English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 179-187 DOI: 10.7536/PC200637 前一篇   后一篇

• 综述 •

多彩金纳米簇:从结构到生物传感和成像

孙亚芳1,2, 周子平1,2, 舒桐1,2,3,*(), 钱立生1,*(), 苏磊1,2, 张学记1,2,4,*()   

  1. 1 安徽科技学院生命与健康科学学院 凤阳 233100
    2 北京科技大学北京市生物工程与传感技术重点实验室 生物工程与传感技术研究中心 化学与生物工程学院 北京 100083
    3 华南理工大学 广东省分子聚集发光重点实验室 广州 510640
    4 深圳大学生物医学与工程学院 医学部 深圳 518060
  • 收稿日期:2020-06-11 修回日期:2020-07-07 出版日期:2020-12-21 发布日期:2020-09-10
  • 通讯作者: 舒桐, 钱立生, 张学记
  • 基金资助:
    国家自然科学基金项目(21904011); 国家自然科学基金项目(21890742); 中央高校基本科研业务费(FRF-TP-19-010A3); 广东省分子聚集发光重点实验室开放基金资助课题(2019B030301003)

Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging

Yafang Sun1,2, Ziping Zhou1,2, Tong Shu1,2,3,*(), Lisheng Qian1,*(), Lei Su1,2, Xueji Zhang1,2,4,*()   

  1. 1 Research Center for Biomedical and Health Science, Anhui Science and Technology University, Fengyang 233100, China
    2 Beijing Key Laboratory of Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    3 Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology,Guangzhou 510640, China
    4 School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
  • Received:2020-06-11 Revised:2020-07-07 Online:2020-12-21 Published:2020-09-10
  • Contact: Tong Shu, Lisheng Qian, Xueji Zhang
  • About author:
    * Correspondence: (Tong Shu);
    (Lisheng Qian);
    †These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21904011); National Natural Science Foundation of China(21890742); Fundamental Research Funds for the Central Universities(FRF-TP-19-010A3); Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(South China University of Technology)(2019B030301003)

金纳米簇是一种具有发光性能的“类分子”新兴纳米材料。通过调控金原子数目和配体组成性质,金纳米簇可以实现同激发光下不同波段发射,从而展现出“五彩缤纷”的发光特性,这使其被广泛应用于光催化、光学器件、传感和成像等多个领域。因此,开发和优化具有优异发光性能的金纳米簇一直是化学、材料和生物学科的研究热点。本文立足于金纳米簇的发光色彩,根据不同发光颜色总结了相应金纳米簇的合成原理和方法,并对影响金纳米簇发光性能的因素进行了探究。同时,也总结了近年来这些“多彩”金纳米簇在生物传感和生物成像方向的应用,并对金纳米簇发展面临的挑战及发展的趋势分别进行了探讨和展望。

Gold nanoclusters are a new kind of "Quasi-molecule" nanomaterials with luminescent properties. By controlling the number of gold atoms and the composition of ligands, gold nanoclusters can realize the emission of different bands under the same excitation, thus showing the "colorful" luminescence characteristics, which make them widely used in many fields such as photocatalysis, optical devices, sensing, and imaging. Therefore, the development and optimization of the synthesis method of gold nanoclusters with good fluorescence performance have been a research hotspot in the field of chemical biomaterials. In this paper, based on the luminescent color of gold nanoclusters, the synthesis principles and methods of corresponding gold nanoclusters are summarized according to different colors, and the factors affecting the luminescent properties of gold nanoclusters are explored. At the same time, the applications of these "colorful" gold nanoclusters in biosensing and bioimaging in recent years are summarized, and the challenges and development trends of gold nanoclusters are discussed and prospected respectively.

Contents

1 Introduction

2 Blue and green luminescent gold nanoclusters

2.1 Synthesis

2.2 Application

3 Yellow, orange and red luminescent gold nanoclusters

3.1 Synthesis

3.2 Application

4 Near-infrared gold nanoclusters

4.1 Synthesis

4.2 Application

5 Conclusion and outlook

()
图1 通过金原子数和配体性质对蓝绿色发光金纳米簇的发光性能进行调节:(a)用pH调节金原子数目影响金纳米簇发光颜色示意图[27];(b)用小分子L-精氨酸调节配体性质影响金纳米簇绿色发光强弱示意图[29]
Fig. 1 Adjusting the fluorescence performance of blue-green fluorescent gold nanoclusters by the number of gold atoms and the properties of ligands.(a) Adjusting the number of gold atoms with pH to influence the fluorescence color of gold nanoclusters[27].(b) Adjusting the properties of ligands with small molecule L-arginine to influence the green fluorescence intensity of gold nanoclusters[29]
图2 绿色发光金纳米簇用于检测精氨酸酶时的发光强度变化示意图[31]
Fig. 2 Schematic diagram of fluorescence intensity change of green fluorescent gold nanoclusters in the detection of arginase[31]
图3 (a)刻蚀法合成黄橙红色发光金纳米簇时,刻蚀时间调节金原子数目影响金纳米簇发光颜色示意图和(b)相应发射光谱图[37]
Fig. 3 (a) Schematic diagram of the influence of etching time on the fluorescent color of gold nanoclusters by adjusting the number of gold atoms in the synthesis of yellow orange red fluorescent gold nanoclusters by etching and (b) their corresponding emission spectra[37]
图4 红色发光金纳米簇与SYTO9核酸染料细胞成像及发光性能对比示意图[45]
Fig. 4 Schematic diagram of cell imaging and fluorescence performance comparison between red fluorescent gold nanoclusters and SYTO9 nucleic acid dyes[45]
图5 在谷胱甘肽与氯金酸的摩尔比从0.85∶1到1.1∶1之间时以GSH为模板合成的金纳米簇AuNCs的发射光谱[62]
Fig. 5 Emission spectra of AuNCs@GSH in the molar ratios of [GSH]/[HAuCl4] from 0.85∶1 to 1.1∶1.[62]
图6 近红外金纳米簇用于活体成像示意图[65]
Fig. 6 Schematic diagram of near infrared gold nanoclusters for in vivo imaging[65]
[1]
Li G, Jin R C. Acc. Chem. Res., 2013, 46:1749.

URL     pmid: 23534692
[2]
Zhou M, Zeng C J, Chen Y X, Zhao S, Sfeir M Y, Zhu M Z, Jin R C. Nat. Commun., 2016, 7:13240.

URL     pmid: 27775036
[3]
Li J M, Wang X D, Li F B, Yuan G Q. Journal of Molecular Catalysis China, 2008, 22(5):439.
李冀闽, 汪晓东, 李峰波, 袁国卿. 分子 催化, 2008, 22(5):439.
[4]
Wen X M, Yu P, Toh Y R, Tang J. J. Phys. Chem. C, 2013, 117:3621.
[5]
Ke C Y, Wu Y T, Tseng W L. Biosens. Bioelectron., 2015, 69:46.
[6]
Yu M Q, Wang H, Fu F, Li L Y, Li J, Li G, Song Y, Swihart M T, Song E Q. Anal. Chem., 2017, 89:4085.

doi: 10.1021/acs.analchem.6b04958     URL     pmid: 28287715
[7]
Hwang G B, Huang H, Wu G W, Shin J, Kafizas A, Karu K, Toit H D, Alotaibi A M, Mohammad-Hadi L, Allan E, MacRobert A J, Gavriilidis A, Parkin I P. Nat. Commun., 2020, 11:1207.
[8]
Yang X C, Qian J Z, Wan Q L, Mo Z H. Prog. Chem., 2007, 19:689.
杨小超, 钱俊臻, 万巧玲, 莫志宏. 化学进展, 2007, 19:689.
[9]
Shen J J, Chen W T, Ding Y. Acta Pharmaceutica Sinica, 2018, 53(9):1484.
沈佳佳, 陈婉婷, 丁娅. 药学学报, 2018, 53(9):1484.
[10]
Han X S, Luan X Q, Su H F, Li J J, Yuan S F, Lei Z, Pei Y, Wang Q M. Angew. Chem. Int. Ed., 2020, 59:2309.
[11]
Qu X C, Li Y C, Li L, Wang Y R, Liang J N, Liang J M. J. Nanomater., 2015, 2015:1.
[12]
Yang W T, Guo W S, Zhang B B, Chang J. Acta Chimica Sinica, 2014, 72(12):1209.
杨维涛, 郭伟圣, 张兵波, 常津. 化学学报, 2014, 72(12):1209.
[13]
Qian H F, Zhu Y, Jin R C. ACS Nano, 2009, 3:3795.
[14]
Zhou Y, Li Z, Zheng K, Li G. Acta. Phys.-Chimi. Sin., 2018, 34(7):786.
[15]
Liu Z, Jin S S, Zhu M Z. Progress in Chemistry, 2011, 23(10):2055.
刘钊, 金申申, 朱满洲. 化学进展, 2011, 23(10):2055.
[16]
Wu Z K, Jin R C. Nano Lett., 2010, 10:2568.
[17]
Nie H, Li M J, Hao Y J, Wang X D, Zhang S X A. Chem. Sci., 2013, 4:1852.
[18]
Uehara N, Sonoda N, Haneishi C. Colloids Surfaces A: Physicochem. Eng. Aspects, 2018, 538:14.
[19]
Zhang Y, Zhang C Y, Xu C, Wang X L, Liu C, Waterhouse G I N, Wang Y L, Yin H Z. Talanta, 2019, 200:432.

URL     pmid: 31036206
[20]
Cui M L, Zhao Y, Song Q J. Trac Trends Anal. Chem., 2014, 57:73.
[21]
Wu X, He X X, Wang K M, Xie C, Zhou B, Qing Z H. Nanoscale, 2010, 2:2244.
[22]
Yu X J, Han L L, Kun X. Chemical Journal of Chinese Universities, 2017, 38:2169.
于锡娟, 韩璐璐, 混旭. 高等学校化学学报, 2017, 38:2169.
[23]
Zheng J, Petty J T, Dickson R M. J. Am. Chem. Soc., 2003, 125:7780.
[24]
Li Y, Wen Q L, Liu A Y, Long Y F, Liu P, Ling J, Ding Z T, Cao Q E. Microchimica Acta, 2020, 187:106.

URL     pmid: 31916054
[25]
Zhou R J, Shi M M, Chen X Q, Wang M, Chen H Z. Chem. Eur. J., 2009, 15:4944.

doi: 10.1002/chem.200802743     URL     pmid: 19301340
[26]
Lu F N, Yang H W, Yuan Z Q, Nakanishi T, Lu C, He Y. Sensor Actuat. B: Chem., 2019, 291:170.
[27]
Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. Adv. Funct. Mater., 2011, 21:3508.
[28]
Kennedy T A C, MacLean J L, Liu J W. Chem. Commun., 2012, 48:6845.
[29]
Deng H H, Shi X Q, Wang F F, Peng H P, Liu A L, Xia X H, Chen W. Chem. Mater., 2017, 29:1362.
[30]
Luo J J, Rasooly A, Wang L Q, Zeng K, Shen C C, Qian P, Yang M H, Qu F L. Microchimica Acta, 2016, 183:605.
[31]
Deng H H, Shi X Q, Peng H P, Zhuang Q Q, Yang Y, Liu A L, Xia X H, Chen W. ACS Appl. Mater. Interfaces, 2018, 10:5358.

doi: 10.1021/acsami.7b19513     URL     pmid: 29373021
[32]
Wei M, Tian Y, Wang L J, Hong Y K, Sha Y L. J. Nanoparticle Res., 2017, 19:248.
[33]
Deng H H, Zhang L N, He S B, Liu A L, Li G W, Lin X H, Xia X H, Chen W. Biosen. Bioelectron., 2015,65:.
[34]
Xu S M, Yang H, Zhao K, Li J G, Mei L Y, Xie Y, Deng A P. RSC Adv., 2015, 5:11343.
[35]
Xie J P, Zheng Y G, Ying J Y. J. Am. Chem. Soc., 2009, 131:888.
[36]
Yan L, Cai Y Q, Zheng B Z, Yuan H Y, Guo Y, Xiao D, Choi M M F. J. Mater. Chem., 2012, 22:1000.
[37]
Bain D, Maity S, Paramanik B, Patra A. ACS Sustainable Chem. Eng., 2018, 6:2334.
[38]
Desai M L, Basu H, Saha S, Singhal R K, Kailasa S K. J. Mol. Liq., 2020, 304:112697.
[39]
Sun H H, Qing T P, He X X, Shangguan J F, Jia R C, Bu H C, Huang J, Wang K M. Anal. Chimica Acta, 2019, 1070:88.
[40]
Jia Y X, Sun T X, Jiang Y N, Sun W Y, Zhao Y, Xin J W, Hou Y T, Yang W S. Anal., 2018, 143:5145.
[41]
Wei Y F, Luan W L, Gao F, Hou X Y. Part. Part. Syst. Charact., 2019, 36:1900314.
[42]
Luo Z T, Yuan X, Yu Y, Zhang Q B, Leong D T, Lee J Y, Xie J P. J. Am. Chem. Soc., 2012, 134:16662.
[43]
Pan Y T, Li Q Z, Zhou Q, Zhang W, Yue P, Xu C Z, Qin X M, Yu H Z, Zhu M Z. Talanta, 2018, 188:259.
[44]
Ding C Q, Tian Y. Biosens. Bioelectron., 2015, 65:183.
[45]
Wang Y N, Wang X J, Ma X Q, Chen Q, He H, Nau W M, Huang F. Part. Part. Syst. Charact., 2019, 36:1900281.
[46]
Tian L, Zhao W J, Li L, Tong Y L, Peng G L, Li Y Q. Sensor Actuat. B: Chem., 2017, 240:114.
[47]
Yuan Y, He X X, Shi H, Wang K M, Wu X, Huo X Q. Chemical Journal of Chinese Universities, 2010, 31(11):2167.
袁媛, 何晓晓, 石慧, 王柯敏, 伍旭霍希琴 . 高等学校化学学报, 2010, 31(11):2167.
[48]
Katla S K, Zhang J, Castro E, Bernal R A, Li X J. ACS Appl. Mater. Interfaces, 2018, 10:75.
[49]
Zhu S X, Wang X Y, Liu L, Li L D. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 597:124764.
[50]
Khlebtsov B, Tuchina E, Tuchin V, Khlebtsov N. RSC Adv., 2015, 5:61639.
[51]
Poderys V, Jarockyte G, Bagdonas S, Karabanovas V, Rotomskis R. J. Photochem. Photobiol. B: Biol., 2020, 204:111802.
[52]
Peng T, Wang J Y, Xie S L, Yao K, Sun S J, Zeng Y Y, Jiang H Y. Chinese Journal of Analytical Chemistry, 2018, 46(3):373.
彭涛, 王见一, 谢三磊, 姚凯, 孙淑娟, 曾于洋, 江海洋. 分析化学, 2018, 46(3):373.
[53]
Cai Y L, Zhang J M. Chin. J. Anal. Chem., 2018, 46:952.
蔡宇玲, 张纪梅. 分析化学, 2018, 46:952.
[54]
Sha Q Y, Sun B Y, Yi C, Guan R X, Fei J, Hu Z Y, Liu B F, Liu X. Sensor Actuat. B: Chem., 2019, 294:177.
[55]
Govindaraju S, Reddy A S, Kim J, Yun K. Appl. Surf. Sci., 2019, 498:143837.
[56]
Tian D H, Qian Z S, Xia Y S, Zhu C Q. Langmuir, 2012, 28:3945.
[57]
Wu X L, Wu P L, Gu M Y, Xue J. Anal. Chimica Acta, 2020, 1104:140.
[58]
Sun Y Q, Wu J P, Wang C X, Zhao Y Q, Lin Q. New J. Chem., 2017, 41:5412.
[59]
Zhao P, He K Y, Han Y T, Zhang Z, Yu M Z, Wang H H, Huang Y, Nie Z, Yao S Z. Anal. Chem., 2015, 87:9998.
[60]
Jin R C, Zeng C J, Zhou M, Chen Y X. Chem. Rev., 2016, 116:10346.
[61]
Wan X K, Xu W W, Yuan S F, Gao Y, Zeng X C, Wang Q M. Angew. Chem. Int. Ed., 2015, 54:9683.
[62]
Qin L, He X W, Chen L X, Zhang Y K. ACS Appl. Mater. Interfaces, 2015, 7:5965.
[63]
Luo Z T, Nachammai V, Zhang B, Yan N, Leong D T, Jiang D E, Xie J P. J. Am. Chem. Soc., 2014, 136:10577.

URL     pmid: 25014336
[64]
Liu H L, Hong G S, Luo Z T, Chen J C, Chang J L, Gong M, He H, Yang J, Yuan X, Li L L, Mu X Y, Wang J Y, Mi W B, Luo J, Xie J P, Zhang X D. Adv. Mater., 2019, 31:1901015.
[65]
Chen Y, Montana D M, Wei H, Cordero J M, Schneider M, Le Guével X, Chen O, Bruns O T, Bawendi M G. Nano Lett., 2017, 17:6330.

URL     pmid: 28952734
[66]
Yoo S W, Mun H, Oh G, Ryu Y, Kim M G, Chung E. SPIE BiOS. Proc SPIE 9328, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII, San Francisco, California, USA. 2015. 9328:93280C.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[5] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[6] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[7] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[8] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[9] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[10] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[11] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[12] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[13] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[14] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[15] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.