi: 10.1021/acs.chemrev.5b00586     URL     pmid: 26745441
[32]
Hu X, Li J J, Li H Y, Zhang Z C . J. Polym. Sci. Pol. Chem., 2012,50(15):3126.
[33]
Hu X, Tan S B, Gao G X, Xie Y C, Wang Q Z, Li N, Zhang Z C . J. Polym. Sci. Pol. Chem., 2014,52(23):3429.
[34]
Silvi M, Arceo E, Jurberg I D, Cassani C, Melchiorre P . J. Am. Chem. Soc., 2015,137(19):6120. https://www.ncbi.nlm.nih.gov/pubmed/25748069

doi: 10.1021/jacs.5b01662     URL     pmid: 25748069
[35]
Hu X, Cui G P, Zhu N, Zhai J L, Guo K . Polymers, 2018,10:68.
[36]
Wang G, Chen D, Zhang L H, Wang Y D, Zhao C W, Yan X, He B, Ma Y H, Yang W T . J. Mater. Sci., 2018,53(2):880.
[37]
Xu T C, Zhang L F, Cheng Z P, Zhu X L . RSC Adv., 2017,7(29):17988.
[38]
Miyake G M, Theriot J C . Macromolecules, 2014,47(23):8255.
[39]
Treat N J, Sprafke H, Kramer J W, Clark P G, Barton B E, Read De Alaniz J, Fors B P, Hawker C J . J. Am. Chem. Soc., 2014,136(45):16096. https://www.ncbi.nlm.nih.gov/pubmed/25360628

doi: 10.1021/ja510389m     URL     pmid: 25360628
[40]
Pan X C, Lamson M, Yan J J, Matyjaszewski K . ACS Macro Lett., 2015,4(2):192.
[41]
Liu X D, Zhang L F, Cheng Z P, Zhu X L . Polym. Chem., 2016,7(3):689.
[42]
Ma W C, Zhang X H, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T . Polym. Chem., 2017,8(23):3574.
[43]
Miyake G M, Theriot J C, Boyer C A . ACS Macro. Lett., 2018,7(6):662. https://www.ncbi.nlm.nih.gov/pubmed/30705782

doi: 10.1021/acsmacrolett.8b00281     URL     pmid: 30705782
[44]
McCarthy B G, Miyake G M . ACS Macro Lett. 2018,7(8):1016 https://www.ncbi.nlm.nih.gov/pubmed/31827976

doi: 10.1021/acsmacrolett.8b00497     URL     pmid: 31827976
[45]
Du Y, Pearson R M, Lim C, Sartor S M, Ryan M D, Yang H S, Damrauer N H, Miyake G M . Chem. Eur. J. 2017,23(46):10962. https://www.ncbi.nlm.nih.gov/pubmed/28654171

doi: 10.1002/chem.201702926     URL     pmid: 28654171
[46]
McCarthy B G, Pearson R M, Lim C, Sartor S M, Damrauer N H, Miyake G M . J. Am. Chem. Soc. 2018,140(15):5088. https://www.ncbi.nlm.nih.gov/pubmed/29513533

doi: 10.1021/jacs.7b12074     URL     pmid: 29513533
[47]
Theriot J C, McCarthy B G, Lim C, Miyake G M . Macromol. Rapid Commun. 2017,38(13):1700040
[48]
Buss B L, Beck L R, Miyake G M . Polym. Chem., 2018,9(13):1658 https://www.ncbi.nlm.nih.gov/pubmed/29628993

doi: 10.1039/C7PY01833A     URL     pmid: 29628993
[49]
Xu Q H, Tian C, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2019,40(2):1800327. https://www.ncbi.nlm.nih.gov/pubmed/30027663

doi: 10.1002/marc.201800327     URL     pmid: 30027663
[50]
Tu K, Xu T C, Zhang L F, Cheng Z P, Zhu X L . RSC Adv., 2017,7(39):24040. http://xlink.rsc.org/?DOI=C7RA03103C

doi: 10.1039/C7RA03103C     URL    
[51]
Xu T C, Tu K, Cheng J N, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2018,39(15):1800151. https://www.ncbi.nlm.nih.gov/pubmed/29900627

doi: 10.1002/marc.201800151     URL     pmid: 29900627
[52]
Huang Z C, Zhang L F, Cheng Z P, Zhu X L . Polymers, 2017,9(12):4.
[53]
Wang Y A, Shi Y, Fu Z F, Yang W T . Polym. Chem., 2017,8(39):6073.
[54]
Yang Q, Zhang X H, Ma W C, Ma Y H, Chen D, Wang L, Zhao C W, Yang W T . J. Polym. Sci. Pol. Chem., 2018,56(2):229.
[55]
Yang Q, Zhang X H, Ma Y H, Chen D, Yang W T . J. Polym. Sci. Pol. Chem., 2018,56(18):2072.
[56]
He B, Zhu X, Zhao C W, Ma Y H, Yang W T . Science China Chemistry, 2018,61(12):1600.
[57]
Zhu X, He B, Zhao C W, Ma Y H, Yang W T . Langmuir, 2017,33(22):5577. https://www.ncbi.nlm.nih.gov/pubmed/28514852

doi: 10.1021/acs.langmuir.7b00594     URL     pmid: 28514852
[58]
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K . Macromol. Rapid Comm., 2017,38(21):1700399.
[59]
Pan X C, Fantin M, Yuan F, Matyjaszewski K . Chem. Soc. Rev., 2018,47(14):5457. https://www.ncbi.nlm.nih.gov/pubmed/29868657

doi: 10.1039/c8cs00259b     URL     pmid: 29868657
[60]
Pan X C, Fang C, Fantin M, Malhotra N, So W Y, Peteanu L A, Isse A A, Gennaro A, Liu P, Matyjaszewski K . J. Am. Chem. Soc., 2016,138(7):2411. https://www.ncbi.nlm.nih.gov/pubmed/26820243

doi: 10.1021/jacs.5b13455     URL     pmid: 26820243
[61]
Dadashi-Silab S, Pan X C, Matyjaszewski K . Chemistry - A European Journal, 2017,23(25):5972.
[62]
Aydogan C, Yilmaz G, Yagci Y . Macromolecules, 2017,50(23):9115.
[63]
Allushi A, Jockusch S, Yilmaz G, Yagci Y . Macromolecules, 2016,49(20):7785.
[64]
Theriot1 J C, Lim C H, Yang H, Ryan M D, Musgrave C B, Miyake G M . Science, 2016,352(6289):1082. https://www.ncbi.nlm.nih.gov/pubmed/27033549

doi: 10.1126/science.aaf3935     URL     pmid: 27033549
[65]
Pearson R M, Lim C H, McCarthy B G, Musgrave C B, Miyake G M .J. Am. Chem. Soc., 2016,138(35):11399.
[66]
Kutahya C, Aykac F S, Yilmaz G, Yagci Y . Polym. Chem., 2016,7(39):6094.
[67]
Niu T F, Jiang J Y, Li S Y, Ni B Q, Liu X M, Chen M Q . Macromol. Chem. Phys., 2017,218(15):1700169. http://doi.wiley.com/10.1002/macp.v218.15

doi: 10.1002/macp.v218.15     URL    
[68]
Huang Z C, Gu Y, Liu X D, Zhang L F, Cheng Z P, Zhu X L . Macromol. Rapid Comm., 2017,38(10):1600461.
[69]
Kutahya C, Allushi A, Isci R, Kreutzer J, Ozturk T, Yilmaz G, Yagci Y . Macromolecules, 2017,50(17):6903.
[70]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K . Chem. Eng. J., 2018,333:43.
[71]
Hu X, Zhu N, Fang Z, Li Z J, Guo K . Eur. Polym. J., 2016,80:177.
[72]
Zhu N, Zhang Z L, Feng W Y, Zeng Y Q, Li Z Y, Fang Z, Zhang K, Li Z J, Guo K . RSC Adv., 2015,5(40):31554.
[73]
Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K . Polymer, 2016,84:391.
[74]
Zhu N, Hu X, Zhang Y J, Zhang K, Li Z J, Guo K . Polym. Chem., 2016,7(2):474. http://xlink.rsc.org/?DOI=C5PY01728A

doi: 10.1039/C5PY01728A     URL    
[75]
Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K . Eur. Polym. J., 2016,80:234
[76]
Hu X, Zhu N, Fang Z, Guo K . Reaction Chemistry & Engineering, 2017,2(1):20.
[77]
Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K . Macromol. Rapid Comm., 2018,39(8):1700807. https://www.ncbi.nlm.nih.gov/pubmed/29450925

doi: 10.1002/marc.201700807     URL     pmid: 29450925
[78]
Zhu N, Hu X, Fang Z, Guo K . ChemPhotoChem, 2018,2(10):831.
[79]
Huang W J, Zhu N, Liu Y H, Wang J, Zhong J, Sun Q, Sun T, Hu X, Fang Z, Guo K . Chem. Eng. J., 2019,356:592.
[80]
赵婉如(Zhao W R), 胡欣(Hu X), 朱宁(Zhu N), 方正(Fang Z), 郭凯(Guo K) . 化学进展 (Progress in Chemistry), 2018,30(9):1330.
[81]
刘一寰(Liu Y H), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K) . 化学进展 (Progress in Chemistry), 2018,30(8):1133.
[82]
Ramsey B L, Pearson R M, Beck L R, Miyake G M . Macromolecules, 2017,50(7):2668. https://www.ncbi.nlm.nih.gov/pubmed/29051672

doi: 10.1021/acs.macromol.6b02791     URL     pmid: 29051672
[83]
Ramakers G, Krivcov A, Trouillet V, Welle A, Möbius H, Junkers T . Macromol. Rapid Comm., 2017,38(21):1700423.
[84]
Discekici E H, Pester C W, Treat N J, Lawrence J, Mattson K M, Narupai B, Toumayan E P, Luo Y, McGrath A J, Clark P G, Read De Alaniz J, Hawker C J . ACS Macro Lett., 2016,5(2):258.
[85]
Yan J J, Pan X C, Schmitt M, Wang Z Y, Bockstaller M R, Matyjaszewski K . ACS Macro Lett., 2016,5(6):661.
[86]
Gong H H, Zhao Y C, Shen X W, Lin J, Chen M . Angewandte Chemie International Edition, 2018,57(1):333. https://www.ncbi.nlm.nih.gov/pubmed/29135062

doi: 10.1002/anie.201711053     URL     pmid: 29135062
[87]
Li S P, Mohamed A I, Pande V, Wang H, Cuthbert J, Pan X C, He H K, Wang Z Y, Viswanathan V, Whitacre J F, Matyjaszewski K . ACS Energy Letters, 2018,3(1):20.
[88]
Wang J F, Yuan L, Wang Z K, Rahman M A, Huang Y C, Zhu T Y, Wang R B, Cheng J J, Wang C P, Chu F X, Tang C B . Macromolecules, 2016,49(20):7709.
[89]
Wang X B, You N, Lan F Q, Fu P, Cui Z, Pang X C, Liu M Y, Zhao Q X . RSC Adv., 2017,7(13):7789.
[90]
Yang Y, Liu X G, Ye G, Zhu S, Wang Z, Huo X M, Matyjaszewski K, Lu Y X, Chen J . ACS Appl. Mater. Inter., 2017,9(15):13637. https://www.ncbi.nlm.nih.gov/pubmed/28345352

doi: 10.1021/acsami.7b01863     URL     pmid: 28345352
[1] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[2] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[3] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[4] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[5] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[6] 何福喜, 唐刚, 闵晓燕, 胡敏奇, 邵立东, 毕韵梅. N-乙烯基己内酰胺的活性/可控自由基聚合[J]. 化学进展, 2016, 28(2/3): 328-336.
[7] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[8] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[9] 李斌, 于波, 叶谦, 周峰. 外界刺激调控的表面引发原子转移自由基聚合[J]. 化学进展, 2015, 27(2/3): 146-156.
[10] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[11] 刘海灵*. 负载有机膦的合成及其在有机催化领域的应用[J]. 化学进展, 2013, 25(0203): 322-329.
[12] 许茸, 陈春霞*. 有机小分子催化ε-己内酯开环聚合反应[J]. 化学进展, 2012, 24(08): 1519-1525.
[13] 徐莹莹, 李钊, Maxim Borzov, 聂万丽*. 空间受阻型Lewis酸碱对在小分子活化中的应用[J]. 化学进展, 2012, 24(08): 1526-1532.
[14] 李强 张丽芬 柏良久 缪洁 程振平 朱秀林. 原子转移自由基聚合的最新研究进展*[J]. 化学进展, 2010, 22(11): 2079-2088.
[15] 刘世洪 高放 高镱萌 侯莹 李红茹 张胜涛. 枝状体系中分子内光诱导能量转移*[J]. 化学进展, 2010, 22(10): 2033-2052.
阅读次数
全文


摘要

有机催化原子转移自由基聚合