English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1710-1728 DOI: 10.7536/PC200601 前一篇   后一篇

• •

吡唑酮化合物在催化不对称反应中的应用

李路瑶1, 徐鑫尧1, 朱博1,**(), 常俊标1,**()   

  1. 1. 河南师范大学化学化工学院 新乡 453007
  • 收稿日期:2020-06-01 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 朱博, 常俊标
  • 作者简介:

    朱博

    博士,副教授,硕士生导师。博士毕业于河南大学,导师为江智勇教授;博士后创新人才支持计划获得者,合作导师为常俊标教授。目前任职于河南师范大学,主要从事不对称合成及药物合成研究。

    常俊标

    博士,教授,博士生导师。“万人计划”百千万工程领军人才,国家杰出青年科学基金获得者。目前任职于河南师范大学,主要从事化学合成及新药创新的研究与开发。

    ** Corresponding author e-mail: (Bo Zhu);(Junbiao Chang)
  • 基金资助:
    国家自然科学基金项目(81903465); 国家自然科学基金项目(U1804283)

Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions

Li Luyao1, Xu Xinyao1, Zhu Bo1,**(), Xu Xinyao1,**()   

  1. 1. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received:2020-06-01 Online:2020-11-24 Published:2020-09-01
  • Contact: Zhu Bo, Xu Xinyao
  • Supported by:
    the National Natural Science Foundation of China(81903465); the National Natural Science Foundation of China(U1804283)

吡唑-5-酮类化合物在具有生物活性化合物中占有重要地位,该类化合物得到化学家们的广泛关注。吡唑-5-酮及其常见衍生物具有多个反应位点,可参与多种类型的不对称反应(如不对称加成反应、不对称环化反应和其他不对称反应类型)。本文主要从吡唑-5-酮类化合物参与的不对称催化反应类型进行分类,阐述了各类底物参与的反应类型及其主要反应位点,对近年来吡唑酮及其常见衍生物参与的不对称反应研究进展进行总结,并对其未来发展方向进行展望。

Pyrazolin-5-one compounds play an important role in bioactive compounds and have attracted extensive attention. Pyrazolin-5-one and its common derivatives have many reaction sites and can participate in a variety of asymmetric reactions, such as asymmetric addition reactions, asymmetric annulation reactions and other asymmetric reactions. In this context, we summarize the recent progress in asymmetric reactions of pyrazolin-5-one and its common derivatives. The main reaction types involving the pyrazolin-5-one compounds are classified, and their main reaction sites are expounded. Finally, the challenges and development of pyrazolone derivatives are summarized, and the future development direction is prospected.

Contents

1 Introduction

2 The synthesis of pyrazolin-5-one derivatives

3 Asymmetric addition reactions

3.1 Asymmetric Michael addition

3.2 Asymmetric Mannich reaction

3.3 Other asymmetric addition reaction

4 Asymmetric annulation reactions

5 Other asymmetric reactions

6 Conclusion and outlook

()
图式1 具有生物活性的吡唑酮衍生物
Scheme 1 Biologically active pyrazolone derivatives
图式2 吡唑-5-酮衍生物的反应位点
Scheme 2 Reaction sites of pyrazolin-5-one derivatives
图式3 吡唑-5-酮衍生物的合成[9,10,11]
Scheme 3 The synthesis of pyrazolin-5-one derivatives[9,10,11]
图式4 硝基烯烃与1的不对称Michael加成[12]
Scheme 4 Asymmetric Michael addition of nitroalkenes and 1[12]
图式5 不同电子受体与1的不对称Michael加成[13,14]
Scheme 5 Asymmertic Michael addition of different acceptors with 1 [13,14]
图式6 2-烯基吡啶和芳基甲基丙二酸酯与1的不对称Michael加成[15,16]
Scheme 6 Asymmetric Michael addition of 2-enoylpyridines or arylomethylidenemalonates with 1[15,16]
图式7 α,β-不饱和酮与1的氮杂-Michael加成反应[17]
Scheme 7 Aza-Michael Addition of 1 to α,β-unsaturated ketones[17]
图式8 硝基烯烃与2的不对称Michael加成[18]
Scheme 8 Asymmetric Michael addition of nitroolefins and 2[18]
图式9 2参与的不对称Michael加成[19,20]
Scheme 9 Asymmetric Michael addition involving 2[19,20]
图式10 马来酰亚胺与2的不对称Michael加成[21]
Scheme 10 Asymmmetric Michael addition of 2 to maleimides[21]
图式11 对苯醌与2的不对称Michael加成[22]
Scheme 11 Asymmmetric Michael addition of 2 with p-benzoquinones[22]
图式12 o-QMs与2的不对称加成反应[23]
Scheme 12 Conjugate addition of 2 to the o-QMs[23]
图式13 β-三氟甲基-α,β-不饱和酮与2的不对称Michael加成[24]
Scheme 13 Asymmetric Michael addition of 2 to β-trifluoromethyl-α,β-unsaturated ketones[24]
图式14 α,β-不饱和对硝基苯酯与2的不对称Michael加成[9]
Scheme 14 Asymmetric Michael addition of 2 to α,β-unsaturated p-nitrophenyl[9]
图式15 吖内酯与3的不对称Michael加成反应[25]
Scheme 15 Asymmetric Michael reaction of azlactones to 3[25]
图式16 硝基烯烃与4的不对称Michael加成反应[26]
Scheme 16 Asymmetric Michael reaction of nitroolefins to 4[26]
图式17 亚甲胺与3叶立德的不对称Michael加成[27]
Scheme 17 Asymmetric Michael reaction of 3 with azomethine ylide[27]
图式18 1与N-Boc保护靛红亚胺衍生物的不对称Mannich加成[28]
Scheme 18 Asymmmetric Mannich reaction of 1 to isatin-derived N-Boc ketimines[28]
图式19 不对称Mannich反应合成氨基双吡唑酮衍生物[29]
Scheme 19 Asymmetric synthesis of amino-bis-pyrazolone derivatives[29]
图式20 2与靛红衍生亚胺的不对称Mannich加成[30]
Scheme 20 Asymmetric Mannich reaction of 2 with isatin-derived ketimines[30]
图式21 3-氟-氧化吲哚和5的不对称Mannich加成反应[31]
Scheme 21 Asymmetric Mannich reactions between 3-fluorooxindoles and 5[31]
图式22 5和β-酮酸的不对称Mannich加成[32]
Scheme 22 Asymmetric Mannich reactions between 5 and β-ketoacids[32]
图式23 1的不对称氨基烷基化反应[33]
Scheme 23 Enantioselective aminoalkylation of 1[33]
图式24 1参与的其他亲核加成反应[34]
Scheme 24 Other nucleophilic additions involving 1[34]
图式25 1或2与偶氮二甲酸酯的不对称α-氨基化[35,36,37]
Scheme 25 Asymmetric α-amination of 1 or 2 with azodicarboxylates[35,36,37]
图式26 烷氧基联烯与2的高度区域选择性加成[38]
Scheme 26 Highly enantioselective regiodivergent addition of alkoxyallenes to 2[38]
图式27 烯丙酰胺与2的不对称加成反应[39]
Scheme 27 Asymmetric addition of 2 to allenamides[39]
图式28 TMSCN和5的不对加成反应[11]
Scheme 28 Asymmetric addition between TMSCN and 5[11]
图式29 烯醇醚和5的不对加成反应[40]
Scheme 29 Asymmetric addition between enol ethers and 5[40]
图式30 烯丙基酮和3-乙酰香豆素与6的不对称Aldol反应[41,42]
Scheme 30 Enantioselective Aldol reaction of allyl ketones and 3-Acetylcoumarins to 6[41,42]
图式31 醛与1的双Michael加成和反应路径[43,44]
Scheme 31 Double Michael addition of 1 to aldehydes and possible reaction pathway[43,44]
图式32 1的多组分不对称[3+2]环化反应[45]
Scheme 32 Multicomponent enantioselective [3+2] annulation reactions of 1[45]
图式33 1参与的四组分[5+1+1+1]成环反应[46]
Scheme 33 Four component [5+1+1+1] annulation reactions of 1[46]
图式34 α,β-不饱和酮酸酯、亚硝基苯和1的不对称[4+1]环化反应[47]
Scheme 34 Asymmetric [4+1] annulation reactions between α,β-unsaturated keto esters, nitrosobenzenes and 1[47]
图式35 1参与的一锅多步串联反应[48,49]
Scheme 35 One pot sequential multistep reaction involving 1[48,49]
图式36 1或2参与的协同不对称催化反应[50,51,52]
Scheme 36 Asymmetric synergistic catalytic reactions involving 1 or 2[50,51,52]
图式37 烯醛与1的不对称环化反应[53]
Scheme 37 NHC-Catalyzed annulation betwwen enals and 1[53]
图式38 烯炔酮与1的不对称环化反应[54]
Scheme 38 Asymmetric annulation between enynones and1[54]
图式39 1和二烯酮的不对称级联[5+1]双Michael加成反应[55]
Scheme 39 Asymmetric cascade [5+1] double Michael additions between 1 and dienones[55]
图式40 膦催化1与2-(乙酰氧基甲基)丁-2,3-二烯酸酯的不对称[4+1]环化反应[56]
Scheme 40 Phosphine-catalyzed [4+1] asymmetric annulation between 1 and 2-(acetoxymethyl)buta-2,3-dienoates[56]
图式41 (E)-5-硝基-6-芳基己基-5-烯-2-酮和1的不对成环反应[57]
Scheme 41 Asymmmetric annulation of(E)-5-nitro-6-arylhex-5-en-2-ones and 1[57]
图式42 β,γ-不饱和α-酮酸酯和1的不对称[3+3]环化反应[58]
Scheme 42 Asymmmetric [3+3] annulation of β,γ-unsaturated α-ketoesters and 1[58]
图式43 乙酸烯丙酯和1的不对称环加成反应[59]
Scheme 43 Allenylic cycloaddition of allenyl acetates and 1[59]
图式44 铑催化的螺吡唑酮不对称合成[60]
Scheme 44 Rhodium-catalyzed asymmetric synthesis of spiropyrazolones by[60]
图式45 o-QMs与2的不对称[4+1]环化反应[61]
Scheme 45 Asymmetric [4+1] annulation of ortho-quinomethanes with 2[61]
图式46 3参与的一锅多步不对称成环反应[62,63]
Scheme 46 One pot sequential multistep annulation involoving 3[62,63]
图式47 乙酰乙酸酯、(E)-β-硝基烯烃和3的不对称环化反应[64]
Scheme 47 Annulation between ethyl acetoacetates,(E)-β-nitrostyrenes and 3[64]
图式48 醛、硝基烯烃和3的不对称环化反应[65]
Scheme 48 Annulation between aldehydes, nitrostyrenes and 3[65]
图式49 3、可烯化醛和烯醛的不对称环化反应[66]
Scheme 49 Annulation between 3, enolizable aldehydes and enalsaldehydes[66]
图式50 3和α-异硫氰酰亚胺酯不对称[3+2]环加成反应[67]
Scheme 50 Asymmetric [3+2] annulation between 3, α-isothiocyanato imide and esters[67]
图式51 3与α,β-不饱和酮的不对称[4+2]环加成反应[68]
Scheme 51 Asymmetric [4+2] annulation between 3 and α,β-unsaturated ketones[68]
图式52 3参与的不对称[2+n]环加成反应[68,69,70,71,72,73,74,75,76,77]
Scheme 52 Asymmetric [2+n] annulation involving 3[68,69,70,71,72,73,74,75,76,77]
图式53 3和2-(1-甲基-2-氧代吲哚-3-基)丙二腈的[3+2]环加成反应[78]
Scheme 53 Asymmetric [3+2] annulation between 2-(1-methyl-2-oxoindolin-3-yl)malononitriles and 3[78]
图式54 3与MBH碳酸酯和2,3-二烯酸酯的[3+2]环加成反应[79,80]
Scheme 54 Asymmetric [3+2] annulation between MBH carbonates or 2,3-dienoate and 3[79,80]
图式55 3和α-氯醛之间的[4+2]环加成反应[81]
Scheme 55 Asymmetric [4+2] annulation between 3 and α-chloroaldehydes[81]
图式56 3和芳基乙酸酐的[4+2]环加成反应[82,83]
Scheme 56 Asymmetric [4+2] annulation between 3 and arylacetic acid anhydride[82,83]
图式57 丙二烯酯或酮类化合物和3的[4+2]环加成反应[84]
Scheme 57 Asymmetric [4+2] annulation between allenoates or allene ketones and 3[84]
图式58 4和α,β-不饱和醛的不对称[3+3]环加成反应[85,86,87]
Scheme 58 Asymmetric [3+3] annulation reaction between 4 and enals[85,86,87]
图式59 4和(E)-2-硝基烯丙基乙酸酯之间的不对称[3+3]环加成反应[88]
Scheme 59 Asymmetric [3+3] annulation reaction between 4 and(E)-2-nitroallylic acetates[88]
图式60 4和MBH碳酸酯的不对称[3+3]环加成反应[89]
Scheme 60 Enantioselective [3+3] annulation reaction of MBH carbonates with 4[89]
图式61 丙二腈、苯甲醛和4的[1+2+3]多组分不对称环加成反应[90]
Scheme 61 [1+2+3] multicomponent annulation reaction between malononitriles, benzaldehydes and 4[90]
图式62 4和β,γ-不饱和-α-酮酯的不对称环加成反应[91]
Scheme 62 Enantioselective annulation reaction of β,γ-unsaturated-α-ketoesters with 4[91]
图式63 4与炔烃的不对称环化反应[92]
Scheme 63 Enantioselective annulation of 4 with alkyne [92]
图式64 β,γ-不饱酮酸酯与4的不对称Michael-Aldol环化反应[93]
Scheme 64 Asymmetric Michael-Aldol cyclization of β,γ-unsaturated α-ketoesters and 4[93]
图式65 4-异硫氰基吡唑酮与靛红衍生亚胺的不对称[3+2]环化反应[94]
Scheme 65 Asymmetric [3+2] cyclization of 4-isothiocyanato pyrazolones and isatin-derived ketimines[94]
图式66 α,β,γ,δ-不饱和吡唑酮与醛的不对称[4+2]环化反应[95]
Scheme 66 Asymmetric [4+2] cyclization of α,β,γ,δ-unsaturated pyrazolones and aldehydes[95]
图式67 1参与的一锅法多步串联反应[96,97,98,99]
Scheme 67 One pot sequential multistep reaction involving 1[96,97,98,99]
图式68 2的不对称氟化/氯化/羟基化反应[100,101,102]
Scheme 68 Asymmetric fluorination/chlorination/hydroxylation of 2[100,101,102]
图式69 2的不对称烯丙基化[103,104]
Scheme 69 Asymmetric allylation of 2[103,104]
图式70 2的直接不对称芳基化[105]
Scheme 70 Enantioselective direct α-arylation of 2[105]
图式71 1与环戊烯二酮的交叉脱氢偶联反应[106]
Scheme 71 Cross-dehydrogenative coupling between 1 and cyclopentenedione[106]
图式72 2的磺酰化反应[107]
Scheme 72 Asymmetric sulfenylation of 2[107]
图式73 2与靛红衍生硝基烯烃的不对称反应[108]
Scheme 73 Asymmetric reaction of 2 with isatin-derived nitroolefins[108]
图式74 5和萘酚的不对称傅-克反应[109]
Scheme 74 Asymmetric Friedel-Crafts reaction between 5 and β-Ketoacids[109]
图式75 5和羟基吲哚的不对称傅-克反应[110]
Scheme 75 Asymmetric Friedel-Crafts reaction between 5 and hydroxyindoles[110]
图式76 6的不对称炔基化[111]
Scheme 76 Asymmetric alkynylation of 6[111]
图式77 双炔与叠氮化物的手性不对称Huisgen炔-叠氮化物环加成反应[112]
Scheme 77 Catalytic asymmetric Huisgen alkyne-azide cycloaddition of bisalkynes[112]
[1]
(a) Sujatha K Shanthi G; Selvam N P, Manoharan S, Perumal P T, Rajendran M. Bioorg. Med. Chem. Lett., 2009, 19: 4501.;(b) Costa D, Marques A P, Reis R L, Lima J L F C, Fernandes E. Free Radical Biol. Med., 2006, 40: 632.
[2]
Bondock S, Rabie R, Etman H A, Fadda A A. Eur. J. Med.Chem., 2008, 43: 2122.
[3]
Brogden R N. Drugs, 1986, 32: 60.
[4]
Pégurier C, Collart P, Danhaive P, Defays S, Gillard M, Gilson F, Kogej T, Pasau P, Van Houtvin N, Van Thuyne M, van Keulen B. Bioorg. Med. Chem. Lett., 2007, 17: 4228.
[5]
Casas J S, Castellano E E, Ellena J, Garcia-Tasende M S, Peres-Paralle M L, Sanchez A, Sanchez-Gonzalez A, Sordo J, Touceda A [J]. Inorg. Biochem., 2008, 102: 33.
[6]
Wu T W, Zeng L H, Wu J, Fung K P. Life Sci., 2002, 71: 2249.
[7]
Chauhan P, Mahajan S, Enders D. Chem. Commun., 2015, 51: 12890.
[8]
Liu S, Bao X, Wang B. Chem. Commun., 2018, 54: 11515.
[9]
Shu C, Liu H, Slawin A M Z, Carpenter-Warren C, Smith A D. Chem. Sci., 2020, 11: 241.
[10]
Cui B D, Li S W, Zuo J, Wu Z J, Zhang X M, Yuan W C. Tetrahedron, 2014, 70: 895.
[11]
Mahajan S, Chauhan P, Kaya U, Deckers K, Rissanen K, Enders D. Chem. Commun., 2017,53: 6633.
[12]
Li J H, Du D M. Org. Biomol. Chem., 2013, 11: 6215.
[13]
Li S W, Wan Q, Kang Q. Org. Lett., 2018, 20: 1312.
[14]
Li F, Pei W, Wang J, Liu J, Wang J, Zhang M L, Chen Z, Liu L. Org. Chem. Front., 2018, 5: 1342.
[15]
Sharma V, Kaur A, Sahoo S C, Chimni S S. Org. Biomol. Chem., 2018, 16: 6470.
[16]
Sharma A, Sharma V, Chimni S S. Org. Biomol. Chem., 2019, 17: 9514.
[17]
Gogoi S, Zhao C G, Ding D. Org. Lett., 2009, 11(11): 2249.
[18]
Liao Y H, Chen W B, Wu Z J, Du X L, Cun L F, Zhang X M, Yuan W C. Adv. Synth. Catal., 2010, 352: 827.
[19]
Wang Z, Yang Z, Chen D, Liu X, Lin L, Feng X. Angew. Chem. Int.Ed., 2011, 50: 4928.
[20]
Wang Z, Chen Z, Bai S, Li W, Liu X, Lin L, Feng X. Angew. Chem. Int.Ed., 2012, 51: 2776.
[21]
Mazzanti A, Calbet T, Font-Bardia M, Moyanoc A, Rios R. Org. Biomol. Chem., 2012, 10: 1645.
[22]
He Y, Bao X, Qu J, Wang B. Tetrahedron: Asymmetry, 2015, 26: 1382.
[23]
Chu M M, Qi S S, Ju W Z, Wang Y F, Chen X Y, Xu D Q, Xu Z Y. Org. Chem. Front., 2019, 6: 1140.
[24]
Xu X, He Y, Zhou J, Li X, Zhu B, Chang J.[J]. Org. Chem., 2020, 85: 574.
[25]
Geng Z C, Chen X, Zhang J X, Li N, Chen J, Huang X F, Zhang S Y, Tao J C, Wang X W. Eur. J. Org.Chem., 2013, 4738.
[26]
Rassu G, Zambrano V, Pinna L, Curti C, Battistini L, Sartori A, Pelosi G, Casiraghi G, Zanardi F. Adv. Synth. Catal., 2014, 356: 2330.
[27]
Gong Y C, Wang Y, Li E Q, Cui H, Duan Z. Adv. Synth. Catal., 2019, 361(6): 1389.
[28]
Vila C, Amr F I, Blay G, MuÇoz M C, Pedro J R. Chem. Asian J., 2016, 11: 1532.
[29]
Chauhan P, Mahajan S, Kaya U, Peuronen A, Rissanen K, Enders D.[J]. Org. Chem., 2017, 82: 7050.
[30]
Amr F I, Vila C, Blay G, MuÇoz M.C, Pedro J R. Adv. Synth. Catal., 2016, 358: 1583.
[31]
Zhang Q D, Zhao B L, Li B Y, Du D M. Org. Biomol. Chem., 2019, 17: 7182.
[32]
Zhou Y, You Y, Wang Z H, Zhang X M, Xu X Y, Yuan W C. Eur. J. Org.Chem., 2019, 3112.
[33]
Carceller-Ferrer L, Vila C, Blay G, Fernández I, Muñozb M C, Pedro J R. Org. Biomol. Chem., 2019, 17: 9859.
[34]
Luo W, Song D, Fang L, Nian S, Hou H, Ling F, Zhong W. Asian J. Org. Chem., 2018, 7: 2417.
[35]
Yang Z, Wang Z, Bai S, Liu X, Lin L, Feng X. Org. Lett., 2011, 13(4): 596.
[36]
Šimek M, Remeš M, Vesel J, Rios R. Asian [J]. Org. Chem., 2013, 2: 64.
[37]
Yuan H, Li Y, Zhao H, Yang Z, Li X, Li W. Chem. Commun., 2019, 55: 12715.
[38]
Zhou H, Wei Z, Zhang J, Yang H, Xia C, Jiang G. Angew. Chem. Int.Ed., 2017, 56: 1077.
[39]
YanK, Bao X, Liu S, Xu J, Qu J, Wang B. Eur. [J]. Org. Chem., 2018, 6469.
[40]
Kang T, Cao W, Hou L, Tang Q, Zou S, Liu X, Feng X. Angew. Chem. Int.Ed., 2019, 58: 2464.
[41]
Ray B, Mukherjee S.[J]. Org. Chem., 2018, 83: 10871.
[42]
Ray B, Roy S J S, Mukherjee S. Asian [J]. Org. Chem., 2019, 8(7): 1045.
[43]
Companyó X, Zea A, Alba A N R, Mazzanti A, Moyano A, Rios R. Chem. Commun., 2010, 46: 6953.
[44]
Alba A N R, Zea A, Valero G, Calbet T, Font-Bardía M, Mazzanti A, Moyano A, Rios R. Eur. [J]. Org. Chem., 2011, 1318.
[45]
Wang L, Li S, Chauhan P, Hack D, Philipps A R, Puttreddy R, Rissanen K, Raabe G, Enders D. Chem. Eur. J., 2016, 22: 5123.
[46]
Xiao W, Zhou Z, Yang Q Q, Du W, Chen Y C. Adv. Synth. Catal., 2018, 360: 3526.
[47]
Tan C Y, Lu H, Zhang J L, Liu J Y, Xu P F.[J]. Org. Chem., 2020, 85: 594.
[48]
Tang C K, Zhou Z Y, Xia A B, Bai L, Liu J, Xu D Q, Xu Z Y. Org. Lett., 2018, 20: 5840.
[49]
Lu H, Zhang H X, Tan C Y, Liu J Y, Wei H, Xu P F.[J]. Org. Chem., 2019, 84: 10292.
[50]
Hack D, Dîrr A B, Deckers K, Chauhan P, Seling N, Rîbenach L, Mertens L, Raabe G, Schoenebeck F, Enders D. Angew. Chem. Int.Ed., 2016, 55: 1797.
[51]
Wu G, Xu H, Liu Z, Liu Y, Yang X, Zhang X, Huang Y. Org. Lett., 2019, 21: 7708.
[52]
Putatunda S, Alegre-Requena J V, Meazza M, Franc M, Rohal'ová D, Vemuri P, Císaová I, Herrera R P, Vesel R R [J]. Chem. Sci., 2019, 10: 4107.
[53]
Yetra S R, Mondal S, Suresh E, Biju A T. Org. Lett., 2015, 17: 1417.
[54]
Bao X, Wei S, Qu J, Wang B. Chem. Commun., 2018, 54: 2028.
[55]
Wu B, Chen J, Li M Q, Zhang J X, Xu X P, Ji S J, Wang X W. Eur. J. Org.Chem., 2012, 1318.
[56]
Han X, Yao W, Wang T, Tan Y R, Yan Z, Kwiatkowski J, Lu Y. Angew. Chem. Int.Ed., 2014, 53: 5643.
[57]
Amireddy M, Chen K. RSC Adv., 2016, 6: 77474.
[58]
Ji D S, Luo Y C, Hu X Q, Xu P F. Org. Lett., 2020, 22, 1028.
[59]
Li L, Luo P, Deng Y, Shao Z. Angew. Chem. Int.Ed., 2019, 58: 4710.
[60]
Zheng J, Wang S B, Zheng C, You S L. Angew. Chem. Int.Ed., 2017, 56: 4540.
[61]
Chu M M, Qi S S, Wang Y F, Wang B, Jiang Z H, Xu D Q, Xu Z Y. Org. Chem. Front., 2019, 6: 1977.
[62]
Zhang X L, Tang C K, Xia A B, Feng K X, Du X H, Xu D Q. Eur. J. Org.Chem., 2017, 3152.
[63]
Xia A B, Zhang X L, Tang C K, Feng K X, Du X H, Xu D Q. Org. Biomol. Chem., 2017, 15: 5709.
[64]
Chauhan P, Mahajan S, Loh C C J, Raabe G, Enders D. Org. Lett., 2014, 16: 2954.
[65]
Han B, Huang W, Ren W, He G, Wang J H, Peng C. Adv. Synth. Catal., 2015, 357: 561.
[66]
Zea A, Alba A N R, Mazzanti A, Moyanoa A, Rios R. Org. Biomol. Chem., 2011, 9: 6519.
[67]
Liu L, Zhong Y, Zhang P, Jiang X, Wang R.[J]. Org. Chem., 2012, 77: 10228.
[68]
Zhang J X, Li N K, Liu Z M, Huang X F, Geng Z C, Wang X W. Adv. Synth. Catal., 2013, 355, 797.
[69]
Chen Q, Liang J, Wang S, Wang D, Wang R. Chem. Commun., 2013, 49: 1657.
[70]
Li J H, Du D M. Chem. Asian J. 2014, 9: 3278.
[71]
Zheng W, Zhang J, Liu S, Yua C, Miao Z. RSC Adv., 2015, 5: 91108.
[72]
Sun J, Jiang C, Zhou Z. Eur. J. Org.Chem., 2016, 1165.
[73]
Li J H, Wen H, Liu L, Du D M. Eur. J. Org.Chem., 2016, 2492.
[74]
Mondal B, Maity R, Pan S C.[J]. Org. Chem., 2018, 83: 8645.
[75]
Meninno S, Mazzanti A, Lattanzi A. Adv. Synth. Catal., 2019, 361: 79.
[76]
Zhao C, Shi K, He G, Gu Q, Ru Z, Yang L, Zhong G. Org. Lett., 2019, 21: 7943.
[77]
Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang L, Gao F, Guo Y, Sun M, Wang K, Yan W. Org. Biomol. Chem., 2019, 17: 5514.
[78]
Lin Y, Zhao B L, Du D M.[J]. Org. Chem., 2019, 84: 10209.
[79]
Zhang J, Chan W L, Chen L, Ullah N, Lu Y. Org. Chem. Front., 2019, 6: 2210.
[80]
Luo W, Shao B, Li J, Xiao X, Song D, Ling F, Zhong W. Org. Chem. Front., 2020, 7: 1016.
[81]
Zhang H M, Lv H, Ye S. Org. Biomol. Chem., 2013, 11: 6255.
[82]
Wang S, Izquierdo J, Rodríguez-Escrich C, Pericàs M A. ACS Catal., 2017, 7: 2780.
[83]
Shi Q, Zhang W, Wang Y, Qu L, Wei D. Org. Biomol. Chem., 2018, 16: 2301
[84]
Mutyala R, Reddy V R, Donthi R, Kallaganti VS R, Chandra R. Tetrahedron Lett., 2019, 60: 703.
[85]
Yetra S R, Mondal S, Mukherjee S, Gonnade R G, Biju A T. Angew. Chem. Int.Ed., 2016, 55: 268.
[86]
Mondal S, Mukherjee S, Yetra S R, Gonnade R G, Biju A T. Org. Lett., 2017, 19: 4367.
[87]
Leng H J, Li Q Z, Zeng R, Dai Q S, Zhu H P, Liu Y, Huang W, Han B, Li J L. Adv. Synth. Catal., 2018, 360: 229.
[88]
Liu J Y, Zhao J, Zhang J L, Xu P F. Org. Lett., 2017, 19, 1846.
[89]
Yang W, Sun W, Zhang C, Wang Q, Guo Z, Mao B, Liao J, Guo H. ACS Catal., 2017, 7: 3142.
[90]
Ji Y L, Li H P, Ai Y Y, Li G, He X H, Huang W, Huang R Z, Han B. Org. Biomol. Chem., 2019, 17: 9217.
[91]
Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett., 2019, 21: 1632.
[92]
Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick A P, Waldmann H. Angew. Chem. Int.Ed., 2019, 58: 307.
[93]
Sun B B, Chen J B, Zhang J Q, Yang X P, Lv H P, Wang Z, Wang X W. Org. Chem. Front., 2020, 7: 796.
[94]
Bao X, Wei S, Qian X, Qu J, Wang B, Zou L, Ge G. Org. Lett., 2018, 20: 3394.
[95]
Li X, Chen F Y, Kang J W, Zhou J, Peng C, Huang W, Zhou M K, He G, Han B.[J]. Org. Chem., 2019, 84: 9138.
[96]
Li F, Sun L, Teng Y, Yu P,Zhao J C G, Ma J A. Chem. Eur. J., 2012, 18: 14255.
[97]
Wang H, Wang Y, Song H, Zhou Z, Tang C. Eur. J. Org.Chem., 2013, 4844.
[98]
Zhao L, Bao X, Hu Q, Wang B, Lu A H. ChemCatChem, 2018, 10: 1248.
[99]
Bao X, Wang B, Cui L, Zhu G, He Y, Qu J, Song Y. Org. Lett., 2015, 17: 5168.
[100]
Bao X, Wei S, Zou L, Song Y, Qu J, Wang B. Tetrahedron: Asymmetry, 2016, 27: 436.
[101]
Bao X, Wei S, Zou L, He Y, Xue F, Qu J, Wang B. Chem. Commun., 2016, 52: 11426.
[102]
Xue F, Bao X, Zou L, Qu J, Wang B. Adv. Synth. Catal., 2016, 358: 3971.
[103]
Lin H C, Wang P S, Tao Z L, Chen Y G, Han Z Y, Gong L Z.[J]. Am. Chem. Soc., 2016, 138: 14354.
[104]
Fan L F, Wang P S, Gong L Z. Org. Lett., 2019, 21: 6720.
[105]
Zhu Z Q, Shen Y, Liu J X, Tao J Y, Shi F. Org. Lett., 2017, 19: 1542.
[106]
Vetica F, Bailey S, Chauhan P, Turberg M, Ghaur A, Raabe G, Enders D. Adv. Synth. Catal., 2017, 359: 3729.
[107]
Han J, Zhang Y, Wu X Y, Wong H N C. Chem. Commun., 2019, 55: 397.
[108]
Vila C, Dharmaraj N R, Faubel A, Blay G, Cardona M L, Muñoz M C, Pedro J R. Eur. J. Org.Chem., 2019, 3040.
[109]
Kaya U, Chauhan P, Mahajan S, Deckers K, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int.Ed., 2017, 56: 15358.
[110]
Yang Z T, Yang W L, Chen L, Sun H, Deng W P. Adv. Synth. Catal., 2018, 360: 2049.
[111]
Lu J, Luo L S, Sha F, Li, Wu X Y. Chem. Commun., 2019, 55: 11603.
[112]
Chen M Y, Xu Z, Chen L, Song T, Zheng Z J, Cao J, Cui Y M, Xu L W. ChemCatChem, 2018, 10: 280.
[1] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[2] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[3] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[4] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[5] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[6] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[7] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[8] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[9] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[10] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[11] 郑勇鹏, 许家喜. Thorpe-Ingold效应及其在有机成环反应中的应用[J]. 化学进展, 2014, 26(09): 1471-1491.
[12] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
[13] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[14] 张文生, 李伟, 匡春香. 1,1-二溴-2-取代苯基乙烯在环化反应中的应用[J]. 化学进展, 2013, 25(07): 1149-1157.
[15] 喻理德, 崔汉峰*, 樊浩, 任淑慧, 林艳. 手性季鏻盐相转移催化剂在不对称反应中的应用[J]. 化学进展, 2013, 25(05): 744-751.
阅读次数
全文


摘要