English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2134-2145 DOI: 10.7536/PC220103 前一篇   后一篇

• 综述与评论 •

环张力促进的叠氮-炔环加成反应

廖伊铭1, 吴宝琪1, 唐荣志2,*(), 林峰1, 谭余1,*()   

  1. 1 中山大学化学工程与技术学院 珠海 519082
    2 香港城市大学能源与环境学院 香港 999077
  • 修回日期:2022-01-27 出版日期:2022-10-24 发布日期:2022-04-01
  • 通讯作者: 唐荣志, 谭余
  • 作者简介:

    谭余 2016年博士毕业于复旦大学,研究方向为有机合成。2016—2019年在麻省大学医学院作为博士后从事生物医用水凝胶方向的研究。2019—2020年在美国西北大学作为博士后从事超分子化学的研究。目前为中山大学百人计划副教授,从事水凝胶和超分子化学在海洋化工中的应用研究。

  • 基金资助:
    中山大学百人计划启动经费(76110-18841290); 中山大学大学生创新创业训练计划项目(20211956)

Strain-Promoted Azide-Alkyne Cycloaddition

Liao Yiming1, Wu Baoqi1, Tang Rongzhi2(), Lin Feng1, Tan Yu1()   

  1. 1 School of Chemical Engineering and Technology, Sun Yat-Sen University,Zhuhai 519082, China
    2 School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
  • Revised:2022-01-27 Online:2022-10-24 Published:2022-04-01
  • Contact: Tang Rongzhi, Tan Yu
  • Supported by:
    Start-up Fund(76110-18841290); Innovation and Entrepreneurship Training Program for College Students of Sun Yat-sen University(20211956)

近年来,点击化学中的环张力促进的叠氮-炔环加成(SPAAC)反应由于具有高效快速、高选择性和生物正交性等优点被广泛用于生物医学和材料科学等多个领域。SPAAC反应不需要光、热、超声和催化剂等额外的刺激,反应的驱动力来源于高张力的活泼环状炔烃,因此合理设计环状炔烃是SPAAC反应的关键。本文详细归纳了不同环数目的环状炔烃的稳定性和反应活性,总结参与SPAAC的稳定环状炔烃,并讨论了它们参与SPAAC反应的二级反应速率常数。本文还介绍了目前应用广泛的代表性环状炔烃的制备方法研究进展。最后,对无铜催化的SPAAC的应用前景和存在的问题进行讨论和展望。

In recent years, strain-promoted azide-alkyne cycloaddition (SPAAC) reaction has been widely used in many fields such as biomedicine and materials science due to its high efficiency, rapidity, high selectivity, and bioorthogonality. SPAAC reaction does not require additional stimuli such as light, heat, ultrasound or catalysts. The driving force of the reaction comes from the active cyclic alkynes with high strain. Therefore, the rational design of the cycloalkynes is the key to the SPAAC reaction. In this review, the stability and reactivity of cycloalkynes with different ring numbers are discussed, and the stable cycloalkynes participating in SPAAC smoothly as well as their second-order reaction rate constants in the SPAAC reaction are summarized. The research progress in the preparation methods of representative cyclic alkynes that are currently widely used is also introduced. Moreover, the application, challenge and future outlook of SPAAC without copper catalysis are discussed and prospected.

()
图式1 CuAAC反应
Scheme 1 CuAAC Reaction
图式2 SPAAC反应
Scheme 2 Strain-Promoted Azide-alkyne cycloaddition
图式3 环戊炔作为独立中间体参与加成[18]
Scheme 3 Cyclopentyne participates in the addition as an independent intermediate[18]
图式4 不稳定环己炔的脱溴/脱氢合成
Scheme 4 Debromination/dehydrogenation synthesis of unstable cyclohexyne
图1 稳定参与SPAAC反应的7元环炔烃及其开始使用的年份
Fig. 1 The 7-membered cycloalkynes that stably participate in the SPAAC reaction and the year of their use
图2 稳定参与反应的8元环炔烃及其开始使用的年份
Fig. 2 The 8-membered cycloalkynes that stably participate in the SPAAC reaction and the year of their use
图3 稳定参与反应的9元、10元环炔烃及其开始使用的年份
Fig. 3 The 9-membered and 10-membered cycloalkynes that participate in the reaction stably and the year when they were used
表1 不同环状炔烃参与SPAAC的二级反应常数
Table 1 Second order reaction constants of different cycloalkyne substrates
图式4 范德尔夫特法
Scheme 4 Van Derft method
图式5 波皮克法
Scheme 5 Popik method
图式6 溴化和消去
Scheme 6 Bromination and elimination
图式7 改良波皮克法
Scheme 7 Modified Popik Method
图4 SPAAC反应用于制备Pt的抗癌复合物[56]
Fig. 4 SPAAC reaction is used to prepare Pt anticancer complex[56]. Copyright 2020, Elsevier
图5 SPAAC反应用于制备水凝胶[85]
Fig. 5 SPAAC reaction for the preparation of hydrogels[85]. Copyright 2015, American Chemical Society
图6 SPAAC反应用于纳米平台的界面改性[96]
Fig. 6 SPAAC reaction for interfacial modification of nanoplatforms[96]. Copyright 2019, American Chemical Society
[1]
Kolb H C, Finn M, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40(11): 2004.

doi: 10.1002/1521-3773(20010601)40:11【-逻*辑*与-】lt;2004::AID-ANIE2004【-逻*辑*与-】gt;3.0.CO;2-5     URL    
[2]
Hawker C J, Fokin V V, Finn M, Sharpless K B. Aust. J. Chem., 2007, 60(6): 381.

doi: 10.1071/CH07107     URL    
[3]
Finn M G, Kolb H C, Fokin V V, Sharpless K B, Zhang X H, Wu Y D. Prog. Chem., 2008, 20(01): 1.
Finn M G, Kolb H C, Fokin V V, Sharpless K B, 张欣豪, 吴云东. 化学进展, 2008, 20(1): 1.).
[4]
Tornøe C W, Christensen C, Meldal M. J. Org. Chem., 2002, 67(9): 3057.

doi: 10.1021/jo011148j     URL    
[5]
Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. Angew. Chem., 2002, 114(14): 2708.

doi: 10.1002/1521-3757(20020715)114:14【-逻*辑*与-】lt;2708::AID-ANGE2708【-逻*辑*与-】gt;3.0.CO;2-0     URL    
[6]
Li S, Tang W, Zhang W, Guo X, Zhang Q. Chem. Eur. J., 2015, 21(49): 17762.

doi: 10.1002/chem.201502825     URL    
[7]
Li H, Wang J, Sun J Z, Hu R, Qin A, Tang B Z. Polym. Chem., 2012, 3(4): 1075.

doi: 10.1039/c2py00586g     URL    
[8]
Spruell J M, Wolffs M, Leibfarth F A, Stahl B C, Heo J, Connal L A, Hu J, Hawker C J. J. Am. Chem. Soc., 2011, 133(41): 16698.

doi: 10.1021/ja207635f     pmid: 21919513
[9]
Nolan K R. J. Orthomol. Psychiatry., 1983, 12(4): 270.
[10]
Lallana E, Riguera R, Fernandez-Megia E. Angew. Chem. Int. Ed., 2011, 50(38): 8794.

doi: 10.1002/anie.201101019     URL    
[11]
Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126(46): 15046.

doi: 10.1021/ja044996f     URL    
[12]
Hamlin T A, Levandowski B J, Narsaria A K, Houk K N, Bickelhaupt F M. Chem.-Eur. J., 2019, 25(25): 6342.
[13]
Krebs A, Wilke J. Wittig Chemistry, 1983: 189.
[14]
Sherrill C D, Brandow C G, Allen W D, Schaefer H F. J. Am. Chem. Soc., 1996, 118(30): 7158.

doi: 10.1021/ja960762n     URL    
[15]
Zanda M, Bucci R, Sloan N L, Topping L. Eur. J. Org. Chem., 2020, 2020(33): 5278.

doi: 10.1002/ejoc.202000512     URL    
[16]
Rappoport Z, Liebman J F. The chemistry of cyclobutanes: John Wiley & Sons, 2005.
[17]
Domingo L R, Pérez López P, Contreras Ramos R. Eur. J. Org. Chem., 2006: 498.
[18]
Medina J M, McMahon T C, Jiménez-Osés G, Houk K, Garg N K. J. Am. Chem. Soc., 2014, 136(42): 14706.

doi: 10.1021/ja508635v     pmid: 25283710
[19]
Wentrup C. Reactive molecules: the neutral reactive intermediates in organic chemistry: Wiley-Interscience, 1984.
[20]
Wittig G, Mayer U. Chem. Ber., 1963, 96(1): 342.

doi: 10.1002/cber.19630960142     URL    
[21]
Wittig G, Fritze P. Angev. Chem. Int. Ed., 1966, 5(9): 846.
[22]
Atanes N, Escudero S, Pérez D, Guitián E, Castedo L. Tetrahedron Lett., 1998, 39(19): 3039.
[23]
Schaub T A, Margraf J T, Zakharov L, Reuter K, Jasti R. Angew. Chem. Int. Ed., 2018, 57(50): 16348.

doi: 10.1002/anie.201808611     URL    
[24]
Svatunek D, Eilenberger G, Denk C, Lumpi D, Hametner C, Allmaier G, Mikula H. Chem.-Eur. J., 2020, 26(44): 9851.

doi: 10.1002/chem.201905478     URL    
[25]
de Almeida G, Sletten E M, Nakamura H, Palaniappan K K, Bertozzi C R. Angew. Chem., 2012, 124(10): 2493.

doi: 10.1002/ange.201106325     URL    
[26]
King M, Baati R, Wagner A. Chem. Commun., 2012, 48(74): 9308.

doi: 10.1039/c2cc35034c     URL    
[27]
Weterings J, Rijcken C J, Veldhuis H, Meulemans T, Hadavi D, Timmers M, Honing M, Ippel H, Liskamp R M. Chem. Sci., 2020, 11(33): 9011.

doi: 10.1039/d0sc03477k     pmid: 34123155
[28]
Harris T, Alabugin I V. Mendeleev Commun., 2019, 29(3): 237.

doi: 10.1016/j.mencom.2019.05.001     URL    
[29]
Jedináková M P. Doctoral Dissertation of Palacký University Olomouc, 2017.
[30]
Sletten E M, Bertozzi C R. Org. Lett., 2008, 10(14): 3097.

doi: 10.1021/ol801141k     pmid: 18549231
[31]
Codelli J A, Baskin J M, Agard N J, Bertozzi C R. J. Am. Chem. Soc., 2008, 130(34): 11486.

doi: 10.1021/ja803086r     pmid: 18680289
[32]
Stöckmann H, Neves A A, Stairs S, Ireland-Zecchini H, Brindle K M, Leeper F J. Chem. Sci., 2011, 2(5): 932.

pmid: 22724056
[33]
Dommerholt J, Schmidt S, Temming R, Hendriks L, Rutjes F. Angew. Chem. Int. Ed., 2010, 49: 9422.

doi: 10.1002/anie.201003761     pmid: 20857472
[34]
Grost C, Berg T. Org. Biomol. Chem., 2015, 13(13): 3866.

doi: 10.1039/C5OB00212E     URL    
[35]
Lis C, Berg T. Synlett, 2019, 30(08): 939.

doi: 10.1055/s-0037-1611481     URL    
[36]
Varga B R, Kállay M, Hegyi K, Béni S, Kele P. Chem. Eur. J., 2012, 18(3): 822.

doi: 10.1002/chem.201102329     URL    
[37]
Sletten E M, Nakamura H, Jewett J C, Bertozzi C R. J. Am. Chem. Soc., 2010, 132(33): 11799.

doi: 10.1021/ja105005t     pmid: 20666466
[38]
Jewett J C, Sletten E M, Bertozzi C R. J. Am. Chem. Soc., 2010, 132(11): 3688.

doi: 10.1021/ja100014q     pmid: 20187640
[39]
Sutton D A, Yu S-H, Steet R, Popik V V. Chem. Commun., 2016, 52(3): 553.

doi: 10.1039/C5CC08106H     URL    
[40]
Dommerholt J, Rutjes F, van Delft F L. Top. Curr. Chem., 2016, 374(2): 16.
[41]
Terzic V, Pousse G, Méallet-Renault R, Grellier P, Dubois J l. J. Org. Chem., 2019, 84(13): 8542.

doi: 10.1021/acs.joc.9b00895     pmid: 31199143
[42]
Tummatorn J, Batsomboon P, Clark R J, Alabugin I V, Dudley G B. J. Org. Chem., 2012, 77(5): 2093.

doi: 10.1021/jo300188y     pmid: 22316100
[43]
Kaneda K. Yakugaku Zasshi., 2020, 140(9): 1087.

doi: 10.1248/yakushi.20-00139     URL    
[44]
Poloukhtine A A, Mbua N E, Wolfert M A, Boons G-J, Popik V V. J. Am. Chem. Soc., 2009, 131(43): 15769.

doi: 10.1021/ja9054096     pmid: 19860481
[45]
Debets M F, van Berkel S S, Schoffelen S, Rutjes F P, van Hest J C, van Delft F L. Chem. Commun., 2010, 46(1): 97.

doi: 10.1039/B917797C     URL    
[46]
McNelles S A, Pantaleo J L, Adronov A. Org. Process Res. Dev., 2019, 23(12): 2740.

doi: 10.1021/acs.oprd.9b00406    
[47]
Dommerholt J, Schmidt S, Temming R, Hendriks L J, Rutjes F P, van Hest J C, Lefeber D J, Friedl P, van Delft F L. Angew. Chem. Int Ed., 2010, 49(49): 9422.

doi: 10.1002/anie.201003761     pmid: 20857472
[48]
Jacobs M J, Schneider G, Blank K G. Angew. Chem. Int. Ed., 2016, 55(8): 2899.

doi: 10.1002/anie.201510299     URL    
[49]
Kuzmin A, Poloukhtine A, Wolfert M A, Popik V V. Bioconjug. Chem., 2010, 21(11): 2076.

doi: 10.1021/bc100306u     URL    
[50]
Adronov A, Chadwick R, Van Gyzen S, Liogier S. Synthesis, 2014, 46(05): 669.

doi: 10.1055/s-0033-1340509     URL    
[51]
Anseth K S, Klok H A. Biomacromolecules, 2016, 17(1): 1.

doi: 10.1021/acs.biomac.5b01660     URL    
[52]
Kim E, Koo H. Chem. Sci., 2019, 10(34): 7835.

doi: 10.1039/C9SC03368H     URL    
[53]
Derks Y H W, Rijpkema M, Amatdjais-Groenen H I V, Loeff C, de Roode K E, Kip A, Laverman P, Lütje S, Heskamp S, Löwik D W P M. Bioconjugate Chem. (2021), DOI:10.1021/acs.bioconjchem.1c00537.

doi: 10.1021/acs.bioconjchem.1c00537    
[54]
Liu G, Wold E A, Zhou J. Curr. Top. Med. Chem., 2019, 19(11): 892.

doi: 10.2174/1568026619666190510091921     URL    
[55]
Lamoot A, Uvyn A, Kasmi S, De Geest B G. Angew. Chem. Int. Ed., 2021, 133(12): 6390.

doi: 10.1002/ange.202015625     URL    
[56]
Farrer N J, Griffith D M. Curr. Opin. Chem. Biol., 2020, 55: 59.

doi: 10.1016/j.cbpa.2019.12.001     URL    
[57]
Lutz J F, Zarafshani Z. Adv. Drug Deliv. Rev., 2008, 60(9): 958.

doi: 10.1016/j.addr.2008.02.004     URL    
[58]
Takayama Y, Kusamori K, Nishikawa M. Molecules, 2019, 24(1):.
[59]
Liu X, Gong P, Song P, Xie F, Miller Ii A L, Chen S, Lu L. Polym. Chem., 2019, 10(6): 705.

doi: 10.1039/C8PY01721B     URL    
[60]
Wang C F, Makila E M, Kaasalainen M H, Liu D, Sarparanta M P, Airaksinen A J, Salonen J J, Hirvonen J T, Santos H A. Biomaterials, 2014, 35(4): 1257.

doi: 10.1016/j.biomaterials.2013.10.065     URL    
[61]
Zeng D, Zeglis B M, Lewis J S, Anderson C J. J. Nucl. Med., 2013, 54(6): 829.

doi: 10.2967/jnumed.112.115550     URL    
[62]
Karver M R, Weissleder R, Hilderbrand S A. Angew. Chem. Int. Ed., 2012, 51(4): 920.

doi: 10.1002/anie.201104389     pmid: 22162316
[63]
Ramil C P, Lin Q. Chem. Commun., 2013, 49(94): 11007.

doi: 10.1039/c3cc44272a     URL    
[64]
Plougastel L, Pattanayak M R, Riomet M, Bregant S, Sallustrau A, Nothisen M, Wagner A, Audisio D, Taran F. Chem. Commun., 2019, 55(31): 4582.

doi: 10.1039/C9CC01458F     URL    
[65]
Depienne S, Alvarez-Dorta D, Croyal M, Temgoua R C, Charlier C, Deniaud D, Mével M, Boujtita M, Gouin S G. Chem. Sci., 2021, 12(46): 15374.

doi: 10.1039/D1SC04809K     URL    
[66]
Kielkowski P, Buchsbaum I Y, Becker T, Bach K, Cappello S, Sieber S A. ChemBioChem, 2020, 21(9): 1285.

doi: 10.1002/cbic.201900716     pmid: 32027064
[67]
Zhang G, Zheng S, Liu H, Chen P R. Chem. Soc. Rev., 2015, 44(11): 3405.

doi: 10.1039/c4cs00393d     pmid: 25857695
[68]
Bruins J J, Blanco-Ania D, van der Doef V, van Delft F L, Albada B. Chem. Commun., 2018, 54(53): 7338.

doi: 10.1039/C8CC02638F     URL    
[69]
Kim S, Ko W, Park H, Lee H S. J. Vis. Exp., 2016, (118):.
[70]
Gong Y, Pan L. Tetrahedron Lett., 2015, 56(17): 2123.

doi: 10.1016/j.tetlet.2015.03.065     URL    
[71]
Boudjemeline M, McNitt C D, Singleton T A, Popik V V, Kostikov A P. Org. Biomol. Chem., 2018, 16(3): 363.

doi: 10.1039/c7ob02532g     pmid: 29170778
[72]
Mushtaq S, Yun S J, Jeon J. Molecules, 2019, 24(19): 3567.

doi: 10.3390/molecules24193567     URL    
[73]
Mushtaq S, Park S H. Chem. Commun., 2020, 56(3): 415.

doi: 10.1039/C9CC08982A     URL    
[74]
Suazo K F, Park K Y, Distefano M D. Chem. Rev., 2021, 121(12): 7178.

doi: 10.1021/acs.chemrev.0c01108     URL    
[75]
Ning X, Temming R P, Dommerholt J, Guo J, Ania D B, Debets M F, Wolfert M A, Boons G J, van Delft F L. Angew. Chem. Int. Ed., 2010, 49(17): 3065.

doi: 10.1002/anie.201000408     URL    
[76]
Berti F, Adamo R. Chem. Soc. Rev., 2018, 47(24): 9015.

doi: 10.1039/C8CS00495A     URL    
[77]
van Hest J C, van Delft F L. ChemBioChem, 2011, 12(9): 1309.

doi: 10.1002/cbic.201100206     pmid: 21557431
[78]
Neef A B, Luedtke N W. ChemBioChem, 2014, 15(6): 789.

doi: 10.1002/cbic.201400037     URL    
[79]
Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht H A. ChemBioChem, 2015, 16(11): 1541.

doi: 10.1002/cbic.201500199     URL    
[80]
Gutsmiedl K, Fazio D, Carell T. Chem. -Eur. J., 2010, 16(23): 6877.

doi: 10.1002/chem.201000363     URL    
[81]
Singh S, Dubinsky-Davidchik I S, Kluger R. Org. Biomol. Chem., 2016, 14(42): 10011.

doi: 10.1039/C6OB01817C     URL    
[82]
Ning X, Guo J, Wolfert M A, Boons G J. Angew. Chem. Int. Ed., 2008, 47(12): 2253.

doi: 10.1002/anie.200705456     URL    
[83]
Hu H, Flynn N, Zhang H, You C, Hang R, Wang X, Zhong H, Chan Z, Xia Y, Chen X. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(13): 8424.
[84]
Morey T M, Esmaeili M A, Duennwald M L, Rylett R J. Front. Cell Dev. Biol., 2021, 9,DOI:10.3389/fcell.2021.722560.

doi: 10.3389/fcell.2021.722560    
[85]
Tan Y, Huang H, Ayers D C, Song J. ACS Cent. Sci., 2018, 4(8): 971.

doi: 10.1021/acscentsci.8b00170     URL    
[86]
Tan Y, Song J. Biomacromolecules, 2021, 22(8): 3408.

doi: 10.1021/acs.biomac.1c00477     pmid: 34292720
[87]
Fong D, Andrews G M, McNelles S A, Adronov A. Polym. Chem., 2018, 9(35): 4460.

doi: 10.1039/C8PY01003J     URL    
[88]
Whitehead S A, McNitt C D, Mattern-Schain S I, Carr A J, Alam S, Popik V V, Best M D. Bioconjug. Chem., 2017, 28(4): 923.

doi: 10.1021/acs.bioconjchem.6b00578     URL    
[89]
Canalle L A, van Berkel S S, de Haan L T, van Hest J C M. Adv. Funct. Mater., 2009, 19(21): 3464.

doi: 10.1002/adfm.200900743     URL    
[90]
Pramudya I, Kim C, Chung H. Polym. Chem., 2018, 9(26): 3638.

doi: 10.1039/C8PY00339D     URL    
[91]
Ornelas C, Broichhagen J, Weck M. J. Am. Chem. Soc., 2010, 132(11): 3923.

doi: 10.1021/ja910581d     pmid: 20184364
[92]
Li H, Yin Y, Wang A, Li N, Wang R, Zhang J, Chen X, Pei X, Xie T. RSC Advances, 2020, 10(5): 2624.

doi: 10.1039/C9RA09067C     URL    
[93]
Ledin P A, Kolishetti N, Hudlikar M S, Boons G J. Chem. - Eur. J., 2014, 20(28): 8753.
[94]
McNelles S A, Adronov A. Macromolecules, 2017, 50(20): 7993.

doi: 10.1021/acs.macromol.7b01765     URL    
[95]
Ledin P A, Friscourt F, Guo J, Boons G J. Chem. - Eur. J., 2011, 17(3): 839.
[96]
Gunawardene P N, Corrigan J F, Workentin M S. J. Am. Chem. Soc., 2019, 141(30): 11781.

doi: 10.1021/jacs.9b05182     pmid: 31280560
[97]
Manova R K, Pujari S P, Weijers C A, Zuilhof H, van Beek T A. Langmuir, 2012, 28(23): 8651.

doi: 10.1021/la300921e     URL    
[98]
Zhang T, Zheng Z H, Cheng X, Ding X B, Peng Y X. Prog. Chem., 2008, 20(0708): 1090.
张涛, 郑朝晖, 成煦, 丁小斌, 彭宇行. 化学进展, 2008, 20(0708): 1090.).
[99]
Guo J, Chen G, Ning X, Wolfert M A, Li X, Xu B, Boons G J. Chem. - Eur. J., 2010, 16(45): 13360.
[100]
Fornasier M, Porcheddu A, Casu A, Raghavan S R, Jonsson P, Schillen K, Murgia S. J. Colloid Interface Sci., 2021, 582(Pt A): 246.
[101]
Wang C F, Sarparanta M P, Makila E M, Hyvonen M L, Laakkonen P M, Salonen J J, Hirvonen J T, Airaksinen A J, Santos H A. Biomaterials, 2015, 48: 108.

doi: 10.1016/j.biomaterials.2015.01.008     URL    
[102]
Gobbo P, Novoa S, Biesinger M C, Workentin M S. Chem. Commun., 2013, 49(38): 3982.

doi: 10.1039/c3cc41634h     URL    
[103]
Rojas-Sánchez L, Sokolova V, Riebe S, Voskuhl J, Epple M. ChemNanoMat, 2018, 5(4): 436.

doi: 10.1002/cnma.201800509     URL    
[104]
Fan G M, Han Q, Xiong X Q. Prog. Chem., 2014, 26(07): 1223.
范观铭, 韩骞, 熊兴泉. 化学进展, 2014, 26(07): 1223.).

doi: 10.7536/PC140108    
[105]
Hodgson S M, Bakaic E, Stewart S A, Hoare T, Adronov A. Biomacromolecules, 2016, 17(3): 1093.

doi: 10.1021/acs.biomac.5b01711     URL    
[106]
Ono R J, Lee A L Z, Voo Z X, Venkataraman S, Koh B W, Yang Y Y, Hedrick J L. Biomacromolecules, 2017, 18(8): 2277.

doi: 10.1021/acs.biomac.7b00377     URL    
[1] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[2] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[3] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[4] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[5] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[6] 谭祥龙, 许玲, 石景, 李宜明. 转肽酶Sortase A在蛋白质修饰中的应用[J]. 化学进展, 2014, 26(10): 1741-1751.
[7] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[8] 徐源鸿, 熊兴泉, 蔡雷, 唐忠科, 叶章基. 巯基-烯点击化学[J]. 化学进展, 2012, 24(0203): 385-394.
[9] 杨正龙, 陈秋云, 周丹, 卜弋龙. 硫醇-烯/炔点击化学合成功能聚合物材料[J]. 化学进展, 2012, 24(0203): 395-404.
[10] 邱素艳, 高森, 林振宇, 陈国南. 点击化学最新进展[J]. 化学进展, 2011, 23(4): 637-648.
[11] 袁伟忠, 张锦春, 魏静仁. 点击化学与活性自由基聚合联用构建特殊结构聚合物[J]. 化学进展, 2011, 23(4): 760-771.
[12] 杨奇志, 刘佳, 蒋序林. 点击化学在生物医用高分子中的应用[J]. 化学进展, 2010, 22(12): 2377-2387.
[13] 何乃普, 何玉凤, 王荣民, 宋鹏飞, 周云. 蛋白质高分子结合体[J]. 化学进展, 2010, 22(12): 2388-2396.
[14] 王成 王妮 周伟 沈玉梅 张岚. “点击化学”在放射性药物合成中的应用*[J]. 化学进展, 2010, 22(08): 1591-1602.
[15] 赵正达 袁伟忠 顾书英 任天斌 任杰. 点击化学及其在生物医学领域的应用*[J]. 化学进展, 2010, 22(0203): 417-426.
阅读次数
全文


摘要

环张力促进的叠氮-炔环加成反应