English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 727-737 DOI: 10.7536/PC191108 前一篇   后一篇

• 综述与评论 •

可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃

孙连伟1, 孙中鹤2,**(), 王雪3, 徐林3, 冯岸超1,4,**(), 张立群1,4   

  1. 1. 北京化工大学北京新型高分子材料制备与加工重点实验室 北京 100029
    2. 北京航空航天大学化学学院 北京 100191
    3. 中国石油化工股份有限公司北京化工研究院 橡塑新型材料合成国家工程研究中心 北京 102500
    4. 北京化工大学材料科学与工程学院 先进弹性体材料研究中心 北京 100029
  • 收稿日期:2019-11-08 修回日期:2020-01-07 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 孙中鹤, 冯岸超
  • 作者简介:
    ** Corresponding author e-mail: (Zhonghe Sun); (Anchao Feng).
  • 基金资助:
    国家自然科学基金项目(21704001); 中国石油化工股份有限公司项目(H2019485); 北京软物质科学与工程高精尖创新中心经费资助()

Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization

Lianwei Sun1, Zhonghe Sun2,**(), Xue Wang3, Lin Xu3, Anchao Feng1,4,**(), Liqun Zhang1,4   

  1. 1. Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
    2. School of Chemistry, Beihang University, Beijing 100191, China
    3. SINOPEC Beijing Research Institute of Chemical Industry, National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Beijing 102500, China
    4. School of Materials Science and Engineering, Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2019-11-08 Revised:2020-01-07 Online:2020-06-05 Published:2020-04-13
  • Contact: Zhonghe Sun, Anchao Feng
  • Supported by:
    the National Natural Science Foundation of China(21704001); SINOPEC(H2019485); the Beijing Advanced Innovation Center for Soft Matter Science and Engineering.()

可控/“活性”自由基聚合(CLRP)可以用于制备分子量分布窄、分子链缺陷少的聚合物,如聚乙烯(PE)、聚氯乙烯(PVC)、聚偏氯乙烯(PVDC)和聚偏氟乙烯(PVDF),且易控制上述单体与其他单体共聚得到嵌段聚合物。本文调研了近年来可控/“活性”自由基聚合(如碘转移聚合(ITP)、氮氧稳定自由基聚合(NMP)、可逆加成断裂链转移(RAFT)聚合和金属催化的活性自由基聚合(OMRP)等)制备聚乙烯和聚卤代烯烃等方面的工作,并指出了未来的发展方向。

Controlled/“living” radical polymerization(CLRP) can be used to synthesize polymers with narrow molecular weight distribution and few chain defects(such as Polyethylene(PE), polyvinyl chloride(PVC), polyvinylidene chloride(PVDC) and polyvinylidene fluoride(PVDF)), and it is easy to copolymerize the above monomer with other monomers to obtain block polymers. In this paper, we investigate the preparation of polyethylene and polyhalogenated olefin polymers by controlled/"living" radical polymerization, (for example, iodine transfer polymerization(ITP), nitroxide-mediated living radical polymerization(NMP), reversible addition fragmentation chain transfer(RAFT) polymerization and organometallic mediated radical polymerization(OMRP)) and point out the development trend.

Contents

1 Introduction
2 Preparation of polyethylene by Controlled/“living” radical polymerization.

2.1 RAFT method

2.2 OMRP method

3 Controlled/“living” radical polymerization of polyvinyl chloride

3.1 NMP method

3.2 OMRP method

3.3 RAFT method

4 Preparation of polyvinylidene chloride by controlled/“living” radical polymerization

4.1 ITP method

4.2 RAFT method

5 Preparation of polyvinylidene fluoride by controlled/“living” radical polymerization.

5.1 ITP method

5.2 RAFT method

5.3 OMRP method

6 Conclusion and outlook
()
图1 NMP法制备PVC[48]
Fig. 1 Preparation of PVC by NMP[48]
图2 VC单体SET-DTLRP活性聚合的机理[53]
Fig. 2 The mechanism of SET-DTLRP living polymerization of VC monomer[53]
图3 VC单体的RAFT聚合过程及作为大分子增塑剂的迁出特性[68]
Fig. 3 RAFT polymerization process of VC monomer and migration characteristics as macromolecular plasticizer[68]
图4 RAFT法制备PVDC和PEO共聚物的合成路径[82]
Fig. 4 Synthesis pathways of PVDC and PEO copolymers prepared by RAFT method[82]
图5 RAFT法制备PVDC和PEO共聚物的合成路径[84]
Fig. 5 Synthesis pathways of PVDC and PEO copolymers prepared by RAFT method[84]
图6 ITP法制备PVDF-b-PS的合成路径[100]
Fig. 6 Synthesis pathways of PVDC-b-PS by IP method[100]
图7 RAFT和ATRP法共用制备PVDF-b-PDMAEMA的合成路径[103]
Fig. 7 Pathway to synthesize PVDF-b-PDMAEMA with the joint use of RAFT and ATRP[103]
图8 RAFT法制备PEVE-b-PVDF的合成路径[105]
Fig. 8 Synthesis pathways of PVDF-b-PVDF by RAFT[105]
图9 Mn2(CO)10催化VDF单体聚合的机理[106]
Fig. 9 The mechanism of polymerization of VDF monomer catalyzed by Mn2(CO)10[106]
表1 RAFT聚合适用单体及对应的RAFT试剂的结构
Table 1 Structure of suitable monomers and corresponding RAFT agents for RAFT polymerization
[1]
Braunecker W A , Matyjaszewski K. Prog. Polym. Sci., 2007,32(1):93. https://linkinghub.elsevier.com/retrieve/pii/S007967000600133X

doi: 10.1016/j.progpolymsci.2006.11.002     URL    
[2]
陈小平 ( Chen X P), 丘坤元(Qiu K Y). 化学进展( Progress in Chemistry), 2001,13(3):224. 6ce7a7f0-24db-4ff5-9c1e-9e488e27b9efhttp://www.progchem.ac.cn//CN/abstract/abstract8729.shtml
[3]
Solomon D, Rizzardo E, Cacioli P . US 4581429, 1986.
[4]
Georges M K, Veregin R P, Kazmaier P M, Hamer G K . Macromolecules, 1993,26(11):2987. https://pubs.acs.org/doi/abs/10.1021/ma00063a054

doi: 10.1021/ma00063a054     URL    
[5]
Moad G, Rizzardo E . Macromolecules, 1995,28(26):8722. https://pubs.acs.org/doi/abs/10.1021/ma00130a003

doi: 10.1021/ma00130a003     URL    
[6]
Hawker C J, Bosman A W , Harth E. Chem. Soc. Rev., 2001,101(12):3661.
[7]
Bertin D, Gigmes D, Marque S R , Tordo P. Chem. Soc. Rev., 2011,40(5):2189. https://www.ncbi.nlm.nih.gov/pubmed/21234490

URL     pmid: 21234490
[8]
Kato M, Kamigaito M, Sawamoto M, Higashimura T . Macromolecules, 1995,28(5):1721. https://pubs.acs.org/doi/abs/10.1021/ma00109a056

doi: 10.1021/ma00109a056     URL    
[9]
Wang J S, Matyjaszewski K . J. Am. Chem. Soc., 1995,117(20):5614. https://pubs.acs.org/doi/abs/10.1021/ja00125a035

doi: 10.1021/ja00125a035     URL    
[10]
Percec V, Barboiu B, Neumann A, Ronda J C, Zhao M . Macromolecules, 1996,29(10):3665. https://pubs.acs.org/doi/10.1021/ma960061a

doi: 10.1021/ma960061a     URL    
[11]
Kamigaito M, Ando T, Sawamoto M . Chem. Rev., 2001,101(12):3689. https://www.ncbi.nlm.nih.gov/pubmed/11740919

URL     pmid: 11740919
[12]
Matyjaszewski K, Xia J. . Chem. Rev., 2001,101(9):2921. https://www.ncbi.nlm.nih.gov/pubmed/11749397

doi: 10.1021/cr940534g     URL     pmid: 11749397
[13]
Ouchi M, Terashima T, Sawamoto M. . Chem. Rev., 2009,109(11):4963. https://www.ncbi.nlm.nih.gov/pubmed/19788190

doi: 10.1021/cr900234b     URL     pmid: 19788190
[14]
Matyjaszewski K . Macromolecules, 2012,45(10):4015. https://pubs.acs.org/doi/10.1021/ma3001719

doi: 10.1021/ma3001719     URL    
[15]
Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P, Mayadunne T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H . Macromolecules, 1998,31(16):5559. https://pubs.acs.org/doi/10.1021/ma9804951

doi: 10.1021/ma9804951     URL    
[16]
项青 ( Xiang Q), 罗英武(Luo Y W). 化学进展( Progress in Chemistry), 2018,30(1):101. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170836
[17]
Moad G, Rizzardo E , Thang S H. Aust. J. Chem., 2005,58(6):379. http://www.publish.csiro.au/?paper=CH05072

doi: 10.1071/CH05072     URL    
[18]
Moad G, Rizzardo E , Thang S H. Aust. J. Chem., 2006,59(10):669. http://www.publish.csiro.au/?paper=CH06250

doi: 10.1071/CH06250     URL    
[19]
Moad G, Rizzardo E , Thang S H. Accounts Chem. Res., 2008,41(9):1133.
[20]
Moad G, Rizzardo E , Thang S H. Aust. J. Chem., 2009,62(11):1402.
[21]
Moad G, Rizzardo E , Thang S H. Aust. J. Chem., 2012,65(8):985.
[22]
Moad G, Rizzardo E, Thang S H . Chem.-Asian J., 2013,8(8):1634. https://www.ncbi.nlm.nih.gov/pubmed/23606667

URL     pmid: 23606667
[23]
Severac R, Lacroix-Desmazes P, Boutevin B . Polym. Int., 2002,51(10):1117.
[24]
Lacroix-Desmazes P, Severac R, Boutevin B . ACS Sym. Ser, 2003,854: 570.
[25]
李智 ( Li Z), 唐后亮(Tang H L), 冯岸超(Feng A C), 汤华燊(Thang S H). 化学进展( Progress in Chemistry), 2018,30(8):1097. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180129
[26]
Liu S, Gu B, Rowlands H A, Sen A . Macromolecules, 2004,37(21):7924.
[27]
Kermagoret A, Debuigne A, Jérôme C, Detrembleur C . Nat. Chem., 2014,6: 179. https://www.ncbi.nlm.nih.gov/pubmed/24557131

doi: 10.1038/nchem.1850     URL     pmid: 24557131
[28]
Debuigne A, Jérôme C, Detrembleur C . Polymer, 2017,115: 285.
[29]
Wright S L , Kelly F J. Environ. Sci. Technol., 2017,51(12):6634. https://www.ncbi.nlm.nih.gov/pubmed/28531345

doi: 10.1021/acs.est.7b00423     URL     pmid: 28531345
[30]
Zarrouki A, Espinosa E, Boisson C, Monteil V . Macromolecules, 2017,50(9):3516.
[31]
潘祖仁 ( Pan Z R). 高分子化学(Polymer Chemistry). 北京:化学工业出版社( Beijing: Chemical Industry Press), 2007. 2.
[32]
Keddie D J, Moad G, Rizzardo E, Thang S H . Macromolecules, 2012,45(13):5321.
[33]
Schmidt B V K J, Barner-Kowollik C . J. Mol. Catal. A -Chem., 2014,6(11):3060.
[34]
蒋波 ( Jiang B), 易玲敏(Yi L M), 詹晓力(Zhan X L), 陈碧(Chen B), 陈丰秋(Chen F Q). 化学进展( Progress in Chemistry), 2008,20(7/8):1128. http://manu56.magtech.com.cn/progchem/CN/Y2008/V20/I0708/1128
[35]
Busch M, Roth M, Stenzel M H, Davis T P , Kowollik C B. Aust. J. Chem., 2007,60(10):788.
[36]
Dommanget C, D’agosto F, Monteil V . Angew. Chem.-Int. Edit., 2014,53(26):6683. http://doi.wiley.com/10.1002/anie.201403491

doi: 10.1002/anie.201403491     URL    
[37]
Chen Q, Zeng T Y, Xia L, Zhang Z, Hong C, Zou G, You Y . Chem. Commun., 2017,53(78):10780. http://xlink.rsc.org/?DOI=C7CC06341E

doi: 10.1039/C7CC06341E     URL    
[38]
Poli R , Rahaman S M W, Ladmiral V, Ameduri B. J. Organomet. Chem., 2018,864: 12.
[39]
Demarteau J, Kermagoret A, Jérôme C, Detrembleur C, Debuigne A . ACS Sym. Ser., 2015,1188: 47.
[40]
Allsopp M W, Vianello G . Ullmann’s Encyclopedia of Industrial Chemistry. 2nd ed. Weinheim: Wiley-VCH, 2012. 441.
[41]
Cuccato D, Dossi M, Moscatelli D, Storti G . Macromol. Symp., 2011,302(1):100.
[42]
Starnes W H. Prog. Polym. Sci., 2002,27(10):2133. https://linkinghub.elsevier.com/retrieve/pii/S0079670002000631

doi: 10.1016/S0079-6700(02)00063-1     URL    
[43]
Starnes Jr W H . J. Polym. Sci. Pol. Chem., 2005,43(12):2451.
[44]
Starnes W H, Zaikov V G, Chung H T, Wojciechowski B J, Tran H V, Saylor K, Benedikt G M . Macromolecules, 1998,31(5):1508.
[45]
Wannemacher T, Braun D, Pfaendner R . Macromol. Symp., 2003,202(1):11.
[46]
Braun D . J. Vinyl. Addit. Technol., 2005,11(3):86.
[47]
Nicolas J, Dire C, Mueller L, Belleney J, Charleux B, Marque S R, Bertin D, Magent S, Couvreur L . Macromolecules, 2006,39(24):8274.
[48]
Abreu C M R, Mendonça P V, Serra A C, Noble B B, Guliashvili T, Nicolas J, Coote M, Coelho J F . Macromolecules, 2016,49(2):490. https://pubs.acs.org/doi/10.1021/acs.macromol.5b02017

doi: 10.1021/acs.macromol.5b02017     URL    
[49]
李强 ( Li Q), 张丽芬(Zhang L F), 柏良久(Bo L J),缪洁(Miao J), 程振平(Cheng Z P), 朱秀林(Zhu X L). 化学进展( Progress in Chemistry), 2010,22(11):2079. bcef95cb-d34a-47d9-bbf7-dc1ebc24db84http://www.progchem.ac.cn//CN/abstract/abstract10462.shtml
[50]
唐新德 ( Tang X D), 范星河(Fan X H), 陈小芳(Chen X F), 周其凤(Zhou Q F). 化学进展( Progress in Chemistry), 2005,17(6):1081. 5467f7ea-2730-49d2-990f-c0c7b4ccff6ahttp://www.progchem.ac.cn//CN/abstract/abstract9174.shtml
[51]
Asandei A D, Percec V . J. Polym. Sci. Pol. Chem., 2001,39(19):3392. http://doi.wiley.com/10.1002/%28ISSN%291099-0518

doi: 10.1002/(ISSN)1099-0518     URL    
[52]
Percec V, Popov A V, Ramirez-Castillo E, Monteiro M, Barboiu B, Weichold O, Asandei A D, Mitchell C M . J. Am. Chem. Soc., 2002,124(18):4940.
[53]
Percec V, Popov A V, Ramirez-Castillo E, Weichold O . J. Polym. Sci. Pol. Chem., 2005,43(4):773.
[54]
Coelho J F J, Fonseca A C, Gois J R, Goncalves R M, Popov A V, Gil M H . Chem. Eng. J., 2011,169(1/3):399.
[55]
Percec V, Guliashvili T, Popov A V, Castillo E R . J. Polym. Sci. Pol. Chem., 2005,43(7):1478.
[56]
Percec V, Guliashvili T, Popov A V, Castillo E R , Hinojosa-Falcon L A H. J. Polym. Sci. Pol. Chem., 2005,43(8):1660.
[57]
Percec V, Popov A V, Ramirez-Castillo E , Hinojosa-Falcon L A. J. Polym. Sci. Pol. Chem., 2005,43(11):2276.
[58]
Rosen B M, Percec V. . Chem. Rev., 2009,109(11):5069. https://www.ncbi.nlm.nih.gov/pubmed/19817375

doi: 10.1021/cr900024j     URL     pmid: 19817375
[59]
Konkolewicz D, Wang Y, Krys P, Zhong M, Isse A A, Gennaro A, Matyjazewski K . Polym. Chem., 2014,5(15):4396.
[60]
Mendes J P, Branco F , Abreu C M R, Mendonca P V.Serra A C, Popov A V, Guliashvili T, Coelho J J. ACS Macro Lett., 2014,3(9):858.
[61]
Piette Y, Debuigne A, Jérôme C, Bodart V, Poli R, Detrembleur C . Polym. Chem., 2012,3(10):2880.
[62]
Piette Y, Debuigne A, Bodart V, Willet N, Duwez A, Detrembleur C . Polym. Chem., 2013,4(5):1685.
[63]
Percec V, Guliashvili T, Ladislaw J S, Wistrand A, Stjerndahl A, Sienkowska M J, Monteiro M J, Sahoo S . J. Am. Chem. Soc., 2006,128(43):14156. https://www.ncbi.nlm.nih.gov/pubmed/17061900

doi: 10.1021/ja065484z     URL     pmid: 17061900
[64]
Abreu C M R, Mendonca P V, Serra A C, Coelho J F J, Popov A V, Grynova G, Coote M L, Guliashvili T . Macromolecules, 2012,45(5):2200.
[65]
Huang Z, Pan P, Bao Y Z . J. Polym. Sci. Pol. Chem., 2016,54(14):2092.
[66]
Kostov G , Boschet F D R, Buller J, Brandsadter S, Ameduri B. Macromolecules, 2011,44(7):1841. https://pubs.acs.org/doi/10.1021/ma102679f

doi: 10.1021/ma102679f     URL    
[67]
Huang Z, Pan P, Bao Y Z . J. Appl. Polym. Sci., 2017,134(28):45074. http://doi.wiley.com/10.1002/app.45074

doi: 10.1002/app.45074     URL    
[68]
Sun Z H, Choi B, Feng A C, Thang H S . Macromolecules, 2019,52(4):1746. https://pubs.acs.org/doi/10.1021/acs.macromol.8b02146

doi: 10.1021/acs.macromol.8b02146     URL    
[69]
Feng A C, Sun Z H , S. H. Thang. CN 109293857, 2018.
[70]
Feng A C, Sun Z H , S. H. Thang. CN 109575167, 2018.
[71]
Feng A C, Sun Z H , S. H. Thang. CN 109337051, 2018.
[72]
Brown R A, Budd P M, Price C , Satgurunathan R. Eur. Polym. J., 1993,29(2):337. https://linkinghub.elsevier.com/retrieve/pii/001430579390102L

doi: 10.1016/0014-3057(93)90102-L     URL    
[73]
Collins S, Yoda K, Anazawa N , Birkinshaw C. Polym. Degrad. Stabil., 1999,66(1):87. https://linkinghub.elsevier.com/retrieve/pii/S0141391099000567

doi: 10.1016/S0141-3910(99)00056-7     URL    
[74]
Hsieh T H, Ho K S . J. Polym. Sci. Pol. Chem., 1999,37(13):2035. http://doi.wiley.com/10.1002/%28ISSN%291099-0518

doi: 10.1002/(ISSN)1099-0518     URL    
[75]
Yang J, Bao Y Z, Pan P . J. Appl. Polym. Sci., 2014,131: 40391.
[76]
Grunlan J C, Mehrabi A R, Chavira A T, Nugent A B, Saunders D L . J. Comb. Chem., 2003,5(4):362. https://www.ncbi.nlm.nih.gov/pubmed/12857103

URL     pmid: 12857103
[77]
Mayo F R, Lewis F M, Walling C . J. Am. Chem. Soc., 1948,70(4):1529. https://pubs.acs.org/doi/abs/10.1021/ja01184a070

doi: 10.1021/ja01184a070     URL    
[78]
Rixens B, Severac R, Boutevin B, Lacroix-Desmazes P . J. Polym. Sci. Pol. Chem., 2006,44(1):13. http://doi.wiley.com/10.1002/%28ISSN%291099-0518

doi: 10.1002/(ISSN)1099-0518     URL    
[79]
Rixens B, Severac R, Boutevin B, Lacroix-Desmazes P . Polymer, 2005,46(11):3579.
[80]
Velasquez E, Pembouong G, Rieger J, Stoffelbach F, Boyron O, Charleux B , D’Agosto F, Lansalot M, Dufils P E, Vinas J. Macromolecules, 2013,46(3):664.
[81]
别妙 ( Bie M), 杨杰(Yang J), 尹逊迪(Yin X D), 包永忠(Bao Y Z). 高分子学报( Acta Polymerica Sinica), 2016,4(1):443.
[82]
Velasquez E, Rieger J, Stoffelbach F, Charleux B , D’Agosto F, Lansalot M, Dufils P E, Vinas J. Polymer, 2013,54(24):6547.
[83]
Velasquez E, Rieger J, Stoffelbach F , D’Agosto F, Lansalot M, Dufils P E, Vinas J. Polymer, 2016,106: 275.
[84]
Yang J, Bao Y Z, Pan P . J. Mater. Sci., 2014,49(3):1090.
[85]
王非凡 ( Wang F F), 包永忠(Bao Y Z). 高校化学工程学报( Journal of Chemical Engineering of Chinese Universities), 2016,30(1):168.
[86]
Falireas P G, Ladmiral V, Debuigne A, Detrembleur C, Poil R, Ameduri B . Macromolecules, 2019,52(3):1266.
[87]
Asandei A D. Chem. Rev., 2016,116(4):2244. https://www.ncbi.nlm.nih.gov/pubmed/26760676

doi: 10.1021/acs.chemrev.5b00539     URL     pmid: 26760676
[88]
Guerre M , Rahaman S M W, Améduri B, Améduri B, Poli R, Ladmiral V. Macromolecules, 2016,49(15):5386.
[89]
Cui Z, Drioli E , Lee Y M. Prog Polym. Sci., 2014,39(1):164.
[90]
Banerjee S, Patil Y, Ono T, Ameduri Bl . Macromolecules, 2017,50(1):203.
[91]
Lei L, Li J, Zheng S . Polymer, 2018,142: 61.
[92]
Vukiéevié R, Schwadtke U, Schmücker S, Schäfer P, Kucklingb D, Beuermann S . Polym. Chem., 2012,3(2):409.
[93]
Lanzalaco S, Fantin M, Scialdone O, Galia A, Isse A A, Gennaro A, Matyjaszewski K . Macromolecules, 2016,50(1):192.
[94]
Uchiyama M, Folgado E, Satoh K, Kamigaito M, Bargain F, Soulestin T, Santos F D, Tencé-Girault S, Guerre M, Semsarilar M, Godiard F, Ameduri B, Ladmiral V . Polym.Chem., 2017,8(9):1477.
[95]
Terzic I, Meereboer N L, Loos K . Polym. Chem., 2018,9: 3714.
[96]
Cais R E, Kometani J M . Macromolecules, 1984,17(9):1887.
[97]
Mattern D E, Lin F T , Hercules D M. Anal. Chem., 1984,56(14):2762. https://pubs.acs.org/doi/abs/10.1021/ac00278a031

doi: 10.1021/ac00278a031     URL    
[98]
Bruno A . Macromolecules, 2010,43(24):10163. https://pubs.acs.org/doi/10.1021/ma1019297

doi: 10.1021/ma1019297     URL    
[99]
Boyer C, Valade D, Sauguet L, Ameduri B, Boutevin B . Macromolecules, 2005,38(25):10353. https://pubs.acs.org/doi/10.1021/ma051349f

doi: 10.1021/ma051349f     URL    
[100]
Valade D, Boyer C, Bruno Ameduri A, Boutevin B . Macromolecules, 2006,39(25):8639.
[101]
Guerre M, Rahaman S W, Améduri B, Poli R, Ladmiral V . Polym. Chem., 2016,7(45):6918.
[102]
Guerre M, Schmidt J, Talmon Y, Ameduri B, Ladmiral V . Polym. Chem., 2017,8(7):1125.
[103]
Guerre M, Semsarilar M, Totée C, Silly G, Ameduri B, Ladmiral V . Polym. Chem., 2017,8(34):5203.
[104]
Banerjee S, Patil Y, Gimello O, Ameduri B. Chem. Commun., 2017,53(79):10910.
[105]
Guerre M, Uchiyama M, Folgado E, Semsarilar M, Ameduri B, Satoh K, Kamigaito M , Ladmiral V. ACS Macro Lett., 2017,6(4):393.
[106]
Asandei A D, Adebolu O I, Simpson C P . J. Am. Chem. Soc., 2012,134(14):6080. https://www.ncbi.nlm.nih.gov/pubmed/22458593

URL     pmid: 22458593
[107]
Banerjee S, Ladmiral V, Debuigne A, Detrembleur C, Poli R, Ameduri B . Anal. Chem., 2018,130(11):2984.
[108]
熊兴泉 ( Xiong X Q), 唐中科(Tang Z K), 蔡雷(Cai L). 化学进展( Progress in Chemistry), 2012,24(9):1751. http://manu56.magtech.com.cn/progchem/CN/Y2012/V/I9/1751
[1] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.
[2] 杜海燕, 雷霞, 许玉玉, 梁镇海, 王永洪. 聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为[J]. 化学进展, 2016, 28(11): 1648-1657.
[3] 施信波 高海洋 伍青. 支化聚烯烃的合成研究*[J]. 化学进展, 2009, 21(12): 2651-2659.