English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 564-577 DOI: 10.7536/PC171132 前一篇   后一篇

• 综述 •

基于环己酮氧化脱氢构建碳-碳与碳-杂键

陈劲进, 常丹, 肖福红, 邓国军*   

  1. 湘潭大学化学学院 湘潭 411105
  • 收稿日期:2017-11-30 修回日期:2018-02-08 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 邓国军e-mail:gjdeng@xtu.edu.cn E-mail:gjdeng@xtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21372187)资助

C—C and C-Heteroatom Bonds Formation Based on Oxidative Dehydrogenation of Cyclohexanones

Jinjin Chen, Dan Chang, Fuhong Xiao, Guojun Deng*   

  1. College of Chemistry, Xiangtan University, Xiangtan 411105, China
  • Received:2017-11-30 Revised:2018-02-08 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21372187).
环己酮是一种廉价易得的大宗有机化工产品,被广泛用作有机合成反应的原料和中间体。脱氢芳构化是合成功能化芳烃的有效途径,使用环己酮作为反应底物,经过亲核加成、脱水和催化脱氢可以将非芳香的有机分子转化为芳香化合物。与传统的芳基化反应相比,该策略避免了苛刻的反应条件和含卤化合物的生产,克服了化学和区域选择性难以控制的难题,为功能化芳烃的合成提供了一条温和、环保的途径。本文就近年来以环己酮为原料,进行氧化脱氢、直接构建碳-碳和碳-杂键,及通过碳-杂键的形成合成杂环化合物的研究现状进行介绍。
Cyclohexanones are cheap and commercially available compounds and widely used as raw materials and key intermediates in organic synthesis. Dehydrogenative aromatization has emerged as an efficient approach to access functionalized arenes. The transformation commonly involves sequential nucleophilic addition, dehydration and catalytically oxidative dehydrogenation. Compared to the traditional arylation methods, this strategy avoids the use of harsh reaction conditions and the production of halide wastes. In addition, the chemo-and regioselectivities can be easily controlled. Therefore, this method offers a milder/greener means for the synthesis of functionalized arenes. This review mainly focuses on the direct formation of C—C and C-heteroatom bonds using cyclohexanones as raw materials and the extension of these methodologies to the construction of various heterocycles.
Contents
1 Introduction
2 Oxidative dehydrogenation of cyclohexanones
3 C—C bond formation based on cyclohexanones
4 C-heteroatom bond formation based on cyclohexanones
4.1 C—O bond formation
4.2 C—S bond formation
4.3 C—N bond formation
4.4 Construction of heterocycles based on the formation of C-heteroatom bond
5 Conclusion and outlook

中图分类号: 

()
[1] Naeimi H, Safari J, Heidarnezhad A. Dyes and Pigments, 2007, 73:251.
[2] 尹华清(Yin H Q). 精细化工中间体(Fine Chemical Intermediates), 2001, 31:1.
[3] 张丽芳(Zhang L F), 陈赤阳(Chen C Y), 项志军(Xiang Z J). 北京石油化工学院学报(Journal of Beijing Institute of Petro-chemical Technology), 2004, 12:39.
[4] 王巍(Wang W), 刘晶晶(Liu J J), 张龙(Zhang L).化工进展(Chemical Industry and Engineering Progress), 2013, 32:2156.
[5] 房承宣(Fang C X), 于泳(Yu Y), 王亚涛(Wang Y T), 屈一新(Qu Y X). 现代化工(Modern Chemical Industry), 2013, 32:16.
[6] Zhou L P, Xu J, Miao H, Wang F, Li X Q. Applied Catalysis A:General, 2005, 292:223.
[7] Izawa Y, Pun D, Stahl S S. Science, 2011, 333:209.
[8] Diao T N, Stahl S S. J. Am. Chem. Soc., 2011, 133:14566.
[9] Izawa Y, Zheng C W, Stahl S S. Angew. Chem. Int. Ed., 2013, 52:3672.
[10] Kikushima K, Nishina Y. RSC Adv., 2013, 3:20150.
[11] Zhang J W, Jiang Q Q, Yang D J, Zhao X M, Dong Y L, Liu R H. Chem. Sci., 2015, 6:4674.
[12] Jin X, Taniguchi K, Yamaguchi K, Mizuno N. Chem. Sci., 2016, 7:5371.
[13] Liang Y F, Li X Y, Wang X Y, Zou M C, Tang C H, Liang Y J, Song S, Jiao N. J. Am. Chem. Soc., 2016, 138:12271.
[14] Kuroda Y, Suzuki Y, Ogoshi H. Tetrahedron Lett., 1994, 35:749.
[15] Eshelby J J, Parsons P J, Crowley P J. J. Chem. Soc., Perkin Trans. 1, 1996, 191.
[16] Deng G S, Ren T G. Synth. Commun., 2003, 33:2995.
[17] Zhu Y, Pan Y, Chem. Lett., 2004, 33:668.
[18] Yatluk Y G, Sosnovskikh V Y, Suvorov A L. Russ. J. Org. Chem., 2004, 40:763.
[19] Lian J J, Lin C C, Chang H K, Chen P C, Liu R S. J. Am. Chem. Soc., 2006, 128:9661.
[20] Nakhai A, Bergman J. Tetrahedron, 2009, 65:2298.
[21] Qiu R, Qiu Y, Yin S, Song X, Meng Z, Xu X, Zhang X, Luo S, Au C T, Wong W Y. Green Chem., 2010,12:1767.
[22] Mojtahedi M M, Abaee M S, Khakbaz M, Alishiri T, Samianifard M, Mesbah A W, Harms K. Synthesis, 2011, 3821.
[23] Alishiri T, Oskooei H A, Heravi M M. Synth. Commun., 2013, 43:3357.
[24] Griffiths G, Mettler H, Mills L S, Previdoli F. HeIv. Chim. Acta, 1991, 74:309.
[25] Tsuno T, Sugiyama K. Heterocycles, 1991, 32:1989.
[26] Palasz A, Palasz T. Tetrahedron, 2011, 67:1422.
[27] Imahori T, Tokuda T, Taguchi T, Takahata H. Org. Lett., 2012, 14:1172.
[28] Zhou F, Simon M O, Li C J. Chem. Eur. J., 2013, 19:7151.
[29] Chen S P, Liao Y F, Zhao F, Qi H R, Liu S W, Deng G J. Org. Lett., 2014, 16:1618.
[30] Taheri A, Lai B, Cheng C, Gu Y. Green Chem., 2015, 17:812.
[31] Simon M O, Girard S A, Li C J. Angew. Chem. Int. Ed., 2012, 51:7537.
[32] Sutter M, Sotto N, Raoul Y, Métay E, Lemaire M. Green Chem., 2013, 15:347.
[33] Ge W, Zhu X, Wei Y. Adv. Synth. Catal, 2013, 355:3014.
[34] Liao Y, Jiang P, Chen S P, Qi H R, Deng G J. Green Chem., 2013, 15:3302.
[35] Chen Y, Xiao F, Chen H, Liu S, Deng G J. RSC Adv., 2014, 4:44621.
[36] Xie Y J, Liu S W, Liu Y, Wen Y Q, Deng G J. Org. Lett., 2012, 14:1692.
[37] Girard S A, Hu X, Knauber T, Zhou F, Simon M O, Deng G J, Li C J. Org. Lett., 2012,14:5606.
[38] Hajra A, Wei Y, Yoshikai N. Org. Lett., 2012, 14:5488.
[39] Barros M T, Dey S S, Maycock C D, Rodrigues P. Chem. Commun., 2012, 48:10901.
[40] Sutter M, Duclos M C, Guicheret B, Raoul Y, Métay E, Lemaire M. ACS Sustainable Chem. Eng., 2013, 1:1463.
[41] Hong W P, Iosub A V, Stahl S S. J. Am. Chem. Soc., 2013, 135:13664.
[42] Cao X X, Bai Y, Xie Y J, Deng G J. Journal of Molecular Catalysis A:Chemical, 2014, 383:94.
[43] Girard S A, Huang H, Zhou F, Deng G J, Li C J. Org. Chem. Front., 2015, 2:279.
[44] Xiao F, Liao Y, Wu M, Deng G J. Green Chem., 2012, 14:3277.
[45] Liao Y, Jiang P, Chen S P, Xiao F, Deng G J, RSC Adv., 2013, 3:18605.
[46] Kim D, Min M, Hong S. Chem. Commun., 2013, 49:4021.
[47] Zhao J W, Huang H W, Wu W Q, Chen H J, Jiang H F. Org. Lett., 2013, 15:2604.
[48] Cao X, Cheng X, Bai Y, Liu S, Deng G J. Green Chem., 2014, 16:4644.
[49] Xie Y, Wu J, Che X, Chen Y, Huang H, Deng G J. Green Chem., 2016, 18:667.
[50] Wen L X, Tang L, Yang Y, Zha Z G, Wang Z Y. Org. Lett., 2016, 18:1278.
[51] Senadi G C, Dhandabani G K, Hu W P, Wang J J. Green Chem., 2016, 18:6241.
[52] Chen X G, Xie Y, Li C, Xiao F, Deng G J. Eur. J. Org. Chem., 2017, 3:577.
[53] Liao Y, Peng Y, Qi H, Deng G J, Gong H, Li C J. Chem. Commun., 2015, 51:1031.
[54] Chen J, Li G, Xie Y J, Liao Y, Xiao F, Deng G J. Org. Lett., 2015, 17:5870.
[55] Wu J, Xie Y J, Chen X G, Deng G J. Adv. Synth. Catal., 2016, 358:3206.
[56] Wu J, Chen X G, Xie Y J, Guo Y, Zhang Q, Deng G J. J. Org. Chem., 2017, 82:5743.
[57] Chen S P, Wang L R, Zhang J, Hao Z R, Huang H W, Deng G J. J. Org. Chem., 2017, 82:11182.
[58] Xie Y J, Cheng X F, Liu S W, Chen H, Zhou W, Yang L, Deng G J. Green Chem., 2015, 17:209.
[59] Nguyen T B, Ermolenko L, Retailleau P, Al-Mourabit A. Org. Lett., 2016, 18:2177
[60] Chen S, Li Y, Ni P, Huang H W, Deng G J. Org. Lett., 2016, 18:5384.
[61] Naveen T, Deb A, Maiti D. Angew. Chem. Int. Ed., 2017, 56:1111.
[62] Xie Y J, Chen X G, Wang Z, Huang H W, Yi B, Deng G J. Green Chem., 2017, 19:4294.
[63] Nguyen T B, Retailleau P. Adv. Synth. Catal., 2017, 359:3843.
[1] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[2] 孔令斌, 严胜骄*, 林军*. 杂环烯酮缩胺:构筑分子多样性稠杂环化合物的合成先导分子[J]. 化学进展, 2018, 30(5): 639-657.
[3] 佘远斌, 邓金辉, 张龙, 沈海民*. 氧气催化氧化环己烷[J]. 化学进展, 2018, 30(1): 124-136.
[4] 张变香*, 赵晓芸, 吴群, 郭一力. 芳基碘鎓盐促进芳基化反应的应用[J]. 化学进展, 2013, 25(07): 1142-1148.
[5] 李满, 杨磊, 韩峰, 陈静*, 夏春谷. 功能化离子液体催化碳-杂键形成反应[J]. 化学进展, 2013, 25(06): 940-960.
[6] 盘登芳, 叶钢, 王芳, 陈靖* . 含氮杂环化合物萃取分离三价锕系与镧系元素[J]. 化学进展, 2012, 24(11): 2167-2176.
[7] 刘建超 陈启元. 咪唑并吡啶类化合物的合成及其应用*[J]. 化学进展, 2010, 22(04): 631-638.
[8] 白威 陈栋梁 李庆 张志萍 熊成东. 聚对二氧环己酮改性研究进展*[J]. 化学进展, 2009, 21(12): 2696-2703.
[9] 方红云,席振峰. 有机铝杂环化合物的合成与应用*[J]. 化学进展, 2005, 17(06): 1041-1047.
[10] 赵萍,尹应武. 阳极氰化反应的研究进展[J]. 化学进展, 2004, 16(06): 926-.
[11] 王华,刘中民. 甲烷直接转化研究进展[J]. 化学进展, 2004, 16(04): 593-.
[12] 肖远胜,万伯顺,梁鑫淼. 液相组合化学研究进展[J]. 化学进展, 2001, 13(04): 268-.
[13] 李伟章,刘刚,恽榴红. 固相有机合成小分子化学库[J]. 化学进展, 1997, 9(03): 239-.
阅读次数
全文


摘要