English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1331-1350 DOI: 10.7536/PC170536 前一篇   后一篇

• 综述 •

联烯化合物环加成反应的最新研究

宫晓蕾, 高文超, 常宏宏, 魏文珑*, 李兴*   

  1. 太原理工大学 化学化工学院 生物与制药工程系 太原 030024
  • 收稿日期:2017-05-15 修回日期:2017-09-22 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 魏文珑,e-mail:weiwenlong@tyut.edu.cn;李兴,e-mail:lixing@tyut.edu.cn E-mail:weiwenlong@tyut.edu.cn;lixing@tyut.edu.cn
  • 基金资助:
    山西省自然科学基金项目(No.201601D011028,20130110094)资助

The Research in Cycloaddition Reactions of Allenic Compounds

Xiaolei Gong, Wenchao Gao, Honghong Chang, Wenlong Wei*, Xing Li*   

  1. Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2017-05-15 Revised:2017-09-22 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the Natural Science Foundation of Shanxi Province (No. 201601D011028, 20130110094).
联烯是一类含有1,2-丙二烯结构的化合物,可与各种不饱和化合物发生多种环加成反应,由于其本身的结构和所具有的独特性质,联烯及其衍生物已经引起了国内外许多科研工作者的兴趣。本文对近几年来联烯化合物与含有各种不饱和键的化合物在不同催化剂催化作用下发生的环加成反应进行了综述,主要包括[4+2]、[3+2]、[2+2]、[1+2+2]、[2+2+2]、[4+3]和[4+2+2]等环加成反应,并对其发展方向进行了展望。
Allene is a kind of compounds containing 1, 2-propadiene structure. In recent years, allenes and their derivatives have attracted many researchers' interest due to the unique nature. A variety of unsaturated compounds can react with allenes or their derivatives in a variety of cycloaddition reactions to prepare indole, pyridine, furan and other cyclic compounds. The recent progress in the cycloaddition reactions of allenic compounds catalyzed by different catalysts is summarized, including [4+2], [3+2], [2+2], [1+2+2], [2+2+2], [4+3], and [4+2+2] cycloaddition reactions, and the future development of allenic compounds is prospected.
Contents
1 Introduction
2[4+2] cycloaddition of allenes
2.1[4+2] cycloadditions of allenes with unsaturated ketones
2.2[4+2] cycloadditions of allenes with butadienes
2.3[4+2] cycloadditions of allenes with alkynes
2.4[4+2] cycloadditions of allenes with alkenes
2.5[4+2] cycloadditions of allenes with hydroxylamines
3[3+2] cycloaddition of allenes
3.1[3+2] cycloadditions of allenes with imines
3.2[3+2] cycloadditions of allenes with ketones
3.3[3+2] cycloadditions of allenes with alcohols
3.4[3+2] cycloadditions of allenes with butadienes
3.5[3+2] cycloadditions of allenes with aziridines
3.6[3+2] cycloadditions of allenes with alkenes
4[2+2] cycloaddition of allenes
4.1[2+2] cycloadditions of allenes with allenes
4.2[2+2] cycloadditions of allenes with alkenes
5[1+2+2] cycloaddition of allenes
6[2+2+2] cycloaddition of allenes
6.1[2+2+2] cycloadditions of allenes with alkynyl and cyanogens
6.2[2+2+2] cycloadditions of allenes with alkenyls
6.3[2+2+2] cycloadditions of allenes with isocyanates
6.4[2+2+2] cycloadditions of allenes with triazines
7[4+3] cycloaddition of allenes
8[4+2+2] cycloaddition of allenes
9 Conclusion

中图分类号: 

()
[1] Pan F, Fu C L, Ma S M. Chin. J. Org. Chem., 2004, 24:1168.
[2] Xu S H, Wang H, Zang G X, Zheng W H, Du Y J, Wang S Y. Chin. J. Org. Chem., 2009, 29:1474.
[3] Lledó A, Pla-Quintana A, Roglans A. Chem. Soc. Rev., 2016, 45:2010.
[4] Xiong H L, Wang H, He L J, Zhang Y H, Zeng Z. Chin. J. Org. Chem., 2011, 4:466.
[5] Burton B S, Pechman H V. Chem. Ber., 1887, 20:145.
[6] Staudinger H, Ruzika L. Helv. Chim. Acta, 1924, 7:177.
[7] Clemer W D, Solomans I A. J. Am. Chem. Soc., 1952, 74:1870.
[8] Sako S, Kurahashi T, Matsubara S. Chem. Commun., 2011, 47:6150.
[9] Wang X J, Fang T, Tong X F. Angew. Chem. Int. Ed., 2011, 50:5361.
[10] Pei C K, Jiang Y, Shi M. Org. Biomol. Chem., 2012, 10:4355.
[11] Zhang D H, Shi M. ChemistryOpen, 2012, 1:215.
[12] Pei C K, Wu L, Lian Z, Shi M. Org. Biomol. Chem., 2012, 10:171.
[13] Zhang S, Luo Y C, Hu X Q, Wang Z Y, Liang Y M, Xu P F. J. Org. Chem., 2015, 80:7288.
[14] Danda A, Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Org. Lett., 2016, 18:2632.
[15] Wang C, Gao Z Z, Zhou L J, Yuan C H, Sun Z H, Xiao Y M, Guo H C. Org. Lett., 2016, 18:3418.
[16] Wang L, Lv J, Zhang L, Luo S Z. Angew. Chem. Int. Ed., 2017, 56:10867.
[17] Singh L, Elango M, Subramanian V, Gupta V, Kanwal P. J. Org. Chem., 2008, 73:2224.
[18] Hussain I, Yawer M A, Appel B, Sher M, Mahal A, Villinger A, Fischer C, Langer P. Tetrahedron, 2008, 64:8003.
[19] Mauleon P, Zeldin R M, Gonzalez A Z, Toste F D. J. Am. Chem. Soc., 2009, 131:6348.
[20] González A Z, Toste F D. Org. Lett., 2010, 12:200.
[21] Gulías M, López F, Mascareñas J L. Pure Appl. Chem., 2011, 83:495.
[22] Wang Z, Xu H C, Su Q, Hu P, Shao P L, He Y, Lu Y X. Org. Lett., 2017, 19:3111.
[23] Jiang X F, Kong W Q, Chen J, Ma S M. Org. Biomol. Chem., 2008, 6:3606.
[24] Pirovano V, Decataldo L, Rossi E, Vicente R. Chem. Commun., 2013, 49:3594.
[25] Conner M L, Brown M K. Tetrahedron, 2016, 72:3759.
[26] Chen J M, Chang C J, Ke Y J, Liu R S. J. Org. Chem., 2014, 79:4306.
[27] Zhu X F, Henry C, Kwon E O. Tetrahedron, 2005, 61:6276.
[28] Fang Y Q, Jacobsen E N. J. Am. Chem. Soc., 2008, 130:5660.
[29] Zhang B, He Z R, Xu S L, Wu G P, He Z J. Tetrahedron, 2008, 64:9471.
[30] Zhao Q Y, Han X Y, Wei Y, Shi M, Lu Y X. Chem. Commun., 2012, 48:970.
[31] Clavijo E M, Carmona A T, Reissig H U, Moreno-Vargas A J, Alvarez E, Robina I. Org. Lett., 2009, 11:4778.
[32] Cai S T, Gorityala B K, Ma J M, Leow M L, Liu X W. Org. Lett., 2011, 13:1072.
[33] Tran D N, Cramer N. Angew. Chem. Int. Ed., 2013, 52:10630.
[34] Zhou W, Li X X, Li G H, Wu Y, Chen Z. Chem. Commun., 2013, 49:3552.
[35] Wilson J E, Fu G C. Angew. Chem. Int. Ed., 2006, 45:1426.
[36] Wallace D J, Sidda R L, Reamer R A. J. Org. Chem., 2007, 72:1051.
[37] Han X Y, Wang Y Q, Zhong F G, Lu Y X. J. Am. Chem. Soc., 2011, 133:1726.
[38] Chang H T, Jayanth T T, Cheng C H. J. Am. Chem. Soc., 2007, 129:4166.
[39] Li J L, Yang X J, Jiang M, Liu J T. Tetrahedron Letters, 2017, 58:3377.
[40] Tata R R, Harmata M. Org. Lett., 2016, 18:5684.
[41] López E, Lonzi G, Gonzáleza J, López L A. Chem. Commun., 2016, 52:9398.
[42] Lin T Y, Zhu C Z, Zhang P C, Wang Y D, Wu H H, Feng J J, Zhang J L. Angew. Chem. Int. Ed., 2016, 55:10844.
[43] Barluenga J, Vicente R, Barrio P, López L A, Tomás M. J. Am. Chem. Soc., 2004, 126:5974.
[44] Pinto N, Neel M, Panossian A, Retaileau P, Frison G, Voituriez A, Marinetti A. Chem. -Eur. J., 2010, 16:1033.
[45] Steurer M, Jensen K L, Worgull D, Jørgensen K A. Chem. -Eur. J., 2012, 18:76.
[46] Lee S Y, Fu Y J, Nishiguchi A, Kalek M, Fu G C. J. Am. Chem. Soc., 2015, 137:4587.
[47] Chen B, Fan W, Chai G B, Ma S M. Org. Lett., 2012, 14:3616.
[48] Mei L Y, Wei Y, Tang X Y, Shi M. J. Am. Chem. Soc., 2015, 137:8131.
[49] Zheng W F, Bora P P, Sun G J, Kang Q. Org. Lett., 2016, 18:3694.
[50] Chen K, Sun R, Xu Q, Wei Y, Shi M. Org. Biomol. Chem., 2013, 11:3949.
[51] Nada T, Yoneshige Y, Ii Y, Matsumoto T, Fujioka H, Shuto S, Arisawa M. ACS Catal., 2016, 6:3168.
[52] Inagaki F, Narita S, Hasegawa T, Kitagaki S, Mukai C. Angew. Chem. Int. Ed., 2009, 48:2007.
[53] Croatt M P, Wender P A. Eur. J. Org. Chem., 2010, 2010:19.
[54] Shafawati M T S, Inagaki F, Kawamura T, Mukai C. Tetrahedron, 2013, 69:1509.
[55] Iwata T, Inagaki F, Mukai C. Angew. Chem. Int. Ed., 2013, 52:11138.
[56] Mukai C, Takahashi Y, Ogawa K, Hayashi Y, Inagaki F. Chem. Pharm. Bull., 2014, 62:84.
[57] Haraburda E, Lledo A, Roglans A, Pla-Quintana A. Org. Lett., 2015, 17:2882.
[58] Brusoe A T, Alexanian E J. Angew. Chem. Int. Ed., 2011, 50:6596.
[59] Miura T, Morimoto M, Murakami M. J. Am. Chem. Soc., 2010, 132:15836.
[60] Ohta Y, Yasuda S, Yokogawa Y, Kurokawa K, Mukai C. Angew. Chem. Int. Ed., 2015, 54:1240.
[61] Haraburda E, Torres S, Parella T, Sol M, Pla-Quintana A. Chem. -Eur. J., 2014, 20:5034.
[62] Peng S Y, Cao S Y, Sun J T. Org. Lett., 2017, 19:524.
[63] Alonso I, Faustino H, López F, Mascareñas J L. Angew. Chem. Int. Ed., 2011, 50:11496.
[64] Lainhart B C, Alexanian E J. Org. Lett., 2015, 17:1284.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[4] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[5] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.