English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 199-215 DOI: 10.7536/PC200765 前一篇   后一篇

• 综述 •

近红外荧光探针检测金属离子、小分子和生物大分子

刘园园1, 郭芸2, 罗晓刚1,3, 刘根炎1,*(), 孙琦2,*()   

  1. 1 武汉工程大学化工与制药学院 绿色化工过程教育部重点实验室 武汉 430205
    2 武汉工程大学化学与环境工程学院 武汉 430205
    3 郑州大学材料科学与工程学院 郑州 450001
  • 收稿日期:2020-07-28 修回日期:2020-12-22 出版日期:2021-02-24 发布日期:2021-03-01
  • 通讯作者: 刘根炎, 孙琦
  • 基金资助:
    国家自然科学基金项目(21807082); 中央引导地方科技发展资金(2020ZYYD040); 湖北省科技厅科学技术研究项目(2020BAB073); 湖北省教育厅科学技术研究项目(T201908); 湖北省教育厅科学技术研究项目(Q20171503); 湖北省教育厅教学研究项目(2017327)

Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes

Yuanyuan Liu1, Yun Guo2, Xiaogang Luo1,3, Genyan Liu1,*(), Qi Sun2,*()   

  1. 1 Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology,Wuhan 430205, China
    2 School of Chemistry and Environmental Engineering, Wuhan Institute of Technology,Wuhan 430205, China
    3 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2020-07-28 Revised:2020-12-22 Online:2021-02-24 Published:2021-03-01
  • Contact: Genyan Liu, Qi Sun
  • About author:
    * Corresponding author e-mail: (Genyan Liu);
  • Supported by:
    National Natural Science Foundation of China(21807082); Special Projects of the Central Government in Guidance of Local Science and Technology Development in Hubei Province(2020ZYYD040); second batch of the Key Research and Development Project of Hubei Province(2020BAB073); Science and Technology Research Project of Hubei Provincial Department of Education(T201908); Science and Technology Research Project of Hubei Provincial Department of Education(Q20171503); Teaching Research Project of Hubei Province(2017327)

荧光探针技术是近年来发展迅速的一种荧光分析方法,具有灵敏度高、选择性好、操作简便和响应迅速等特点,受到环境及生命科学领域的青睐。随着荧光探针技术的发展,近红外一区荧光探针由于具有发射波长长(600~900 nm)、对细胞损伤小、组织穿透性强和自发荧光背景低等优点,被广泛应用于细胞、组织等复杂生物体系中生物分子的检测、示踪及成像。本文评述了近年来(2016~2020年)近红外荧光探针对金属离子(Hg2+、Cu2+、Zn2+、Al3+、Fe3+)、生物小分子(Cys、N2H4、H2S、H2O2)与生物大分子(亮氨酸氨基肽酶、β-半乳糖苷酶)等重要生物分子的检测及成像的研究进展,讨论了该类探针在细胞及活体的分析应用,并对近红外荧光探针的前景进行了展望。

Fluorescent probe analysis, as a rapidly developed analytical method with high sensitivity, good selectivity, and fast responsibility, has been favored in environmental and life science field. And near-infrared fluorescent probe is one of the most developed fluorescent probes. It has been widely employed in detection, tracking and imaging of biomolecules in complex biological systems such as cells and tissues due to its distinguished features including long emission wavelength(600 to 900 nm), low cell damage, strong tissue penetration and low spontaneous fluorescence background. In this review, we summarize the development of near-infrared fluorescent probes in detection and imaging of metal ions(Hg2+, Cu2+, Zn2+, Al3+, Fe3+), small biological molecules(Cys, N2H4, H2S, H2O2), biological macromolecules(Leucine aminopeptidase, β-galactosidase) and other important biological molecules in recent five years. We further give the in-depth discussion on the in vitro and in vivo analytical applications of near-infrared fluorescent probes, and propose their future perspectives.

Contents

1 Introduction

2 Recognition of metal ions by near infrared fluorescent probes

2.1 Fluorescent probes for Hg2+

2.2 Fluorescent probes for Cu2+

2.3 Fluorescent probes for Fe3+

2.4 Fluorescent probes for Al3+

2.5 Fluorescent probes for Zn2+

3 Recognition of small molecules by near infrared fluorescent probes

3.1 Fluorescent probes for Cys

3.2 Fluorescent probes for N2H4

3.3 Fluorescent probes for H2S

3.4 Fluorescent probes for H2O2

4 Recognition of biomacromolecules by near infrared fluorescent probes

4.1 Fluorescent probes for Leucine aminopeptidase

4.2 Fluorescent probes for nucleic acids

4.3 Fluorescent probes for β-galactosidase

5 Conclusion and outlook

()
图1 荧光探针的经典结构[13]
Fig. 1 Classical structure of fluorescent probe[13]
表1 近红外荧光探针的相关参数
Table 1 Parameters of the near infrared fluorescent probes
Fluorescent probe Target molecule LOD λexem Stokes shift Quantum yield Solvent Cells imaged Ref
DCM-Hg Hg2+ 6.8 × 10 -8 mol/L 514/659 145 0.284 PBS/DMSO
(v∶v = 1∶1)
HepG2 cells 47
Cy-PT Hg2+ 0.18 μmol/L 587/708 120 - DMSO/HEPES
(v∶v = 2∶8)
A549 cells 48
CY1OH2S Hg2+ 0.32 μmol/L 630/710 95 - HEPES buffer HeLa cells 49
NIR-Cu Cu2+ 8.9 × 10 -8 mol/L 638/778 140 - CH3CN/HEPES
(v∶v = 1∶4)
SMMC7721 cells
and Living Mouse
50
NRh-Cu Cu2+ 0.95 ppb 590/735 145 - C2H6O/H2O
(v∶v = 1∶1)
HeLa cells and
living mice
51
DCM-Cu Cu2+ 2.54 × 10 -8 mol/L 560/700 140 0.23 DMSO/PBS
(v∶v = 1∶1)
MCF-7 cells 52
RHCC Fe3+ 1.2 × 10 -7 mol/L 650/700 50 0.283 C2H3N/HEPES
(v∶v = 1∶1 )
A549 cells and
zebrafishes
53
B-1 Fe3+ 14.2 nmol/L 565/627 62 0.47 H2O A549 cells 54
NIR-Rh Al3+ 3.0 × 10 -8 mol/L 690/743 53 - H2O/EtOH
(v∶v = 9∶1)
HeLa cells 55
BTZ-SF Al3+ 2.2 μmol/L 476/568 - 0.54 THF/H2O
(v∶v = 1∶9)
HeLa cells 56
YPT Zn2+ 12 nmol/L 502/670 168 - DMSO/H2O
(v∶v = 3∶2)
HeLa cells 57
NR-Zn Zn2+ 0.44 μmol/L 540/661 131 C2H6O/HEPES
(v∶v = 3∶7)
MCF-7 cells 58
Cys-WR Cys 0.83 μmol/L 580/653 73 - PBS A549 cells
and zebrafish
59
Cp-NIR Cys 48 nmol/L 600/760 160 - DMSO/PBS
(v∶v = 1∶1)
HeLa cells 60
SHCy-C Cys 31 nmol/L 610/770 - ethanol/PBS
(v∶v = 1∶4)
HeLa cells 61
Cy-WR N2H4 0.38 μmol/L 560/640 80 0.98 H2O A549 cells and zebrafish 62
DXM-OH N2H4 0.09 μmol/L 567/651 - - DMSO/PBS
(v∶v = 6∶4)
LO2 cells 63
Mito-NIR-SH H2S 6 nmol/L 570/660 90 PBS HeLa cells 64
DBT H2S 6.74 nmol/L 527/716 77 - C4H8O/PBS
(v∶v = 4∶1)
HCT116 cells, HepG2 cells and PC12 cells 65
NBD-SH H2S 0.27 μmol/L 600/660 40 0.29 DMSO/PBS
(v∶v = 1∶9)
HeLa cells 66
DCM-AC H2O2 2.1×10-8 mol/L 560/704 144 0.002 PBS HepG2 cells
and tumors
67
NRBE H2O2 75 nmol/L 585/670 - 0.36 PBS HepG2 cells 68
Cy-H2O2 H2O2 65 nmol/L 730/790 - - CH3OH/H2O
(v∶v = 85∶15)
HeLa cells and zebrafish 69
BODIPY-C-Leu LAP 41.9 ng/mL 480/578 98 0.94 PBS HeLa cells and A549 cells 70
TMN-Leu LAP 0.38 ng/mL 460/658 198 - DMSO/PBS
(v∶v = 1∶999)
HCT116 cells 71
DCM-Leu LAP 46 ng/mL 455/660 205 - DMSO/PBS
(v∶v = 3∶7)
SMMC-7721 cells
and HeLa cells
72
Gal-Pro β-galactosidase 0.057 nmol/L 596/703 107 0.95 PBS Human diploid and fibroblast(HDF) cells 73
Lyso-Gal β-galactosidase 0.022 units/mL 660/725 - - DMSO/PBS
(v∶v = 2∶8)
3T3, HeLa, MCF-7, and SKOV-3 cells 74
DP-GLU β-galactosidase 1.45×10-2 μg/L 550/670 131 - C2H3N/H2O
(v/v = 10/1)
HeLa cells and HepG2 cells 75
图2 DCM-Hg探针识别Hg2+的机理[47]
Fig. 2 The mechanism of Hg2+ recognition by the DCM-Hg probe[47]
图3 Cy-PT探针识别Hg2+的机理[48]
Fig. 3 The mechanism of Hg2+ recognition by the Cy-PT probe[48]
图4 CY1OH2S探针识别Hg2+的机理[48]
Fig. 4 The mechanism of Hg2+ recognition by the CY1OH2S probe[48]
图5 NIR-Cu探针识别Cu2+的机理[50]
Fig. 5 The mechanism of Cu2+ recognition by the NIR-Cu probe[50]
图6 NRh-Cu探针识别Cu2+的机理[51]
Fig. 6 The recognition mechanism of Cu2+ by the NRh-Cu probe[51]
图7 DCM-Cu探针识别Cu2+的机理[53]
Fig. 7 The recognition mechanism of Cu2+ by the DCM-Cu probe[53]
图8 RHCC探针识别Fe3+的机理[53]
Fig. 8 The recognition mechanism of Fe3+ by the RHCC probe[53]
图9 B-1探针识别Fe3+的机理[54]
Fig. 9 The recognition mechanism of Fe3+ by the B-1 probe[54]
图10 NIR-Rh探针识别Al3+的机理[55]
Fig. 10 The recognition mechanism of Al3+ by the NIR-Rh probe[55]
图11 BTZ-SF探针识别Al3+的机理[56]
Fig. 11 The recognition mechanism of Al3+ by the BTZ-SF probe[56]
图12 YPT探针识别Zn2+的机理[57]
Fig. 12 The recognition mechanism of Zn2+ by the YPT probe[57]
图13 NR-Zn探针识别Zn2+的机理[58]
Fig. 13 The recognition mechanism of Zn2+ by the NR-Zn probe[58]
图14 Cys-WR探针识别半胱氨酸的机理[59]
Fig. 14 The recognition mechanism of Cys by the Cys-WR probe[59]
图15 CP-NIR探针识别半胱氨酸的机理[60]
Fig. 15 The recognition mechanism of Cys by the CP-NIR probe[60]
图16 CP-NIR探针识别半胱氨酸的机理[61]
Fig. 16 The recognition mechanism of Cys by the CP-NIR probe[61]
图17 Cy-WR探针识别肼的机理[62]
Fig. 17 The recognition mechanism of hydrazine by Cy-WR probe[62]
图18 Cy-WR的选择性:1.探针; 2.肼; 3.一甲胺; 4.一水合氨; 5.吗啡; 6. N,N-二异丙基乙胺; 7.苯胺; 8.异烟肼; 9.半胱氨酸; 10.同型半胱氨酸; 11.谷胱甘肽; 12.硫化氢; 13.尿素; 14.Zn2+; 15.Hg2+; 16.Cd2+[62]
Fig. 18 Selectivity of Cy-WR: 1. Probe; 2. N2H4; 3. CH3NH2; 4. NH4OH; 5. Morpholine; 6. DIPEA; 7. Aniline; 8. Isoniazid; 9. Cys; 10. Hcy; 11. GSH; 12. H2S; 13. Urea; 14. Zn2+; 15. Hg2+; 16. Cd2+[62]
图19 Cy-WR探针细胞成像[62]
Fig. 19 Cell imaging of the Cy-WR probe[62]
图20 Cy-WR探针斑马鱼成像[62]
Fig. 20 Zebrafish image of the Cy-WR probe[62]
图21 DXM-OH探针识别N2H4的机理[63]
Fig. 21 The recognition mechanism of N2H4 by DXM-OH probe[63]
图22 Mito-NIR-SH探针识别H2S的机理[64]
Fig. 22 The recognition mechanism of H2S by Mito-NIR-SH probe[64]
图23 DBT探针识别H2S的机理[65]
Fig. 23 The recognition mechanism of H2S by DBT probe[65]
图24 NBD-SH探针识别H2S的机理[66]
Fig. 24 The recognition mechanism of H2S by NBD-SH probe[66]
图25 DCM-AC探针识别H2O2的机理[67]
Fig. 25 The recognition mechanism of H2O2 by DCM-AC probe[67]
图26 NRBE识别LAP的机理[68]
Fig. 26 The recognition mechanism of LAP by NRBE probe[68]
图27 Cy-H2O2探针识别H2O2的机理[69]
Fig. 27 The recognition mechanism of H2O2 by Cy-H2O2 probe[69]
图28 BODIPY-C-Leu探针识别LAP的机理[70]
Fig. 28 The recognition mechanism of LAP by BODIPY-C-Leu probe[70]
图29 BODIPY-C-Leu探针斑马鱼成像[70]
Fig. 29 Zebrafish image of the BODIPY-C-Leu probe[70]
图30 BODIPY-C-Leu的选择性:a: 空白;b: Ca2+;c: Mg2+;d: Zn2+;e: 半胱氨酸;f: 谷胱甘肽;g: 硫氢化钠;h: 葡萄糖;i: 脂肪酶;j: 抑肽酶;k: 胰蛋白酶;l: 纤维素酶;m: α-淀粉酶;n: 硫酸酯酶;o: 谷酰转肽酶;p: 弹性蛋白酶;q: α-糜蛋白酶;r: 亮氨酸氨基肽酶 [70]
Fig. 30 Selectivity of BODIPY-C-Leu: a: blank control; b: Ca2+; c: Mg2+; d: Zn2+; e: Cys; f: GSH; g: NaHS; h: glucose; i: lipase; j: aprotinin; k: trypsin; l: cellulase; m: α-amylase; n: sulfatase; o: GGT; p: ELA; q: α-Chy; r: LAP [70]
图31 BODIPY-C-Leu探针细胞成像[70]
Fig. 31 Cell imaging of the BODIPY-C-Leu probe[70]
图32 TMN-Leu探针识别LAP的机理[71]
Fig. 32 The mechanism of recognizing LAP by the TMN-Leu probe[71]
图33 DCM-Leu探针识别LAP的机理[72]
Fig. 33 The mechanism of recognizing LAP by the DCM-Leu probe[72]
图34 DCM-Leu探针与不同浓度的LAP反应后荧光强度变化曲线和线性曲线[72]
Fig. 34 The fluorescence intensity change curve and linear curve of probe DCM-Leu after the reaction with different concentration of LAP[72]
图35 DCM-Leu探针细胞成像[72]
Fig. 35 Cell imaging of the DCM-Leu probe[72]
图36 Gal-Pro探针识别β-半乳糖苷酶的机理[73]
Fig. 36 The mechanism of recognizing β-galactosidase by the Gal-Pro probe [73]
图37 Lyso-Gal探针识别β-半乳糖苷酶的机理[74]
Fig. 37 The mechanism of recognizing β-galactosidase by the Lyso-Gal probe [74]
图38 Lyso-Gal探针细胞成像[74]
Fig. 38 Cell imaging of the Lyso-Gal probe[74]
图39 Lyso-Gal孵育SKOV-3细胞不同时间的CLSM延时图像[74]
Fig. 39 CLSM time-lapse images of SKOV-3 cells incubated with Lyso-Gal at different time points[74]
图40 DP-GLU探针识别β-半乳糖苷酶的机理[75]
Fig. 40 The mechanism of recognizing β-galactosidase by the DP-GLU probe [75]
[1]
Yan F, Fan K, Bai Z, Zhang R, Zu F, Xu J, Li X. Trac-Trend. Anal. Chem., 2017, 97:15.
[2]
Li H D, Fan J L, Peng X J. Progress in Chemistry, 2017, 29(1):17.
李海东, 樊江莉, 彭孝军. 化学进展, 2017, 29(1):17.
[3]
Yu F B, Li P, Song P, Wang B S, Zhao J Z, Han K L. Chem. Commun., 2012, 48:2852.
[4]
Zhu J L, Ling Q H, Liu Q, Xu L. Journal of Applied Technology, 2019, 19(3):189.
朱俊龙, 凌庆慧, 刘茜, 徐林. 应用技术学报, 2019, 19(3):189.
[5]
Pak Y, Swamy K, Yoon J. Sensors, 2015, 15:24374.

URL     pmid: 26402684
[6]
Wang L L, Du W, Hu Z J, Uvdal K, Li L, Huang W. Angew. Chem. Int. Ed., 2019, 58:14026.
[7]
Wang Y, Huang C S, Jia N Q. Progress in Chemistry, 2020, 32(2):204.
王阳, 黄楚森, 贾能勤. 化学进展, 2020, 32(2):204.
[8]
Yang L, Niu J Y, Sun R, Xu Y J, Ge J F. Anal., 2018, 143:1813.
[9]
Minta A, Kao J Y, Tsien R Y. J. Biol. Chem., 1989, 264:8171.

URL     pmid: 2498308
[10]
Yuan L, Lin W Y, Zheng K B, He L W, Huang W M. Chem. Soc. Rev., 2013, 42:622.

doi: 10.1039/c2cs35313j     URL     pmid: 23093107
[11]
Tsien R Y, Harootunian A T. Cell Calcium, 1990, 11:93.

URL     pmid: 2354507
[12]
Chin J, Kim H J. Coord. Chem. Rev., 2018, 354:169.
[13]
Gao G B, Gong D J, Zhang M X, Sun T L. Acta Chimica Sin., 2016, 74:363.
高冠斌, 龚德君, 张明曦, 孙涛垒. 化学学报, 2016, 74:363.
[14]
Chang X H, Zhang J, Wu L H, Peng Y K, Yang X Y, Li X L, Ma A J, Ma J C, Chen G Q. Micromachines (Basel)., 2019, 10(6):422.
[15]
Li M, Li Y, Wang X, Cui X, Wang T. Chinese Chem. Lett., 2019, 30:1682.
[16]
Guo Z Q, Park S, Yoon J, Shin I. Chem. Soc. Rev., 2014, 43:16.

doi: 10.1039/c3cs60271k     URL     pmid: 24052190
[17]
Huang X, Fang Y, Li X, Xie Y X, Zhu W H. Dyes Pigments, 2011, 90:297.
[18]
Beija M, Afonso C A M, Martinho J M G. Chem. Soc. Rev., 2009, 38:2410.

doi: 10.1039/b901612k     URL     pmid: 19623358
[19]
Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H. J. Phys. Chem. B, 2003, 107:597.
[20]
Boens N, Leen V, Dehaen W. Chem. Soc. Rev., 2012, 41:1130.

URL     pmid: 21796324
[21]
Merkes J M, Lammers T, Kancherla R, Rueping M, Kiessling F, Banala S. Adv. Optical Mater., 2020, 8:1902115.

doi: 10.1002/adom.v8.11     URL    
[22]
Ushiroda S, Ruzycki N, Lu Y, Spitler M T, Parkinson B A. J. Am. Chem. Soc., 2005, 127:5158.

doi: 10.1021/ja044001t     URL     pmid: 15810850
[23]
Guo W, Zhang H X, Liu J. J. Shanxi Univ. Nat. Sci. Ed., 2017, 40:590.
郭炜, 张洪星, 刘景. 山西大学学报(自然科学版), 2017, 40:590.
[24]
Koreiviene J. Methods. Mol. Biol., 2020, 1980:47.

doi: 10.1007/7651_2017_101     URL     pmid: 29218464
[25]
Ge X L, Huang B, Zhang Z L, Liu X L, He M, Yu Z L, Hu B, Cui R, Liang X J, Pang D W. J. Mater. Chem. B, 2019, 7:5782.

doi: 10.1039/c9tb01112a     URL     pmid: 31482937
[26]
Du M, Huo B L, Liu J M, Li M W, Fang L Q, Yang Y X. Progress in Chemistry, 2018, 30(6):809.
杜曼, 霍宝龙, 霍宝龙, 刘杰民, 李梦文, 房乐秋, 杨运旭. 化学进展, 2018, 30(6):809.
[27]
Fu Y, Yang F Y, Zheng T C, Wu X L, Sun F Z, Chen L. Progress in Chemistry, 2015, 27(9):1213. 07b18a16-9241-45eb-8a0a-855f2ba73992

doi: 10.7536/PC150156     URL    
付杨, 颜范勇, 郑坦承, 母雪玲, 孙凤展, 陈莉. 化学进展, 2015, 27(9):1213. 07b18a16-9241-45eb-8a0a-855f2ba73992

doi: 10.7536/PC150156     URL    
[28]
Singleton M R, Dillingham M S, Wigley D B. Annu. Rev. Biochem., 2007, 76:23.

doi: 10.1146/annurev.biochem.76.052305.115300     URL     pmid: 17506634
[29]
Lv H, Yuan G, Zhang G B, Ren Z Q, He H P, Sun Q, Zhang X H, Wang S F. Dye. Pigment., 2020, 172:107658.

doi: 10.1016/j.dyepig.2019.107658     URL    
[30]
Xu Z H, Wang H W, Hou X F, Xu W L, Xiang T C, Wu C Z. Sensor Actuat. B: Chem., 2014, 201:469.

doi: 10.1016/j.snb.2014.05.026     URL    
[31]
Li C M, Chen T, Ocsoy I, Zhu G Z, Yasun E, You M X, Wu C C, Zheng J, Song E Q, Huang C Z, Tan W H. Adv. Funct. Mater., 2014, 24:1772.

doi: 10.1002/adfm.201301659     URL     pmid: 25530745
[32]
Park H M, Oh B N, Kim J H, Qiong W, Hwang I H, Jung K D, Kim C, Kim J. Tetrahedron Lett., 2011, 52:5581. 2711ed54-8415-484f-b88b-7729a7cd8999

doi: 10.1016/j.tetlet.2011.08.045     URL    
[33]
Ogasawara H, Grzybowski M, Hosokawa R, Sato Y, Taki M, Yamaguchi S. Chem. Commun., 2018, 54:299.

doi: 10.1039/C7CC07344E     URL    
[34]
Shen B X, Zhu W, Zhi X, Qian Y. Talanta, 2020, 208:120461.

doi: 10.1016/j.talanta.2019.120461     URL     pmid: 31816791
[35]
Mao C Y, Zuo F, Hou Y, Bu X H, Feng P Y. Angew. Chem. Int. Ed., 2014, 53:10485.

doi: 10.1002/anie.201406017     URL    
[36]
Paul B D, Snyder S H. Nat. Rev. Mol. Cell Biol., 2012, 13:499.

doi: 10.1038/nrm3391     URL     pmid: 22781905
[37]
Al-Ansi N, Salah A, Adlat S, Qi B. Synth. Met., 2020, 264:116380.

doi: 10.1016/j.synthmet.2020.116380     URL    
[38]
Wang J P, Huang S Y, He Q Q, Bing H J, Chen X, Zhang X F, Tian X, Zhou J, Wilcke W, Wu Y H. Biol. Fertil. Soils, 2020, 56:281.

doi: 10.1007/s00374-019-01419-x     URL    
[39]
Jiang G Y, Zeng G J, Zhu W P, Li Y D, Dong X B, Zhang G X, Fan X L, Wang J G, Wu Y Q, Tang B Z. Chem. Commun., 2017, 53:4505.

doi: 10.1039/C7CC00249A     URL    
[40]
Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G. Coord. Chem. Rev., 2009, 253:2665.
[41]
Gaeta A, Hider R C. Br. J. Pharmacol., 2005, 146:1041.
[42]
Panda S, Panda A, Zade S S. Coord. Chem. Rev., 2015, 300:86.
[43]
Yang Z L, Loh K Y, Chu Y T, Feng R P, Satyavolu N S R, Xiong M Y, Nakamata Huynh S M, Hwang K, Li L L, Xing H, Zhang X B, Chemla Y R, Gruebele M, Lu Y. J. Am. Chem. Soc., 2018, 140:17656.

URL     pmid: 30427666
[44]
Long L, Tan X, Luo S L, Shi C M. New J. Chem., 2017, 41:8899.
[45]
Zong L Y, Xie Y J, Li Q Q, Li Z. Sensor Actuat. B: Chem., 2017, 238:735.
[46]
Wang J L, Li W L, Long L P. Sensor. Actuat. B-Chem., 2017, 245:462.
[47]
Huang L Y, Yang Z, Zhou Z L, Li Y Q, Tang S P, Xiao W P, Hu M, Peng C, Chen Y X, Gu B, Li H T. Dye. Pigment., 2019, 163:118.
[48]
Yuan G, Lv H, Liu H, He H P, Sun Q, Zhang X H, wang S F. Dye. Pigment., 2020, 183:108674.
[49]
Wang Y, Hou X F, Li Z S, Liu C H, Hu S S, Li C M, Xu Z H, Wang Y. Dye. Pigment., 2020, 173:107951.
[50]
Guo R, Wang Q A, Lin W Y. J. Fluoresc., 2017, 27:1655.

URL     pmid: 28424935
[51]
Peng X, Wei X, Chen T Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 208:349.
[52]
Li Z, Xu Y Q, Xu H D, Cui M Y, Liu T G, Ren X Y, Sun J F, Deng D W, Gu Y Q, Wang P. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2021, 244:118819.
[53]
Gu X F, Zhang X X, Liu Z, Cheng Y, Ma F L, Dai Y P, Xue T Z, Zheng Y, Qi Z J. J. Lumin., 2019, 207:613.
[54]
Hu Y, Zhao F, Hu S L, Dong Y Y, Li D Z, Su Z H. J. Photochem. Photobiol. A: Chem., 2017, 332:351.
[55]
Li Z S, Li L J, Sun T T, Liu L M, Xie Z G. Dye. Pigment., 2016, 128:165.
[56]
Chen Y H, Wei T W, Zhang Z J, Chen T T, Li J, Qiang J, Lv J, Wang F, Chen X Q. Ind. Eng. Chem. Res., 2017, 56:12267.
[57]
Zhang W X, Jin X X, Chen W, Jiang C H, Lu H F. Anal. Methods, 2019, 11:2396.
[58]
Zhang Y B, Yuan B F, Ma D G. Inorganica Chimica Acta, 2020, 508:119640.
[59]
Zhang X Y, Liu H, Ma Y Y, Qu W B, He H P, Zhang X H, Wang S F, Sun Q, Yu F B. Dye. Pigment., 2019, 171:107722.
[60]
Qi Y, Huang Y, Li B W, Zeng F, Wu S Z. Anal. Chem., 2018, 90:1014.
[61]
Cai S T, Liu C, Jiao X J, Zhao L C, Zeng X S. J. Mater. Chem. B, 2020, 8:2269.
[62]
Li J, Cui Y C, Bi C X, Feng S Q, Yu F Z, Yuan E, Xu S Z, Hu Z, Sun Q, Wei D G, Yoon J. Anal. Chem., 2019, 91:7360.
[63]
Wu C Y, Xie R H, Pang X, Li Y Q, Zhou Z L, Li H T. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 243:118764.
[64]
Zhao X J, Li Y T, Jiang Y R, Yang B Q, Liu C, Liu Z H. Talanta, 2019, 197:326.
[65]
Li Q Y, Wang Z C, Zhao M, Hong Y P, Jin Q W, Yao S Y, Zheng C L, Quan Y Y, Ye X X, Huang Z S. Sensor Actuat. B: Chem., 2019, 298:126898.
[66]
Ismail I, Chen Z Y, Ji X R, Sun L, Yi L, Xi Z. Molecules, 2020, 25:437.
[67]
Xiong J, Xia L, Li L, Cui M, Gu Y, Wang P. Sensor. Actuat. B-Chem., 2019, 288:127.
[68]
Diao Q P, Guo H, Yang Z W, Luo W W, Li T C, Hou D Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 223:117284.
[69]
Huang X, Li Z P, Liu Z X, Zeng C C, Hu L M. Dye. Pigment., 2019, 165:518.
[70]
Zhou Z, Wang F Y, Yang G C, Lu C F, Nie J Q, Chen Z X, Ren J, Sun Q, Zhao C C, Zhu W H. Anal. Chem., 2017, 89:11576.
[71]
Zhang W D, Liu F Y, Zhang C, Luo J G, Luo J, Yu W Y, Kong L Y. Anal. Chem., 2017, 89:12319.

doi: 10.1021/acs.analchem.7b03332     URL     pmid: 29048879
[72]
Gu K Z, Liu Y J, Guo Z Q, Lian C, Yan C X, Shi P, Tian H, Zhu W H. ACS Appl. Mater. Interfaces, 2016, 8:26622.

URL     pmid: 27667645
[73]
Zhang J T, Li C, Dutta C, Fang M X, Zhang S W, Tiwari A, Werner T, Luo F T, Liu H Y. Anal. Chimica Acta, 2017, 968:97.
[74]
Li X Q, Pan Y T, Chen H, Duan Y K, Zhou S W, Wu W B, Wang S W, Liu B. Anal. Chem., 2020, 92:5772.
[75]
Wei X Z, Hao M J, Hu X X, Song Z L, Wang Y, Sun R H, Zhang J, Yan M, Ding B Y, Yu J H. Sensor. Actuat. B Chem., 2021, 326:128849.
[76]
Bruijn L I, Miller T M, Cleveland D W. Annu. Rev. Neurosci., 2004, 27:723.
[77]
Jung H S, Kwon P S, Lee J W, Kim J I, Hong C S, Kim J W, Yan S H, Lee J Y, Lee J H, Joo T, Kim J S. J. Am. Chem. Soc., 2009, 131:2008.

doi: 10.1021/ja808611d     URL     pmid: 19191706
[78]
Li P, Duan X, Chen Z Z, Liu Y, Xie T, Fang L B, Li X R, Yin M, Tang B. Chem. Commun., 2011, 47:7755.
[79]
Hurrell R, Egli I. Am. J. Clin. Nutr., 2010, 91:1461S.
[80]
Li R H. Journal of kaifeng institute of education, 2015, 35:282.
李荣华. 开封教育学院学报, 2015, 35:282.
[81]
Sahoo, Crisponi. Molecules, 2019, 24:3267.
[82]
Bugaenko D I, Karchava A V, Yunusova Z A, Yurovskaya M A. Chem. Heterocycl. Compd., 2019, 55:483.
[83]
Zhang D N, Wang S F, Gomez M A, Wang Y, Jia Y F. Chemosphere, 2019, 237:124503.

URL     pmid: 31398610
[84]
Tiwari K, Mishra M, Singh V P. RSC Adv., 2013, 3:12124.
[85]
Han T, Feng X, Tong B, Shi J B, Chen L, Zhi J G, Dong Y P. Chem. Commun., 2012, 48:416.
[86]
Bao X F, Cao Q S, Xu Y Z, Gao Y X, Xu Y, Nie X M, Zhou B J, Pang T, Zhu J. Bioorg. Med. Chem., 2015, 23:694.
[87]
Gupta V, Jain A, Maheshwari G. Talanta, 2007, 72:1469.

doi: 10.1016/j.talanta.2007.01.064     URL     pmid: 19071785
[88]
Xu Z C, Kim G H, Han S J, Jou M J, Lee C, Shin I, Yoon J. Tetrahedron, 2009, 65:2307.
[89]
Provinciali M, Donnini A, Argentati K, di Stasio G, Bartozzi B, Bernardini G. Free. Radic. Biol. Med., 2002, 32:431.
[90]
Yan J, Fan L, Qin J C, Li C R, Yang Z Y. Tetrahedron Lett., 2016, 57:2910.
[91]
Xu Z C, Yoon J, Spring D R. Chem. Soc. Rev., 2010, 39:1996.

doi: 10.1039/b916287a     URL     pmid: 20428518
[92]
Yang M D, Zhang Y, Zhu W J, Wang H Z, Huang J, Cheng L H, Zhou H P, Wu J Y, Tian Y P. J. Mater. Chem. C, 2015, 3:1994.
[93]
Gu X F, Zhang X X, Liu Z, Cheng Y, Ma F L, Dai Y P, Xue T Z, Zheng Y, Qi Z J. J. Lumin., 2019, 207:613.

doi: 10.1016/j.jlumin.2018.12.014     URL    
[94]
Yang X Z, Wei X R, Sun R, Xu Y J, Ge J F. Talanta, 2020, 209:120580.
[95]
Wang X, Zhao Q, Sun J, Lv J Z, Tang B. Progress in Chemistry, 2013, 25:179.
王栩, 赵谦, 孙娟, 吕建政, 唐波. 化学进展, 2013, 25:179.
[96]
Yang X Z, Wei X R, Sun R, Xu Y J, Ge J F. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 226:117582.
[97]
Abdulle A E, van Roon A M, Smit A J, Pasch A, Meurs M, Bootsma H, Bakker S J L, Said M Y, Fernandez B O, Feelisch M, Goor H, Mulder D J. Physiol. Rep., 2019, 7:e14017.

URL     pmid: 30916482
[98]
Xia S, Zhang Y B, Fang M X, Mikesell L, Steenwinkel T E, Wan S L, Phillips T, Luck R L, Werner T, Liu H Y. ChemBioChem, 2019, 20:1986.

doi: 10.1002/cbic.201900071     URL     pmid: 31197917
[99]
Yin C X, Xiong K M, Huo F J, Salamanca J C, Strongin R M. Angew. Chem. Int. Ed., 2017, 56:13188.
[100]
Guo S H, Leng T H, Wang K, Shen Y J, Wang C Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 223:117344.
[101]
Yang Y, Liu L, Zha J H, Yuan N Y. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 204:799.
[102]
Zhu S S, Lin W Y, Yuan L. Anal. Methods, 2013, 5:3450.
[103]
Wei Y F, Wu M X, Wei X R, Sun R, Xu Y J, Ge J F. Talanta, 2020, 218:121164.

doi: 10.1016/j.talanta.2020.121164     URL     pmid: 32797918
[104]
Lu Z L, Shi X M, Ma Y F, Fan W L, Lu Y N, Wang Z, Fan C H. Sensor Actuat. B: Chem., 2018, 258:42.
[105]
Sun L J, Chen Z J. Curr. Opin. Cell Biol., 2004, 16:339.
[106]
Lavu M, Bhushan S, Lefer D J. Clin. Sci., 2011, 120:219.
[107]
Skovgaard N, Gouliaev A, Aalling M, Simonsen U. Curr. Pharm. Biotechnol., 2011, 12:1385.
[108]
Martelli A, Testai L, Breschi M C, Blandizzi C, Virdis A, Taddei S, Calderone V. Med. Res. Rev., 2012, 32:1093.

doi: 10.1002/med.20234     URL     pmid: 23059761
[109]
Jin X L, Zhao S M, Wang T, Si L L, Liu Y G, Zhao C J, Zhou H W, Leng X, Zhang X H. Anal. Bioanal. Chem., 2019, 411:5985.

URL     pmid: 31236651
[110]
Wu M X, Sha X L, Wei X R, Sun R, Chen Y, Gao J. Anal. Chim. Acta, 2019, 1068:60.

URL     pmid: 31072478
[111]
Hong J X, Feng W Y, Feng G Q. Sensor Actuat. B: Chem., 2018, 262:837.
[112]
Luo W F, Xue H Y, Ma J J, Wang L, Liu W S. Anal. Chimica Acta, 2019, 1077:273.
[113]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275:121.

doi: 10.1016/j.jhazmat.2014.04.054     URL     pmid: 24857896
[114]
Chen X Q, Tian X Z, Shin I, Yoon J. Chem. Soc. Rev., 2011, 40:4783.

doi: 10.1039/c1cs15037e     URL     pmid: 21629957
[115]
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Physiol. Rev., 2009, 89:27.

URL     pmid: 19126754
[116]
Zhang R L, Zhao J, Han G M, Liu Z J, Liu C, Zhang C, Liu B H, Jiang C L, Liu R Y, Zhao T T, Han M Y, Zhang Z P. J. Am. Chem. Soc., 2016, 138:3769.

URL     pmid: 26938117
[117]
Li H D, Yao Q C, Fan J L, Du J J, Wang J Y, Peng X J. Biosens. Bioelectron., 2017, 94:536.

doi: 10.1016/j.bios.2017.03.039     URL     pmid: 28347967
[118]
Feng F D, He F, An L L, Wang S, Li Y L, Zhu D B. Adv. Mater., 2008, 20:2959.
[119]
Tatikolov A S. J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13:55.
[120]
Chai Y, Gao Y T, Xiong H W, Lv W, Yang G C, Lu C F, Nie J Q, Ma C, Chen Z X, Ren J, Wang F Y. Anal., 2019, 144:463.
[121]
Wang T L, Sun Q, Xiong H W, Ma C, Lu C F, Nie J Q, Yang G C, Chen Z X, Zhang Y X, Ren J, Wang F Y, Zhu W H. Sensor Actuat. B: Chem., 2020, 321:128631.
[122]
Lee H W, Heo C H, Sen D, Byun H O, Kwak I H, Yoon G, Kim H M. Anal. Chem., 2014, 86:10001.

URL     pmid: 25293957
[123]
Kamiya M, Asanuma D, Kuranaga E, Takeishi A, Sakabe M, Miura M, Nagano T, Urano Y. J. Am. Chem. Soc., 2011, 133:12960.

URL     pmid: 21786797
[124]
Yang X Z, Xu B, Shen L, Sun R, Xu Y J, Song Y L, Ge J F. Anal. Chem., 2020, 92:3517.

doi: 10.1021/acs.analchem.0c00054     URL     pmid: 32066230
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[8] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[9] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[10] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[15] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.