English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 476-490 DOI: 10.7536/PC180137 前一篇   后一篇

• 综述 •

基于大环主体化合物的不对称超分子催化

唐雨平1,2, 何艳梅1*, 冯宇1, 范青华1,2*   

  1. 1. 中国科学院化学研究所 中国科学院分子识别与功能重点实验室 北京 100190;
    2. 中国科学院大学化学科学学院 北京 100049
  • 收稿日期:2018-01-31 修回日期:2018-03-05 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 何艳梅,e-mail:heym@iccas.ac.cn;范青华,e-mail:fanqh@iccas.ac.cn E-mail:heym@iccas.ac.cn;fanqh@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21772204,21373231,21521002)和中国科学院前沿科学重点研究计划(No.QYZDJ-SSW-SLH023)资助

Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules

Yuping Tang1,2, Yanmei He1*, Yu Feng1, Qinghua Fan1,2*   

  1. 1. CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences(CAS), Beijing 100190, China;
    2. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-31 Revised:2018-03-05 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21772204, 21373231, 21521002) and the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH023).
超分子化学与催化的不断渗透融合催生了超分子催化这一挑战性的前沿研究热点。作为超分子化学的主要研究对象,大环化合物因具有可以和不同客体分子通过非共价相互作用可逆结合的识别位点,模拟酶催化中对底物分子的预组织过程,在超分子催化发展之初就备受关注,并在近二十年来取得了可喜的发展。本综述主要介绍了近十年来发展的基于冠醚、环糊精和杯芳烃等大环主体分子的代表性手性超分子催化剂,以及它们在不对称催化反应中的应用,重点阐述了主-客体等弱相互作用对催化剂活性和对映选择性的超分子调控作用,同时对这一研究领域目前存在的局限性和不足进行了总结,并展望了不对称超分子催化的发展前景。
In recent years, supramolecular catalysis has become one of the most challenging research frontiers and hot spots in organic synthesis based on the continuous combination and fusion of supramolecular chemistry and catalysis, and has achieved gratifying development. As the main objectives in supramolecular chemistry, macrocyclic host molecules have gained much attention in supramolecular catalysis due to their reversible recognition and self-assembly with different guest molecules and thus can realize pre-organization of reactants within the catalytic cavities. In the last 20 years, progress has been achieved in supramolecular catalysis based on macrocyclic host molecules. This review will focus on the recent progress in asymmetric supramolecular catalysis based on the representative macrocyclic host molecules, such as crown ethers, cyclodextrins, calixarenes, and their counterparts. The design and synthesis of chiral catalysts, the use of these catalysts in enantioselective reactions, especially, the supramolecular modulation of catalytic activity and selectivity via host-guest association will be introduced. Meanwhile, the limitation and drawbacks of current study and the perspectives for its future development will also be discussed.
Contents
1 Introduction
2 Asymmetric catalysis based on crown ethers and their counterparts
2.1 Chiral crown ether-based metal catalysts
2.2 Chiral metallacrown ether catalysts
2.3 Chiral pseudorotaxane and rotaxane catalysts
2.4 Podands in asymmetric catalysis
3 Asymmetric catalysis based on cyclodextrins
3.1 Cyclodextrin as macroreactor
3.2 Cyclodextrin-based metal catalysts
3.3 Cyclodextrin organocatalysts
4 Asymmetric catalysis based on chiral calixarenes
4.1 Chiral calixarene-based metal catalysts
4.2 Chiral calixarene-based organocatalysts
4.3 Inherently chiral calixarene catalysts
5 Conclusion and outlook

中图分类号: 

()
[1] Van Leeuwen P W N M. Supramolecular catalysis. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA. 2008.
[2] Raynal M, Ballester P, Vidal-Ferrana A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5):1660.
[3] Vaquero M, Rovira L, Vidal-Ferran A. Chem. Commun., 2016, 52(74):11038.
[4] Miller A J M. Dalton Trans., 2017, 46(36):11987.
[5] Leigh D A, Marcos V, Wilson M R. ACS Catal., 2014, 4(12):4490.
[6] Sawamura M, Nagata H, Sakamoto H, Ito Y. J. Am. Chem. Soc., 1992, 114(7):2586.
[7] Sawamura M, Nakayama Y, Tang W M, Ito Y. J. Org. Chem., 1996, 61(26):9090.
[8] Landis C R, Sawyer R A, Somsook E. Organometallics, 2000, 19(6):994.
[9] Fernández-Pérez H, Mon I, Frontera A, Vidal-Ferran A. Tetrahedron, 2015, 71(26/27):4490.
[10] Zhang X C, Hu Y H, Chen C F, Fang Q, Yang L Y, Lu Y B, Xie L J, Wu J, Li S, Fang W. Chem. Sci., 2016, 7(7):4594.
[11] Blanco V, Leigh D A, Marcos V. Chem. Soc. Rev., 2015, 44(15):5341.
[12] Ouyang G H, He Y M, Li Y, Xiang J F, Fan Q H. Angew. Chem. Int. Ed., 2015, 54(14):4334.
[13] Nagayama S, Kobayashi S. J. Am. Chem. Soc., 2000, 122(46):11531.
[14] Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc., 2015, 137(13):4336.
[15] Suzuki H, Igarashi R, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed., 2017, 56(16):4520.
[16] Hamada T, Manabe K, Ishikawa S, Nagayama S, Shiro M, Kobayashi S. J. Am. Chem. Soc., 2003, 125(10):2989.
[17] Owens S B, Gray G M. Organometallics, 2008, 27(17):4282.
[18] Li Y, Ma B, He Y, Zhang F, Fan Q H. Chem. Asian. J., 2010, 5(12):2454.
[19] Song F T, Ouyang G H, Li Y, He Y M, Fan Q H. Eur. J. Org. Chem., 2014, 2014(30):6713.
[20] Mon I, Jose D A, Vidal-Ferran A. Chem. Eur. J., 2013, 19(8):2720.
[21] Vidal-Ferran A, Mon I, Bauza A, Frontera A, Rovira L. Chem. Eur. J., 2015, 21(32):11417.
[22] Rovira L, Fernández-Pérez H, Vidal-Ferran A. Organometallics, 2016, 35(4):528.
[23] Tachibana Y, Kihara N, Takata T. J. Am. Chem. Soc., 2004, 126(11):3438.
[24] Xu K, Nakazono K, Takata T. Chem. Lett., 2016, 45(11):1274.
[25] Cakmak Y, Erbas-Cakmak S, Leigh D A. J. Am. Chem. Soc., 2016, 138(6):1749.
[26] Wieland J, Breit B. Nat. Chem., 2010, 2(10):832.
[27] Wu L, He Y M, Fan Q H. Adv. Synth. Catal., 2011, 353(16):2915.
[28] Hattori G, Hori T, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc., 2007, 129(43):12930.
[29] Li Y, Feng Y, He Y M, Chen F, Pan J, Fan Q H. Tetrahedron Lett., 2008, 49(18):2878.
[30] Blanco V, Carlone A, Hanni K D, Leigh D A, Lewandowski B. Angew. Chem. Int. Ed., 2012, 51(21):5166.
[31] Blanco V, Leigh D A, Lewandowska U, Lewandowski B, Marcos V. J. Am. Chem. Soc., 2014, 136(44):15775.
[32] Blanco V, Leigh D A, Marcos V, Morales-Serna J A, Nussbaumer A L. J. Am. Chem. Soc., 2014, 136(13):4905.
[33] Hoekman S, Kitching M O, Leigh D A, Papmeyer M, Roke D. J. Am. Chem. Soc., 2015, 137(24):7656.
[34] 周海峰(Zhou H F), 范青华(Fan Q H), 何艳梅(He Y M), 古练权(Gu L Q), 陈新滋(Chan S C). 化学进展(Progress in Chemistry), 2007, 19(10):1517.
[35] Xu D Q, Luo S P, Wang Y F, Xia A B, Yue H D, Wang L P, Xu Z Y. Chem. Commun., 2007, (42):4393.
[36] Wang T, Chen Y, Ouyang G, He Y M, Li Z, Fan Q H. Chem-Asian. J., 2016, 11(19):2773.
[37] Ouyang G H, He Y M, Fan Q H. Chem. Eur. J., 2014, 20(50):16454.
[38] Macaev F, Boldescu V. Symmetry, 2015, 7(4):1699.
[39] 洪诗斌(Hong S B), 刘梦艳(Liu M Y), 张薇(Zhang W), 邓维(Deng W). 有机化学(Chinese Journal of Organic Chemistry), 2015, 35(2):325.
[40] Nakamura A, Inoue Y. J. Am. Chem. Soc., 2003, 125(4):966.
[41] Nakamura A, Inoue Y. J. Am. Chem. Soc., 2005, 127(15):5338.
[42] Xu H X, Cheng S F, Yang X J, Chen B, Chen Y, Zhang L P, Wu L Z, Fang W, Tung C H, Weiss R G. J. Org. Chem., 2012, 77(4):1685.
[43] Wong Y T, Yang C, Ying K C, Jia G. Organometallics, 2002, 21(9):1782.
[44] Jouffroy M, Sémeril D, Armspach D, Matt D. Eur. J. Org. Chem., 2013, 2013(27):6069.
[45] Jouffroy M, Gramage-Doria R, Armspach D, Semeril D, Oberhauser W, Matt D, Toupet L. Angew. Chem. Int. Ed., 2014, 53(15):3937.
[46] Schlatter A, Kundu M K, Woggon W D. Angew. Chem. Int. Ed., 2004, 43(48):6731.
[47] Schlatter A, Woggon W D. Adv. Synth. Catal., 2008, 350(7/8):995.
[48] Shen H M, Ji H B. Tetrahedron, 2013, 69(39):8360.
[49] Hu S S, Li J Y, Xiang J F, Pan J, Luo S Z, Cheng J P. J. Am. Chem. Soc., 2010, 132(20):7216.
[50] 朱庆英(Zhu Q Y), 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2016, 36(8):1907.
[51] Mojr V, Herzig V, Budesinsky M, Cibulka R, Kraus T. Chem. Commun., 2010, 46(40):7599.
[52] Mojr V, Budesinsky M, Cibulka R, Kraus T. Org. Biomol. Chem., 2011, 9(21):7318.
[53] Hartman T, Herzig V, Buděšínský M, Jindrich J, Cibulka R, Kraus T. Tetrahedron:Asymmetry, 2012, 23(22/23):1571.
[54] 黄志镗(Huang Z T), 郑企雨(Zheng Q Y). 有机化学(Chinese Journal of Organic Chemistry), 2001, 21(11):904.
[55] Böhmer V. Angew. Chem. Int. Ed., 1995, 34(7):713.
[56] 罗钧(Luo J), 郑企雨(Zheng Q Y), 陈传峰(Chen C F), 黄志镗(Huang Z T). 化学进展(Progress in Chemistry), 2006, 18(7/8):897.
[57] Homden D M, Redshaw C. Chem. Rev., 2008, 108(12):5086.
[58] Li Z Y, Chen J W, Liu Y, Xia W, Wang L. Curr. Org. Chem., 2011, 15(23):39.
[59] Simões J B, da Silva D L, de Fátima A, Fernandes S A. Curr. Org. Chem., 2012, 16(23):949.
[60] Paciello R, Siggel L, Röper M. Angew. Chem. Int. Ed., 1999, 38(13/14):1920.
[61] Dieleman C, Steyer S, Jeunesse C, Matt D. J. Chem. Soc. Dalton Trans., 2001, 2001(17):2508.
[62] Marson A, Freixa Z, Kamer P C J, van Leeuwen P W N M. Eur. J. Inorg. Chem., 2007, 2007(29):4587.
[63] Karpus A, Yesypenko O, Boiko V, Poli R, Daran J C, Voitenko Z, Kalchenko V, Manoury E. Eur. J. Org. Chem., 2016, 2016(20):3386.
[64] Khiri N, Bertrand E, Ondel-Eymin M J, Rousselin Y, Bayardon J, Harvey P D, Jugé S. Organometallics, 2010, 29(16):3622.
[65] Khiri-Meribout N, Bertrand E, Bayardon J, Eymin M J, Rousselin Y, Cattey H, Fortin D, Harvey P D, Jugé S. Organometallics, 2013, 32(9):2827.
[66] Nandi P, Solovyov A, Okrut A, Katz A. ACS Catal., 2014, 4(8):2492.
[67] Amato M E, Ballistreri F P, Pappalardo A, Tomaselli G A, Toscano R M, Williams D J. Eur. J. Org. Chem., 2005, 2005(16):3562.
[68] Bonaccorso C, Brancatelli G, Ballistreri F P, Geremia S, Pappalardo A, Tomaselli G A, Toscano R M, Sciotto D. Dalton Trans., 2014, 43(5):2183.
[69] Pan Y, Wang L, Li Z Y, Chen J W. Synlett., 2009, 2009(14):2356.
[70] Li Z Y, Lu C X, Huang G, Ma J J, Sun H, Wang L, Pan Y. Lett. Org. Chem., 2010, 7(6):461.
[71] Li Z, Xing H, Huang G, Sun X, Jiang J, Wang L. Sci. China Chem., 2011, 54(11):1726.
[72] Li Z Y, Chen Y, Zheng C Q, Yin Y, Wang L, Sun X Q. Tetrahedron, 2017, 73(1):78.
[73] Eymur S, Akceylan E, Sahin O, Uyanik A, Yilmaz M. Tetrahedron, 2014, 70(30):4471.
[74] Uyanik A, Bayrakci M, Eymur S, Yilmaz M. Tetrahedron, 2014, 70(49):9307.
[75] Aktas M, Uyanik A, Eymur S, Yilmaz M. Supramol. Chem., 2015, 28(5/6):351.
[76] Demircan E, Eymur S, Demir A S. Tetrahedron:Asymmetry, 2014, 25(5):443.
[77] Durmaz M, Sirit A. Supramol. Chem., 2013, 25(5):292.
[78] Durmaz M, Sirit A. Tetrahedron:Asymmetry, 2013, 24(23):1443.
[79] Durmaz M, Tataroglu A, Yilmaz H, Sirit A. Tetrahedron:Asymmetry, 2016, 27(2/3):148.
[80] Genc H N, Sirit A. Tetrahedron:Asymmetry, 2016, 27(4/5):201.
[81] Cao Y D, Luo J, Zheng Q Y, Chen C F, Wang M X, Huang Z T. J. Org. Chem., 2004, 69(1):206.
[82] Luo J, Zheng Q Y, Chen C F, Huang Z T. Chem. Eur. J., 2005, 11(20):5917.
[83] Miao R, Zheng Q Y, Chen C F, Huang Z T. J. Org. Chem., 2005, 70(19):7662.
[84] Li S Y, Zheng Q Y, Chen C F, Huang Z T. Tetrahedron:Asymmetry, 2005, 16(3):641.
[85] Luo J, Zheng Q Y, Chen C F, Huang Z T. Tetrahedron, 2005, 61(35):8517.
[86] Xu Z X, Zhang C, Zheng Q Y, Chen C F, Huang Z T. Org. Lett., 2007, 9(22):4447.
[87] Xu Z X, Zhang C, Zheng Q Y, Chen C F, Huang Z T. Org. Lett., 2007, 9(25):5331.
[88] Xu Z X, Li G K, Chen C F, Huang Z T. Tetrahedron, 2008, 64(37):8668.
[89] Miao R, Xu Z, Huang Z, Chen C. Sci. China. B-Chem., 2009, 52(4):505.
[90] Shirakawa S, Moriyama A, Shimizu S. Org. Lett., 2007, 9(16):3117.
[91] Pan S, Wang D X, Zhao L, Wang M X. Org. Lett., 2012, 14(24):6254.
[92] Li J T, Wang L X, Wang D X, Zhao L, Wang M X. J. Org. Chem., 2014, 79(5):2178.
[93] Zhang G W, Li P F, Meng Z, Wang H X, Han Y, Chen C F. Angew. Chem. Int. Ed., 2016, 55(17):5304.
[94] Mitra R, Zhu H, Grimme S, Niemeyer J. Angew. Chem. Int. Ed., 2017, 56(38):11456.
[95] Yoshizawa M, Tamura M, Fujita M. Science, 2006, 312(5771):251.
[96] Wang Q Q, Gonell S, Leenders S H A M, Durr M, Ivanovic-Burmazovic I, Reek J N H. Nat. Chem., 2016, 8(3):225.
[97] Brauer T M, Zhang Q, Tiefenbacher K. J. Am. Chem. Soc., 2017, 139(48):17500.
[1] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[4] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[5] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[6] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[7] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[8] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[9] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[10] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[11] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
[12] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[13] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
[14] 喻理德, 崔汉峰*, 樊浩, 任淑慧, 林艳. 手性季鏻盐相转移催化剂在不对称反应中的应用[J]. 化学进展, 2013, 25(05): 744-751.
[15] 李高伟, 王晓娟, 赵文献, 鲁刘杰, 刘冠军, 王敏灿. Trost氮杂半冠醚手性配体在不对称催化反应中的应用[J]. 化学进展, 2012, 24(0203): 348-360.
阅读次数
全文


摘要