English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 895-906 DOI: 10.7536/PC200758   后一篇

• 综述 •

氧杂环丁烷的合成

符志成, 许家喜*()   

  1. 北京化工大学化学学院有机化学系 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2020-07-28 修回日期:2020-09-29 出版日期:2021-06-20 发布日期:2020-12-28
  • 通讯作者: 许家喜
  • 基金资助:
    国家自然科学(21572017); 国家自然科学(21772010)

Synthesis of Oxetanes

Zhicheng Fu, Jiaxi Xu*()   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2020-07-28 Revised:2020-09-29 Online:2021-06-20 Published:2020-12-28
  • Contact: Jiaxi Xu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21572017); National Natural Science Foundation of China(21772010)

氧杂环丁烷作为一类饱和四元环醚类化合物,不仅是重要的有机合成中间体,也是天然和合成的具有抗癌、抗HIV、抑制谷氨酰胺合成酶等多种生物或药物活性化合物分子结构中的重要活性单元。因此,发展氧杂环丁烷骨架的有效合成方法非常重要。本文以分子内形成C—C键的环化反应、分子内形成C—O键的Williamson醚化反应、烯烃和醛酮[2+2]光环加成反应(Paternò-Büchi反应)、过渡金属催化的形式[2+2]环加成反应、硫叶立德介导的环氧乙烷扩环反应和C—H键氧化环化反应等方面较系统综述了近5年内关于氧杂环丁烷合成方法的新进展。希望本文能为致力于发展构建氧杂环丁烷骨架的有机合成化学家提供一些有价值的信息,以便促进氧杂环丁烷合成方法的发展及应用。

Oxetanes are a class of saturated four-membered cyclic ether compounds. They are not only an important class of organic synthetic intermediates, but also crucial active structural units of natural and synthetic biological and medicinal active compounds possessing anti-cancer, inhibition of human immunodeficiency virus, as well as inhibiting glutamine synthetase in clinical practice. Thus, it is in high demand to develop efficient methods for constructing oxetane structural motifs. In this review, the intramolecular cyclization reaction via C—C bond formation, the intramolecular Williamson etherification by the formation of C—O bond, the [2+2] photocycloadditions of alkenes with aldehydes and ketones(named as Paternò-Büchi reaction), transition metal catalyzed formal [2+2] cycloadditions, sulfide ylide-mediated epoxide ring expansion, and the C—H bond oxidative cyclization are reviewed with a focus on new progress in the synthesis of oxetanes during the last five years. It is hoped that this review can provide some valuable information for the organic chemists who are interested in the construction of the oxetane skeleton and promote the development on the synthesis and application of oxetanes.

Contents

1 Introduction

2 Cyclization through the C—C bond formation

3 Cyclization through the C—O bond formation

4 Ring expansion reaction of epoxides

5 [2+2] Cycloadditions

5.1 Paternò-Büchi [2+2] photocycloadditions

5.2 Formal [2+2] cycloadditions

6 C—H bond oxidative cyclizations

7 Conclusion

()
图1 含氧杂环丁烷结构的天然产物和合成药物[23⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
Fig.1 Natural products and synthetic bioactive compounds containing the oxetane motif[23⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~40]
图式1 通过C—C键形成合成2-磺酰基氧杂环丁烷化合物[51]
Scheme 1 Synthesis of 2-sulfonyloxetanes via the C—C bond formation[51]
图式2 铑催化C—C键环化构建多取代氧杂环丁烷化合物[52]
Scheme 2 Rhodium-catalyzed C—C cyclization access to multisubstituted oxetane derivatives[52]
图式3 通过卡宾插入反应形成C—C键合成3-位螺环氧杂环丁烷产物15a~15g[53]
Scheme 3 Synthesis of 3-spiro-oxetanes 15a~15g through the C—C bond formation by the C—H carbene insertion[53]
图式4 Williamson 醚化合成氧杂环丁烷[54]
Scheme 4 Williamson etherification to oxetanes[54]
图式5 C—O键形成分子内环化反应的常见方法[55⇓⇓⇓⇓~60]
Scheme 5 Common methods of cyclization through the C—O bond formation[55⇓⇓⇓⇓~60]
图式6 硒砜介导的加成及环化反应合成螺吲哚啉酮-氧杂环丁烷化合物[61]
Scheme 6 Selenone-mediated cyclizations to spirooxindolinone-oxetanes[61]
图式7 金催化炔丙醇合成氧杂环丁烷酮[62]
Scheme 7 Gold-catalyzed synthesis of oxetan-2-ones from readily available propargylic alcohols[62]
图式8 铱催化含全碳取代季碳立体中心的氧杂环丁烷的对映选择性合成[63]
Scheme 8 Iridium-catalyzed enantioselective synthesis of oxetanes bearing an all-carbon substituted quaternary stereocenter[63]
图式9 抗精神病药物Haloperidol类似物的合成[63]
Scheme 9 Synthesis of an oxetane-bearing analogue of the antipsychotic agent Haloperidol[63]
图式10 硫叶立德和氧杂环丙烷的扩环反应[76]
Scheme 10 Ring expansion of dimethyloxosulfonium methylide and epoxides[76]
图式11 通过Corey-Chaykovsky环氧化和扩环反应合成2-三氟甲基氧杂环丁烷[82]
Scheme 11 Synthesis of 2-trifluoromethyloxetanes via the Corey-Chaykovsky epoxidation and ring expansion[82].
图式12 含2-三氟甲基氧杂环丁烷的γ-分泌酶调节剂类似物45的合成[82]
Scheme 12 Synthesis of γ-secretase modulator analogue 45 containing 2-trifluorooxetane [82]
图式13 第一例Paternò-Büchi 反应[2⇓~4]
Scheme 13 The first Paternò-Büchi reaction[2⇓~4]
图式14 Paternò-Büchi 反应的主要机理[83]
Scheme 14 Main mechanism of the Paternò-Büchi reaction[83]
图式15 光促进的累积二烯与酮合成2-亚烷基氧杂环丁烷[84]
Scheme 15 Light-promoted synthesis of 2-alkylideneoxetanes from allenoates and ketones[84]
图式16 铜(Ⅰ)催化酮羰基化合物与烯烃分子间[2+2]环加成反应[85]
Scheme 16 Cu(Ⅰ)-catalyzed intermolecular [2 + 2] photocycloadditions of carbonyl compounds and norbornene[85]
图2 光活性物种TpCu-(Norb) 54[85]
Fig.2 Photoactive species TpCu-(Norb) 54[85]
图式17 羰基与降冰片烯分子间[2+2]光环加成反应机理[85]
Scheme 17 Mechanism of intermolecular [2 + 2] photocycloadditions of carbonyl compounds and norbornene[85]
图式18 可见光促进烯烃与羰基的[2+2]环加成反应[86]
Scheme 18 Visible-light promoted [2 + 2] cycloaddition of alkenes and carbonyls[86]
图式19 过渡金属催化的形式[2+2]环加成反应[87,88]
Scheme 19 Transition metal-catalyzed formal [2+2] cycloadditions[87,88]
图式20 DABCO催化的形式[2+2]环加成反应[89]
Scheme 20 DABCO-catalyzed formal [2+2] cycloaddition[89]
图式21 DABCO催化的形式[2+2]环加成反应的机理[89]
Scheme 21 Mechanism of DABCO-catalyzed formal [2+2] cycloaddition[89]
图式22 β-ICD 催化的丙二烯酸酯与酮不对称形式[2+2]环加成反应[90]
Scheme 22 β-ICD-catalyzed asymmetric formal [2+2] cycloaddition of allenoates with ketones[90]
图式23 NHC催化形式[2+2]环加成反应[93]
Scheme 23 NHC-catalyzed formal [2+2] annulations of allenoates[93]
图式24 氧杂环丁烷的衍生化反应[93]
Scheme 24 Derivatization of oxetane products[93]
图式25 NHC催化形式[2+2]环加成反应的反应机理[93]
Scheme 25 Proposed catalytic cycle for NHC-catalyzed formal [2+2] annulation[93]
图3 (-)-Mitrephorone A 的结构[94]
Fig.3 Structure of(-)-Mitrephorone A[94]
图式26 C—H键氧化环化实现天然产物(-)-Mitrephorone A的不对称全合成[95]
Scheme 26 Total synthesis of (-)-mitrephorone A via C—H oxidative cyclization[95]
图式27 由(-)-Mitrephorone B中C—H键氧化环化合成(-)-Mitrephorone A[96]
Scheme 27 Synthesis of(-)-Mitrephorone A via a bio-inspired late stage C—H oxidative cyclization of(-)-Mitrephorone B[96]
[1]
Reboul M. Ann. Chim., 1878, 14:496.
[2]
Paternò E, Chieffii G. Gazz. Chim. Ital., 1909, 39:341.
[3]
Büchi G, Inman C G, Lipinsky E S. J. Am. Chem. Soc., 1954, 76:4327.

doi: 10.1021/ja01646a024     URL    
[4]
Yang N C, Nussim M, Jorgenson M J, Murov S. Tetrahedron Lett., 1964, 5:3657.

doi: 10.1016/S0040-4039(01)89388-6     URL    
[5]
D'Auria M, Racioppi R. Curr. Org. Chem., 2009, 13:939.

doi: 10.2174/138527209788452126     URL    
[6]
Bull J A, Croft R A, Davis O A, Doran R, Morgan K F. Chem. Rev., 2016, 116:12150.

doi: 10.1021/acs.chemrev.6b00274     URL    
[7]
Burkhard J A, Wuitschik G, Rogers-Evans M, Müller K, Carreira E M. Angewandte Chemie Int. Ed., 2010, 49:9052.

doi: 10.1002/anie.200907155     URL    
[8]
Nishikubo T, Kameyama A, Kudo H. J. Syn. Org. Chem., Jpn. , 2006, 64:934.

doi: 10.5059/yukigoseikyokaishi.64.934     URL    
[9]
Harrane A, Naar N, Belbachir M. Mater. Lett., 2007, 61:3555.

doi: 10.1016/j.matlet.2006.11.118     URL    
[10]
Smith D T, Njardarson J T. Top. Heterocycl. Chem., 2016, 41:281.
[11]
Wuitschik G, Rogers-Evans M, Müller K, Fischer H, Wagner B, Schuler F, Polonchuk L, Carreira E M. Angew. Chem. Int. Ed., 2006, 45:7736.

doi: 10.1002/(ISSN)1521-3773     URL    
[12]
Wuitschik G. Oxetanes in Drug Discovery, Ph.D. Thesis, ETH. Zurich, 2008.
[13]
Wuitschik G, Carreira E M, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Mu¨ller K. J. Med. Chem., 2010, 53:3227.

doi: 10.1021/jm9018788     pmid: 20349959
[14]
Wang Z B, Chen Z L, Sun J W. Org. Biomol. Chem., 2014, 12:6028.

doi: 10.1039/C4OB00920G     URL    
[15]
Li S Q, Xu J X. Prog. Chem., 2016, 28:1798.
(李思琦, 许家喜. 化学进展, 2016, 28:1798.).

doi: 10.7536/PC160815    
[16]
Pritchard J G, Long F A. J. Am. Chem. Soc., 1958, 80:4162.

doi: 10.1021/ja01549a012     URL    
[17]
Hu X M, Kellogg R M. Tetrahedron: Asymmetry, 1995, 6:1399.

doi: 10.1016/0957-4166(95)00173-M     URL    
[18]
Fernández-PÉrez H, Etayo P, Núñez-Rico J L, Balakrishna B, Vidal-Ferran A. RSC Adv., 2014, 4:58440.

doi: 10.1039/C4RA10432C     URL    
[19]
Ng K, Tran V, Minehan T. Tetrahedron Lett., 2016, 57:415.

doi: 10.1016/j.tetlet.2015.12.041     URL    
[20]
Malapit C A, Howell A R. J. Org. Chem., 2015, 80:8489.

doi: 10.1021/acs.joc.5b01255     URL    
[21]
Wani M C, Taylor H L, Wall M E, Coggon P, McPhail A T. J. Am. Chem. Soc., 1971, 93:2325.

pmid: 5553076
[22]
Farina V. The Chemistry and Pharmacology of Taxol and its Derivatives, Pharmacochem. Libr., 1995,22.
[23]
Boge T C, Hepperle M, Vander Velde D G, Gunn C W, Grunewald G L, Georg G I. Bioorg. Med. Chem. Lett., 1999, 9:3041.

pmid: 10571172
[24]
Han Q B, Zhang J X, Lu Y, Wu Y S, Zheng Q T, Sun H D. Planta Med., 2004, 70:581.

doi: 10.1055/s-2004-827165     URL    
[25]
Hamberg M, Svensson J, Samuelsson B. PNAS, 1975, 72:2994.

pmid: 1059088
[26]
Wang M M, Cornett B, Nettles J, Liotta D C, Snyder J P. J. Org. Chem., 2000, 65:1059.

pmid: 10814054
[27]
Shimada N, Hasegawa S, Harada T, Tomisawa T, Fujii A, Takita T. J. Antibiot., 1986, 39:1623.

pmid: 3025147
[28]
Norbeck D W, Kramer J B. J. Am. Chem. Soc., 1988, 110:7217.

doi: 10.1021/ja00229a048     URL    
[29]
Huang J M, Yokoyama R, Yang C S, Fukuyama Y. Tetrahedron Lett., 2000, 41:6111.

doi: 10.1016/S0040-4039(00)01023-6     URL    
[30]
Mehta G, Singh S R. Angew. Chem., 2006, 118:967.

doi: 10.1002/(ISSN)1521-3757     URL    
[31]
Inoue M, Lee N, Kasuya S, Sato T, Hirama M, Moriyama M, Fukuyama Y. J. Org. Chem., 2007, 72:3065.

doi: 10.1021/jo0700474     URL    
[32]
Marshall K A, Mapp A K, Heathcock C H. J. Org. Chem., 1996, 61:9135.

doi: 10.1021/jo961680k     URL    
[33]
Fujishima T, Nozaki T, Suenaga T. Bioorg. Med. Chem., 2013, 21:5209.

doi: 10.1016/j.bmc.2013.06.032     URL    
[34]
Pullaiah K C, Surapaneni R K, Rao C B, Albizati K F, Sullivan B W, Faulkner D J, He C H, Clardy J. J. Org. Chem., 1985, 50:3665.

doi: 10.1021/jo00219a057     URL    
[35]
Ruider S A, Müller S, Carreira E M. Angew. Chem. Int. Ed., 2013, 52:11908.

doi: 10.1002/anie.v52.45     URL    
[36]
Gronnier C, Kramer S, Odabachian Y, Gagosz F. J. Am. Chem. Soc., 2012, 134:828.

doi: 10.1021/ja209866a     pmid: 22242841
[37]
Wang Z B, Chen Z L, Sun J W. Angew. Chem. Int. Ed., 2013, 52:6685.

doi: 10.1002/anie.v52.26     URL    
[38]
Wang Z B, Chen Z L, Sun J W. Org. Biomol. Chem., 2014, 12:6028.

doi: 10.1039/C4OB00920G     URL    
[39]
Thakur A, Facer M E, Louie J. Angew. Chem. Int. Ed., 2013, 52:12161.

doi: 10.1002/anie.201306869     URL    
[40]
Holan G. Nature, 1971, 232:644.
[41]
Eigenmann H K, Golden D M, Benson S W. J. Phys. Chem., 1973, 77:1687.

doi: 10.1021/j100632a019     URL    
[42]
Luger P, Buschmann J. J. Am. Chem. Soc., 1984, 106:7118.

doi: 10.1021/ja00335a041     URL    
[43]
Stepan A F, Karki K, McDonald W S, Dorff P H, Dutra J K, DiRico K J, Won A, Subramanyam C, Efremov I V, O’Donnell C J, Nolan C E, Becker S L, Pustilnik L R, Sneed B, Sun H, Lu Y S, Robshaw A E, Riddell D, O'Sullivan T J, Sibley E, Capetta S, Atchison K, Hallgren A J, Miller E, Wood A, Obach R S. J. Med. Chem., 2011, 54:7772.

doi: 10.1021/jm200893p     URL    
[44]
Stepan A F, Kauffman G W, Keefer C E, Verhoest P R, Edwards M. J. Med. Chem., 2013, 56:6985.

doi: 10.1021/jm4008642     URL    
[45]
Wuitschik G, Rogers-Evans M, Buckl A, Bernasconi M, Märki M, Godel T, Fischer H, Wagner B, Parrilla I, Schuler F, Schneider J, Alker A, Schweizer W, Müller K, Carreira E. Angew. Chem. Int. Ed., 2008, 47:4512.

doi: 10.1002/(ISSN)1521-3773     URL    
[46]
Burkhard J A, Wuitschik G, Plancher J M, Rogers-Evans M, Carreira E M. Org. Lett., 2013, 15:4312.

doi: 10.1021/ol401705a     URL    
[47]
Li D B, Rogers-Evans M, Carreira E M. Org. Lett., 2013, 15:4766.

doi: 10.1021/ol402127b     URL    
[48]
Morgan K F, Hollingsworth I A, Bull J A. Org. Biomol. Chem., 2015, 13:5265.

doi: 10.1039/c5ob00549c     pmid: 25857425
[49]
St Jean D J, Fotsch C. J. Med. Chem., 2012, 55:6002.

doi: 10.1021/jm300343m     URL    
[50]
Lovering F, Bikker J, Humblet C. J. Med. Chem., 2009, 52:6752.

doi: 10.1021/jm901241e     pmid: 19827778
[51]
Morgan K F, Hollingsworth I A, Bull J A. Chem. Commun., 2014, 50:5203.

doi: 10.1039/C3CC46450D     URL    
[52]
Davis O A, Croft R A, Bull J A. Chem. Commun., 2015, 51:15446.

doi: 10.1039/C5CC05740J     URL    
[53]
Nicolle S M, Nortcliffe A, Bartrum H E, Lewis W, Hayes C J, Moody C J. Chem. Eur. J., 2017, 23:13623.

doi: 10.1002/chem.201703746     URL    
[54]
Williamson A W. Q. J. Chem. Soc., 1852, 4:229.

doi: 10.1039/QJ8520400229     URL    
[55]
Roy B G, Roy A, Achari B, Mandal S B. Tetrahedron Lett., 2006, 47:7783.
[56]
Aftab T, Carter C, Christlieb M, Hart J, Nelson A. J. Chem. Soc., Perkin Trans. 1, 2000: 711.
[57]
Soai K, Niwa S, Yamanoi T, Hikima H, Ishizaki M. J. Chem. Soc., Chem. Commun. , 1986: 1018.
[58]
Dussault P H, Trullinger T K, Noor-E-ain F. Org. Lett., 2002, 4:4591.

pmid: 12489937
[59]
Hirai S, Utsugi M, Iwamoto M, Nakada M. Chem. Eur. J., 2015, 21:355.

doi: 10.1002/chem.201404295     URL    
[60]
Miao C B, Zhang M, Tian Z Y, Xi H T, Sun X Q, Yang H T. J. Org. Chem., 2011, 76:9809.

doi: 10.1021/jo201879t     URL    
[61]
Palomba M, Scarcella E, Sancineto L, Bagnoli L, Santi C, Marini F. Eur. J. Org. Chem., 2019,2019: 5396.
[62]
Ye L W, He W M, Zhang L M. J. Am. Chem. Soc., 2010, 132:8550.

doi: 10.1021/ja1033952     URL    
[63]
Guo Y A, Lee W, Krische M J. Chem. Eur. J., 2017, 23:2557.

doi: 10.1002/chem.201606046     URL    
[64]
Szabo M, Klein Herenbrink C, Christopoulos A, Lane J R, Capuano B. J. Med. Chem., 2014, 57:4924.

doi: 10.1021/jm500457x     URL    
[65]
Ma L G, Xu J X. Prog. Chem., 2004, 16:220.
(马琳鸽, 许家喜. 化学进展, 2004, 16:220.).
[66]
Zhou C, Xu J X. Prog. Chem., 2011, 23:174.
(周婵, 许家喜. 化学进展, 2011, 23:174.).
[67]
Zhou C, Xu J X. Prog. Chem., 2012, 24:238.
(周婵, 许家喜. 化学进展, 2012, 24:238.).
[68]
Xu J X. Top. Heterocycl. Chem., 2016, 41:311.
[69]
Chen X P, Xu J X. Prog. Chem., 2017, 29:181.
(陈兴鹏, 许家喜. 化学进展, 2017, 29:181.).

doi: 10.7536/PC160917    
[70]
Fu Z C, Xu J X. Prog. Chem., 2018, 30:1047.
(符志成, 许家喜. 化学进展, 2018, 30:1047.).

doi: 10.7536/PC180113    
[71]
Xu J X. Beilstein J. Org. Chem., 2020, 16:1357.

doi: 10.3762/bjoc.16.116     URL    
[72]
Xu J X, Dong J. Synthesis, 2018, 50:2407.

doi: 10.1055/s-0036-1591559     URL    
[73]
Dong J, Du H G, Xu J X. J. Org. Chem., 2019, 84:10724.

doi: 10.1021/acs.joc.9b01152    
[74]
Xu J X. Asian J. Org. Chem., 2020, 9:1008.

doi: 10.1002/ajoc.v9.7     URL    
[75]
Welch S C, Rao A S C P. J. Am. Chem. Soc., 1979, 101:6135.

doi: 10.1021/ja00514a053     URL    
[76]
Okuma K, Tanaka Y, Kaji S, Ohta H. J. Org. Chem., 1983, 48:5133.

doi: 10.1021/jo00173a072     URL    
[77]
Yu H, Deng X B, Cao S L, Xu J X. Lett. Org. Chem., 2011, 8:509.

doi: 10.2174/157017811796504954     URL    
[78]
Li S Q, L P F, Xu J X, Helv. Chim. Acta, 2019, 12:e1900164.
[79]
Sone T, Lu G, Matsunaga S, Shibasaki M. Angew. Chem., 2009, 121:1705.

doi: 10.1002/ange.v121:9     URL    
[80]
Butova E D, Barabash A V, Petrova A A, Kleiner C M, Schreiner P R, Fokin A A. J. Org. Chem., 2010, 75:6229.

doi: 10.1021/jo101330p     URL    
[81]
Campbell M G, Ritter T. Chem. Rev., 2015, 115:612.

doi: 10.1021/cr500366b     pmid: 25474722
[82]
Mukherjee P, Pettersson M, Dutra J K, Xie L F, am Ende C W. ChemMedChem, 2017, 12:1574.

doi: 10.1002/cmdc.201700333     pmid: 28815966
[83]
Shetlar M D, Basus V J. Photochem. Photobiol. Sci., 2011, 10:76.

doi: 10.1039/C0PP00242A     URL    
[84]
Arnold D R, Hinman R L, Glick A H. Tetrahedron Lett., 1964, 5:1425.

doi: 10.1016/S0040-4039(00)90493-3     URL    
[85]
Flores D M, Schmidt V A. J. Am. Chem. Soc., 2019, 141:8741.

doi: 10.1021/jacs.9b03775     URL    
[86]
Li H F, Cao W B, Ma X X, Xie X B, Xia Y, Ouyang Z. J. Am. Chem. Soc., 2020, 142:3499.

doi: 10.1021/jacs.9b12120     URL    
[87]
Mikami K, Aikawa K, Aida J P. Synlett, 2011,2011: 2719.
[88]
Aikawa K, Hioki Y, Shimizu N, Mikami K. J. Am. Chem. Soc., 2011, 133:20092.

doi: 10.1021/ja2085299     URL    
[89]
Wang T, Chen X Y, Ye S. Tetrahedron Lett., 2011, 52:5488.

doi: 10.1016/j.tetlet.2011.08.057     URL    
[90]
Zhao Q Y, Huang L, Wei Y, Shi M. Adv. Synth. Catal., 2012, 354:1926.

doi: 10.1002/adsc.v354.10     URL    
[91]
Mo J M, Yang R J, Chen X K, Tiwari B, Chi Y R. Org. Lett., 2013, 15:50.

doi: 10.1021/ol303035r     URL    
[92]
Davies A T, Slawin A M Z, Smith A D. Chem. Eur. J., 2015, 21:18944.

doi: 10.1002/chem.v21.52     URL    
[93]
Lopez S S, Jaworski A A, Scheidt K A. J. Org. Chem., 2018, 83:14637.

doi: 10.1021/acs.joc.8b02464     URL    
[94]
Li C, Lee D, Graf T N, Phifer S S, Nakanishi Y, Burgess J P, Riswan S, Setyowati F M, Saribi A M, Soejarto D D, Farnsworth N R, Falkinham J O, Kroll D J, Kinghorn A D, Wani M C, Oberlies N H. Org. Lett., 2005, 7:5709.

doi: 10.1021/ol052498l     URL    
[95]
Richter M J R, Schneider M, Brandstätter M, Krautwald S, Carreira E M. J. Am. Chem. Soc., 2018, 140:16704.

doi: 10.1021/jacs.8b09685     URL    
[96]
Wein L A, Wurst K, Angyal P, Weisheit L, Magauer T. J. Am. Chem. Soc., 2019, 141:19589.

doi: 10.1021/jacs.9b11646     URL    
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[3] 董军, 许家喜. 烯亚砜化合物的制备及反应概述[J]. 化学进展, 2022, 34(5): 1088-1108.
[4] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[5] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[6] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[7] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[8] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[9] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[10] 符志成, 许家喜*. 氮杂环丁烷的合成[J]. 化学进展, 2018, 30(8): 1047-1066.
[11] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[12] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[13] 陈劲进, 常丹, 肖福红, 邓国军*. 基于环己酮氧化脱氢构建碳-碳与碳-杂键[J]. 化学进展, 2018, 30(5): 564-577.
[14] 孔令斌, 严胜骄*, 林军*. 杂环烯酮缩胺:构筑分子多样性稠杂环化合物的合成先导分子[J]. 化学进展, 2018, 30(5): 639-657.
[15] 宫晓蕾, 高文超, 常宏宏, 魏文珑*, 李兴*. 联烯化合物环加成反应的最新研究[J]. 化学进展, 2017, 29(11): 1331-1350.
阅读次数
全文


摘要

氧杂环丁烷的合成