English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1473-1481 DOI: 10.7536/PC200878 前一篇   后一篇

• 综述 •

铱(Ⅲ)配合物乏氧肿瘤光动力治疗

祝梓琳, 范中贤, 缪梦昭, 黄怀义*()   

  1. 中山大学药学院(深圳) 广州 510275
  • 收稿日期:2020-09-01 修回日期:2020-11-13 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 黄怀义
  • 基金资助:
    国家自然科学基金项目(NSFC22007104); 广东省自然科学基金项目(2019A1515110601); 广东省自然科学基金项目(2021B1515020050); 深圳市科创委基础研究面上项目(JCYJ20190807152616996)

Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes

Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang()   

  1. School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
  • Received:2020-09-01 Revised:2020-11-13 Online:2021-09-20 Published:2020-12-28
  • Contact: Huaiyi Huang
  • Supported by:
    National Natural Science Foundation of China(NSFC22007104); Guangdong Natural Science Foundation(2019A1515110601); Guangdong Natural Science Foundation(2021B1515020050); Science, Technology and Innovation Commission of Shenzhen Municipality Project(JCYJ20190807152616996)

光动力治疗因其无创、可控和不易产生耐药性等显著优点,成为一种新型的肿瘤靶向治疗模式。光敏化过程涉及光敏剂对氧分子的光激活反应,然而实体肿瘤的乏氧环境严重限制了传统有机光敏剂的疗效。金属铱配合物具有良好的光物理和光化学性质,是理想的新一代光敏剂,近些年,铱光敏剂被发现可以应用于乏氧肿瘤的光动力治疗。本文总结了近些年金属铱配合物应用于乏氧肿瘤光动力治疗的研究;同时介绍了基于铱配合物的乏氧纳米复合体系的构建和乏氧肿瘤的光动力治疗研究,为开发新型高效的乏氧肿瘤治疗光敏剂及其载体提供参考。

Photodynamic therapy has become a new method to treat cancer because of noninvasive, controllable features and less drug resistance compared with chemotherapy. The photo-sensitization pathway involves the photoactivation of molecular oxygen by photosensitizer. However, due to the hypoxic environment of solid tumors, the photodynamic therapeutic effect of traditional photosensitizers is severely suppressed. Metallic Ir(Ⅲ) complexes exhibit excellent photo-physical and photo-chemical properties which make them ideal next-generation photosensitizers for photodynamic therapy. It has been reported that some novel Ir(Ⅲ) complexes show excellent photodynamic therapy effect towards hypoxic tumors. In this review, we focus on the recent studies on the application of Ir(Ⅲ) complexes to photodynamic therapy under hypoxia. Furthermore, the applications of Ir(Ⅲ) complexes containing nanocomposite system for hypoxic photodynamic therapy are also summarized, with the hope to provide guidance for the development of novel and efficient photosensitizers for hypoxic tumor.

Contents

1 Introduction

2 Photodynamic therapy (PDT) based on iridium complexes

2.1 Type I PDT in the hypoxic environment

2.2 Type II PDT in the hypoxic environment

3 Nanocomposite system for PDT of hypoxic tumors

3.1 Up-conversion nanocomposite system

3.2 Polymer nanocomposite system

4 Conclusion and outlook

()
图1 配合物1a~c、2a~c和3a~c的化学结构式[29]
Fig. 1 Chemical structures of complexes 1a~c、2a~c and 3a~c[29]
图2 配合物4a和4b的化学结构式[30]
Fig. 2 Chemical structures of complexes 4a and 4b[30]
图3 配合物5a~d的化学结构式[35,36]
Fig. 3 Chemical structures of complexes 5a~d[35,36]
图4 配合物6的化学结构式[37]
Fig. 4 Chemical structure of complex 6[37]
图5 配合物7的化学结构式[38]
Fig. 5 Chemical structure of complex 7[38]
图6 配合物8a和8b的化学结构式[45]
Fig. 6 Chemical structures of complexes 8a and 8b[45]
图7 配合物9a~d的化学结构式[46]
Fig. 7 Chemical structures of complexes 9a~d[46]
图8 配合物10a~d的化学结构式[55]
Fig. 8 Chemical structures of complexes 10a~d[55]
图9 配合物11的化学结构式[56]
Fig. 9 Chemical structures of complexes 11[56]
图10 UCNP@IrYCF127的合成及其抗癌模式示意图[70]
Fig.10 Schematic illustration of the fabrication of UCNP@IrYCF127 and its anticancer pattern[70]. Copyright 2019, American Chemical Society.
图11 用于乏氧成像的13/PSMA点的设计策略及其在光动力治疗中的作用机制[72]
Fig. 11 Design strategy of the phosphorescent polymer dots (13/PSMA dots) for hypoxia imaging and the mechanisms of 13/PSMA dots in photodynamic therapy[72]. Copyright 2017, American Chemical Society.
[1]
Moulder J E, Rockwell S. Cancer Metastasis Rev., 1987, 5(4): 313.

doi: 10.1007/BF00055376     URL    
[2]
Li Y C, Jeon J, Park J H. Cancer Lett., 2020, 490: 31.

doi: 10.1016/j.canlet.2020.05.032     URL    
[3]
Brown J M, Wilson W R. Nat. Rev. Cancer, 2004, 4(6): 437.

doi: 10.1038/nrc1367     URL    
[4]
Wilson W R, Hay M P. Nat. Rev. Cancer, 2011, 11(6): 393.

doi: 10.1038/nrc3064     URL    
[5]
Bristow R G, Hill R P. Nat. Rev. Cancer, 2008, 8(3): 180.

doi: 10.1038/nrc2344     pmid: 18273037
[6]
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. J. Natl. Cancer Inst., 1998, 90(12): 889.

pmid: 9637138
[7]
Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Lasers Med. Sci., 2009, 24(2): 259.

doi: 10.1007/s10103-008-0539-1     URL    
[8]
Yoon I, Li J Z, Shim Y K. Clin. Endosc., 2013, 46(1): 7.

doi: 10.5946/ce.2013.46.1.7     pmid: 23423543
[9]
Gross S, Gilead A, Scherz A, Neeman M, Salomon Y. Nat. Med., 2003, 9(10): 1327.

doi: 10.1038/nm940     URL    
[10]
Huang Z, Xu H P, Meyers A D, Musani A I, Wang L W, Tagg R, Barqawi A B, Chen Y K. Technol. Cancer Res. Treat., 2008, 7(4): 309.

doi: 10.1177/153303460800700405     URL    
[11]
Foote C S. Science, 1968, 162(3857): 963.

pmid: 4972417
[12]
Bhuvaneswari R, Gan Y Y, Soo K C, Olivo M. Cell. Mol. Life Sci., 2009, 66(14): 2275.

doi: 10.1007/s00018-009-0016-4     pmid: 19333552
[13]
Zheng Y, He L, Zhang D Y, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2017, 46(34): 11395.

doi: 10.1039/c7dt02273e     pmid: 28813052
[14]
Tao P, Li W L, Zhang J, Guo S, Zhao Q, Wang H, Wei B, Liu S J, Zhou X H, Yu Q, Xu B S, Huang W. Adv. Funct. Mater., 2016, 26: 881.

doi: 10.1002/adfm.v26.6     URL    
[15]
Abrahamse H, Hamblin M R. Biochem. J., 2016, 473(4): 347.

doi: 10.1042/BJ20150942     pmid: 26862179
[16]
Allison R R, Sibata C H. Photodiagnosis Photodyn. Ther., 2010, 7(2): 61.

doi: 10.1016/j.pdpdt.2010.02.001     pmid: 20510301
[17]
Dolmans D E J G J, Fukumura D, Jain R K. Nat. Rev. Cancer, 2003, 3(5): 380.

doi: 10.1038/nrc1071     URL    
[18]
Kelly J F, Snell M E. J. Urol., 1976, 115(2): 150.

doi: 10.1016/S0022-5347(17)59108-9     URL    
[19]
Mistry P, Kelland L, Abel G, Sidhar S, Harrap K. Br. J. Cancer, 1991, 64(2): 215.

doi: 10.1038/bjc.1991.279     URL    
[20]
Holford J, Beale P J, Boxall F E, Sharp S Y, Kelland L R. Eur. J. Cancer, 2000, 36(15): 1984.

pmid: 11000581
[21]
Dai Y L, Yang Z, Cheng S Y, Wang Z L, Zhang R L, Zhu G Z, Wang Z T, Yung B C, Tian R, Jacobson O, Xu C, Ni Q Q, Song J B, Sun X L, Niu G, Chen X Y. Adv. Mater., 2018, 30(8): 1704877.

doi: 10.1002/adma.v30.8     URL    
[22]
Dai Y L, Cheng S Y, Wang Z L, Zhang R L, Yang Z, Wang J J, Yung B C, Wang Z T, Jacobson O, Xu C, Ni Q Q, Yu G C, Zhou Z J, Chen X Y. ACS Nano, 2018, 12(1): 455.

doi: 10.1021/acsnano.7b06852     URL    
[23]
Ma P G, Xiao H H, Yu C, Liu J H, Cheng Z Y, Song H Q, Zhang X Y, Li C X, Wang J Q, Gu Z, Lin J. Nano Lett., 2017, 17(2): 928.

doi: 10.1021/acs.nanolett.6b04269     URL    
[24]
Liou G Y, Storz P. Free. Radic. Res., 2010, 44(5): 479.

doi: 10.3109/10715761003667554     URL    
[25]
Bystrom L M, Guzman M L, Rivella S. Antioxid. Redox Signal., 2014, 20(12): 1917.

doi: 10.1089/ars.2012.5014     URL    
[26]
Samuel E L G, Marcano D C, Berka V, Bitner B R, Wu G, Potter A, Fabian R H, Pautler R G, Kent T A, Tsai A L, Tour J M. PNAS, 2015, 112(8): 2343.

doi: 10.1073/pnas.1417047112     pmid: 25675492
[27]
Yao J, Cheng Y, Zhou M, Zhao S, Lin S C, Wang X Y, Wu J, Li S R, Wei H. Chem. Sci., 2018, 9(11): 2927.

doi: 10.1039/C7SC05476A     URL    
[28]
Shen Z Y, Song J B, Yung B C, Zhou Z J, Wu A G, Chen X Y. Adv. Mater., 2018, 30(12): 1704007.

doi: 10.1002/adma.v30.12     URL    
[29]
Novohradsky V, Vigueras G, Pracharova J, Cutillas N, Janiak C, Kostrhunova H, Brabec V, Ruiz J, Kasparkova J. Inorg. Chem. Front., 2019, 6(9): 2500.

doi: 10.1039/c9qi00811j    
[30]
Novohradsky V, Rovira A, Hally C, Galindo A, Vigueras G, Gandioso A, Svitelova M, Bresolí-Obach R, Kostrhunova H, Markova L, Kasparkova J, Nonell S, Ruiz J, Brabec V, Marchán V. Angew. Chem. Int. Ed., 2019, 58(19): 6311.

doi: 10.1002/anie.v58.19     URL    
[31]
Lv W, Xia H T, Zhang K Y, Chen Z J, Liu S J, Huang W, Zhao Q. Mater. Horiz., 2017, 4(6): 1185.

doi: 10.1039/C7MH00726D     URL    
[32]
Lv W, Zhang Z, Zhang K Y, Yang H R, Liu S J, Xu A Q, Guo S, Zhao Q, Huang W. Angew. Chem. Int. Ed., 2016, 55(34): 9947.

doi: 10.1002/anie.201604130     URL    
[33]
Nam J S, Kang M G, Kang J, Park S Y, Lee S J C, Kim H T, Seo J K, Kwon O H, Lim M H, Rhee H W, Kwon T H. J. Am. Chem. Soc., 2016, 138(34): 10968.

doi: 10.1021/jacs.6b05302     URL    
[34]
Atkins J H, Gershell L J. Nat. Rev. Cancer, 2002, 2(9): 645.

doi: 10.1038/nrc900     URL    
[35]
Bevernaegie R, Marcélis L, Laramée-Milette B de Winter J, Robeyns K, Gerbaux P, Hanan G S, Elias B. Inorg. Chem., 2018, 57(3): 1356.

doi: 10.1021/acs.inorgchem.7b02778     pmid: 29336560
[36]
Bevernaegie R, Doix B, Bastien E, Diman A, Decottignies A, Feron O, Elias B. J. Am. Chem. Soc., 2019, 141(46): 18486.

doi: 10.1021/jacs.9b07723     pmid: 31644286
[37]
Huang H Y, Banerjee S, Qiu K Q, Zhang P Y, Blacque O, Malcomson T, Paterson M J, Clarkson G J, Staniforth M, Stavros V G, Gasser G, Chao H, Sadler P J. Nat. Chem., 2019, 11(11): 1041.

doi: 10.1038/s41557-019-0328-4     URL    
[38]
Kuang S, Sun L L, Zhang X R, Liao X X, Rees T W, Zeng L L, Chen Y, Zhang X T, Ji L N, Chao H. Angew. Chem. Int. Ed., 2020, 59(46): 20697.

doi: 10.1002/anie.v59.46     URL    
[39]
Celli J P, Spring B Q, Rizvi I, Evans C L, Samkoe K S, Verma S, Pogue B W, Hasan T. Chem. Rev., 2010, 110(5): 2795.

doi: 10.1021/cr900300p     URL    
[40]
Li Y, Tan C P, Zhang W, He L, Ji L N, Mao Z W. Biomaterials, 2015, 39: 95.

doi: 10.1016/j.biomaterials.2014.10.070     URL    
[41]
Han K, Lei Q, Wang S B, Hu J J, Qiu W X, Zhu J Y, Yin W N, Luo X, Zhang X Z. Adv. Funct. Mater., 2015, 25(20): 2961.

doi: 10.1002/adfm.201500590     URL    
[42]
Huang H Y, Yu B L, Zhang P Y, Huang J J, Chen Y, Gasser G, Ji L N, Chao H. Angew. Chem. Int. Ed., 2015, 54(47): 14049.

doi: 10.1002/anie.201507800     URL    
[43]
Fulda S, Galluzzi L, Kroemer G. Nat. Rev. Drug Discov., 2010, 9(6): 447.

doi: 10.1038/nrd3137     URL    
[44]
Saftig P, Klumperman J. Nat. Rev. Mol. Cell Biol., 2009, 10(9): 623.
[45]
Lv W, Zhang Z, Zhang K Y, Yang H R, Liu S J, Xu A Q, Guo S, Zhao Q, Huang W. Angew. Chem. Int. Ed., 2016, 55(34): 9947.

doi: 10.1002/anie.201604130     URL    
[46]
Guo S, Han M P, Chen R Z, Zhuang Y L, Zou L, Liu S J, Huang W, Zhao Q. Sci. China Chem., 2019, 62(12): 1639.

doi: 10.1007/s11426-019-9583-4     URL    
[47]
de Rosa F S, Bentley M V L B. Pharm. Res., 2000, 17(12): 1447.

doi: 10.1023/A:1007612905378     URL    
[48]
Lovell J F, Liu T W B, Chen J, Zheng G. Chem. Rev., 2010, 110(5): 2839.

doi: 10.1021/cr900236h     URL    
[49]
Liu J P, Chen Y, Li G Y, Zhang P Y, Jin C Z, Zeng L L, Ji L N, Chao H. Biomaterials, 2015, 56: 140.

doi: 10.1016/j.biomaterials.2015.04.002     URL    
[50]
Fan W P, Huang P, Chen X Y. Chem. Soc. Rev., 2016, 45(23): 6488.

doi: 10.1039/C6CS00616G     URL    
[51]
Hu Q L, Gao M, Feng G X, Liu B. Angew. Chem. Int. Ed., 2014, 53(51): 14225.

doi: 10.1002/anie.v53.51     URL    
[52]
Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53(12): 2052.

doi: 10.1039/C6CC10015E     URL    
[53]
Pathak R K, Marrache S, Harn D A, Dhar S. ACS Chem. Biol., 2014, 9(5): 1178.

doi: 10.1021/cb400944y     URL    
[54]
Zhou X, Chen R H, Yu Z H, Li R, Li J J, Zhao X P, Song S L, Liu J J, Huang G. Mol. Cancer, 2015, 14(1): 63.

doi: 10.1186/s12943-015-0331-3     URL    
[55]
Liu J P, Jin C Z, Yuan B, Chen Y, Liu X G, Ji L N, Chao H. Chem. Commun., 2017, 53(71): 9878.

doi: 10.1039/C7CC05518H     URL    
[56]
He L, Zhang M F, Pan Z Y, Wang K N, Zhao Z J, Li Y, Mao Z W. Chem. Commun., 2019, 55(70): 10472.

doi: 10.1039/C9CC04871E     URL    
[57]
Xing L, Gong J H, Wang Y, Zhu Y, Huang Z J, Zhao J, Li F, Wang J H, Wen H, Jiang H L. Biomaterials, 2019, 206: 170.

doi: S0142-9612(19)30171-1     pmid: 30939409
[58]
Yang S C, Tang Z H, Hu C Y, Zhang D W, Shen N, Yu H Y, Chen X S. Adv. Mater., 2019, 31(11): 1805955.

doi: 10.1002/adma.v31.11     URL    
[59]
Yu W Y, Liu T, Zhang M K, Wang Z X, Ye J J, Li C X, Liu W L, Li R Q, Feng J, Zhang X Z. ACS Nano, 2019, 13: 1784.
[60]
Fan W P, Bu W B, Shen B, He Q J, Cui Z W, Liu Y Y, Zheng X P, Zhao K L, Shi J L. Adv. Mater., 2015, 27(28): 4155.

doi: 10.1002/adma.v27.28     URL    
[61]
Song X J, Feng L Z, Liang C, Yang K, Liu Z. Nano Lett., 2016, 16(10): 6145.

doi: 10.1021/acs.nanolett.6b02365     URL    
[62]
Liu W L, Liu T, Zou M Z, Yu W Y, Li C X, He Z Y, Zhang M K, Liu M D, Li Z H, Feng J, Zhang X Z. Adv. Mater., 2018, 30(35): 1802006.

doi: 10.1002/adma.v30.35     URL    
[63]
Zheng D W, Li B, Li C X, Fan J X, Lei Q, Li C, Xu Z S, Zhang X Z. ACS Nano, 2016, 10(9): 8715.

doi: 10.1021/acsnano.6b04156     URL    
[64]
Xu S T, Zhu X Y, Zhang C, Huang W, Zhou Y F, Yan D Y. Nat. Commun., 2018, 9(1): 2053.

doi: 10.1038/s41467-018-04318-1     URL    
[65]
Wang F, Liu X G. Chem. Soc. Rev., 2009, 38(4): 976.

doi: 10.1039/b809132n     URL    
[66]
Haase M, Schäfer H. Angew. Chem. Int. Ed., 2011, 50(26): 5808.

doi: 10.1002/anie.v50.26     URL    
[67]
Gai S L, Li C X, Yang P P, Lin J. Chem. Rev., 2014, 114(4): 2343.

doi: 10.1021/cr4001594     URL    
[68]
Han S Y, Deng R R, Xie X J, Liu X G. Angew. Chem. Int. Ed., 2014, 53(44): 11702.

doi: 10.1002/anie.201403408     URL    
[69]
Liu X G, Yan C H, Capobianco J A. Chem. Soc. Rev., 2015, 44(6): 1299.

doi: 10.1039/C5CS90009C     URL    
[70]
Zhao J, Sun S C, Li X Y, Zhang W J, Gou S H. ACS Appl. Bio Mater., 2020, 3(1): 252.

doi: 10.1021/acsabm.9b00774     URL    
[71]
Winter A, Schubert U S. Chem. Soc. Rev., 2016, 45(19): 5311.

doi: 10.1039/C6CS00182C     URL    
[72]
Feng Z Y, Tao P, Zou L, Gao P L, Liu Y, Liu X, Wang H, Liu S J, Dong Q C, Li J, Xu B S, Huang W, Wong W Y, Zhao Q. ACS Appl. Mater. Interfaces, 2017, 9(34): 28319.

doi: 10.1021/acsami.7b09721     URL    
[1] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[2] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[3] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[4] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[5] 费进波, 李琦, 赵洁, 李峻柏. 二苯丙氨酸二肽组装体的光学性质及潜在应用[J]. 化学进展, 2019, 31(1): 30-37.
[6] 郑秉得, 赵园园, 李洪才, 郑碧远, 柯美荣, 黄剑东*. 可激活抗癌光敏剂[J]. 化学进展, 2018, 30(9): 1403-1414.
[7] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[8] 刘湘梅, 田康, 薛乘风, 韩艺蕃, 刘淑娟, 赵强*. X射线激发发光体在光动力治疗中的应用[J]. 化学进展, 2017, 29(12): 1488-1498.
[9] 梁爱辉, 黄贵, 王志平, 陈水亮, 侯豪情. 含铱配合物聚合物磷光材料及其电致发光性能[J]. 化学进展, 2016, 28(4): 471-481.
[10] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
[11] 周丽霞, 刘淑娟, 赵强, 凌启淡, 黄维. 基于离子型铱配合物的发光电化学池[J]. 化学进展, 2011, 23(9): 1871-1882.
[12] 廖章金, 朱彤珺, 密保秀, 高志强, 范曲立, 黄维. 小分子铱配合物及其电致发光[J]. 化学进展, 2011, 23(8): 1627-1643.
[13] 陶然, 乔娟, 段炼, 邱勇. 蓝色磷光有机发光材料[J]. 化学进展, 2010, 22(12): 2255-2267.
[14] 李红茹,谢亭,胡女丹,杨刘峰,张胜涛,高放. 双光子诱导产生单重态氧的三重态光敏剂的研究*[J]. 化学进展, 2009, 21(0708): 1398-1407.