English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 147-161 DOI: 10.7536/PC190804   后一篇

• •

基于铜催化叠氮-炔环加成反应的聚氨酯功能化

章强1, 黄文峻1, 王延斌1, 李兴建1,**(), 张宜恒2   

  1. 1. 临沂大学材料科学与工程学院 临沂 276000
    2. 青岛科技大学化学与分子工程学院 青岛 266042
  • 收稿日期:2019-08-05 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 李兴建
  • 基金资助:
    国家自然科学基金项目(21176128); 国家自然科学基金项目(51172116)

Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction

Qiang Zhang1, Wenjun Huang1, Yanbin Wang1, Xingjian Li1,**(), Yiheng Zhang2   

  1. 1. School of Materials Science and Engineering, Linyi University, Linyi 276000, China
    2. School of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received:2019-08-05 Online:2020-02-15 Published:2019-12-19
  • Contact: Xingjian Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21176128); National Natural Science Foundation of China(51172116)

聚氨酯(PU)作为一种重要的工业材料,具有诸多独特优异的性能,这使得PU材料在众多领域内具有极其广泛的应用。由于PU骨架上缺乏进一步修饰的功能基团,限制了PU材料的高附加值化,在高科技领域广泛应用受到阻碍。因此,PU的改性和功能化是学术界和工业界热门的课题之一。当前PU材料的改性和功能化方法较多,其中,叠氮化物与末端炔在铜(Ⅰ) 催化下生成反式1, 2, 3-三唑化合物的Huisgen 1, 3-偶极环加成(CuAAC)反应具有操作简单方便和灵活高效的特点,是点击化学反应的精髓,在PU材料的功能化改性研究中占有独特而重要的地位。本文简要介绍了基于CuAAC反应PU材料功能化改性的设计思路,重点综述了基于CuAAC反应,PU材料的生物相容性、疏水性、荧光性、抗菌性、阻燃性、形状记忆效应、机械性能和热稳定性的功能化改性研究和应用,最后总结了CuAAC反应在改性PU上存在的主要问题,并对其研究方向进行了展望。

As an important industrial material, polyurethane(PU) has many unique and excellent properties, which makes PU materials possess a wide range of applications in many fields. Due to the lack of further modified functional groups on the PU backbone, the high value-addition of PU materials is limited, and its widespread application in high-tech fields is hindered. Therefore, the modification and functionalization of PU is one of the hot topics in academia and industry. At present, there are many methods for modification and functionalization of PU materials. Among them, the Cu(Ⅰ) catalyzed Huisgen 1, 3-dipolar cycloaddition(CuAAC) between an azide and an alkyne compound forming trans 1, 2, 3-triazole compounds, which is the essence of click chemistry reaction, has the characteristics of simple operation, flexibility and high efficiency. It plays a unique and important role in the functional modification research of PU materials. This paper briefly introduces the design idea of functional modification of PU materials based on CuAAC reaction. The functional modification research and application of biocompatibility, hydrophobicity, fluorescence, antibacteria, flame retardancy, shape memory effect, mechanical properties and thermal stability of PU materials based on CuAAC reaction are highlighted. Finally, the main problems of the modified PU via CuAAC reaction are summarized, and the research direction is prospected.

()
图1 (a)点击化学反应模型;(b)Cu(Ⅰ)催化的叠氮-炔环加成机理
Fig.1 (a) The model of click reaction. (b) Mechanism for Cu(Ⅰ) catalyzed azide-alkyne cycloaddition
图2 炔基和叠氮基功能化PU的合成策略
Fig.2 Synthesis strategy of alkynyl and azido functionalized polyurethanes
图3 在铜催化下炔基功能化WPU和Rf-N3之间的CuAAC反应[40]
Fig.3 The copper catalyzed CuAAC reaction between the alkyne-functionalized WPU and Rf- N 3 [ 40 ]
图4 (a)叠氮基功能化PU纳米囊和炔基荧光颜料之间的表面点击化学反应;(b) 炔基荧光颜料的分子结构;(c)经过点击反应后的纳米微囊扫描电镜图[44]
Fig.4 (a)Surface click chemistry reaction between azide-functionalized PU nanocapsules and alkyne fluorescent dye. (b) The molecular structure of alkyne fluorescent dye.(c)SEM image of nanocapsules made after the reactions[44]
图5 (a)PTFM的合成示意图;(b)蓖麻油基PU泡沫的实验室规模燃烧测试;(c)PU三唑泡沫的实验室规模燃烧测试[55]
Fig.5 (a) Schematic representation of the synthesis of PTFM. (b) Lab-scale flame test of castor polyol based polyurethane foams. (c) Lab-scale flame test of polyurethane triazole foams[55]
图6 (a)叠氮基官能化GO片合成的示意图;(b)和(c)基于CuAAC反应制备的PU/GO纳米复合材料的热响应和光响应形状回复图[71]
Fig.6 (a)Schematic representation of the synthesis of the azide-functionalized GO sheets. (b) and (c) images of thermo-responsive and photo-responsive shape recovery of the PU/GO nanocomposites using CuAAC[71]
图7 富含三唑的超支化多元醇不同代数的合成路线[79]
Fig.7 Synthetic route for different generations of triazole-rich hyperbranched polyols[79]
图8 (a)叠氮基和炔基功能化WPU的CuAAC点击交联; (b)可点击WPU的微粒相互扩散和成膜机制[83]
Fig.8 (a) A typical CuAAC click cross-linking of WPU functionalized by azide and alkyne. (b) Microparticle interdiffusion and film-forming mechanism of clickable WPU[83]
[1]
Król P . Prog. Mater. Sci., 2007,52(6):915.
[2]
He Y, Xie D, Zhang X . J. Mater. Sci., 2014,49(21):7339.
[3]
Petrović Z S, Ferguson J . Prog. Polym. Sci., 1991,16(5):695.
[4]
Cooper S L, Tobolsky A V . J. Appl. Polym. Sci., 1966,10(12):1837.
[5]
Noble K L . Prog. Org. Coat., 1997,32(1-4):131.
[6]
Chattopadhyay D K, Raju K V S N . Prog. Polym. Sci., 2007,32(3):352.
[7]
Akindoyo J O, Beg M D H, Ghazali S, Islam M R, Jeyaratnama N, Yuvarajc A R . RSC Adv., 2016,6(115):114453.
[8]
Williams C K . Chem. Soc. Rev., 2007,36(10):1573. https://www.ncbi.nlm.nih.gov/pubmed/17721582

doi: 10.1039/b614342n     URL     pmid: 17721582
[9]
Billiet L, Fournier D, Du Prez F . Polymer, 2009,50(16):3877.
[10]
Xie Z, Lu C, Chen X, Chen L, Hu X, Shi Q, Jing X . Eur. Polym. J., 2007,43(5):2080. https://linkinghub.elsevier.com/retrieve/pii/S0014305707001425

doi: 10.1016/j.eurpolymj.2007.03.001     URL    
[11]
Zhang Y, He X, Ding M, He W, Li J, Li J, Tan H . Biomacromolecules, 2018,19(2):279. https://www.ncbi.nlm.nih.gov/pubmed/29253335

doi: 10.1021/acs.biomac.7b01016     URL     pmid: 29253335
[12]
Chattopadhyay D K, Webster D C . Prog. Polym. Sci., 2009,34(10):1068.
[13]
KyuKim B, Lee S Y, Xu M . Polymer, 1996,37(26):5781.
[14]
Kim H, Miura Y, Macosko C W . Chem. Mater., 2010,22(11):3441.
[15]
Kang S Y, Ji Z, Tseng L F, Turner S A, Villanueva D A, Johnson R, Albano A, Langer R . Adv. Mater., 2018,30(18):e1706237. https://www.ncbi.nlm.nih.gov/pubmed/29543353

doi: 10.1002/adma.201706237     URL     pmid: 29543353
[16]
Kolb H C, Finn M G, Sharpless K B . Angew. Chem. Int. Ed., 2001,40(11):2004. https://www.ncbi.nlm.nih.gov/pubmed/11433435

doi: 10.1002/1521-3773(20010601)40:11【-逻*辑*与-】amp;amp;lt;2004::aid-anie2004【-逻*辑*与-】amp;amp;gt;3.3.co;2-x     URL     pmid: 11433435
[17]
Meldal M, Tornøe C W . Chem. Rev., 2008,108(8):2952. https://www.ncbi.nlm.nih.gov/pubmed/18698735

doi: 10.1021/cr0783479     URL     pmid: 18698735
[18]
Worrell B T, Malik J A, Fokin V V . Science, 2013,340(6131):457. https://www.ncbi.nlm.nih.gov/pubmed/23558174

doi: 10.1126/science.1229506     URL     pmid: 23558174
[19]
Hein J E, Fokin V V . Chem. Soc. Rev., 2010,39(4):1302. https://www.ncbi.nlm.nih.gov/pubmed/20309487

doi: 10.1039/b904091a     URL     pmid: 20309487
[20]
Sumerlin B S, Vogt A P . Macromolecules, 2010,43(1):1.
[21]
Golas P L, Matyjaszewski K . Chem. Soc. Rev., 2010,39(4):1338. https://www.ncbi.nlm.nih.gov/pubmed/20309490

doi: 10.1039/b901978m     URL     pmid: 20309490
[22]
Ciaccia M, Núñez-Villanueva D, Hunter C A . J. Am. Chem. Soc., 2019,141(27):10862. https://www.ncbi.nlm.nih.gov/pubmed/31251047

doi: 10.1021/jacs.9b04973     URL     pmid: 31251047
[23]
Xue J, Liu L, Liao J, Shen Y, Li N . J. Mater. Chem. A, 2018,6(24):11317.
[24]
Yang C, Flynn J P, Niu J . Angew. Chem. Int. Ed., 2018,57(49):16194. https://www.ncbi.nlm.nih.gov/pubmed/30326185

doi: 10.1002/anie.201811051     URL     pmid: 30326185
[25]
Fournier D, Du Prez F . Macromolecules, 2008,41(13):4622.
[26]
Kantheti S, Narayan R, Raju K V S N . RSC Adv., 2015,5(5):3687.
[27]
Collin M P, Hobbie S N, Böttger E C, Vasella A . Helv. Chim. Acta., 2008,91(10):1838.
[28]
Horne W S, Yadav M K, Stout C D, Ghadiri M R . J. Am. Chem. Soc., 2004,126(47):15366. https://www.ncbi.nlm.nih.gov/pubmed/15563148

doi: 10.1021/ja0450408     URL     pmid: 15563148
[29]
Anderson J M, Hiltner A, Wiggins M J, Schubert M A, Collier T O, Kao W J, Mathur A B . Polym. Int., 1998,46(3):163.
[30]
Hsiao S H, Hsu S H . ACS Appl. Mater. Interfaces, 2018,10(35):29273. https://www.ncbi.nlm.nih.gov/pubmed/30133249

doi: 10.1021/acsami.8b08362     URL     pmid: 30133249
[31]
Guan J, Fujimoto K L, Sacks M S, Wagner W R . Biomaterials, 2005,26(18):3961. https://www.ncbi.nlm.nih.gov/pubmed/15626443

doi: 10.1016/j.biomaterials.2004.10.018     URL     pmid: 15626443
[32]
Rana S, Lee S Y, Cho J W . Polym. Bull., 2010,64(4):401.
[33]
Meng F, Qiao Z, Yao Y, Luo J . RSC Adv., 2018,8(35):19642.
[34]
Garg K, Chatterjee D, Wadgaonkar P P . J. Polym. Sci. Part A: Polym. Chem., 2017,55(6):1008. https://www.ncbi.nlm.nih.gov/pubmed/28781424

doi: 10.1002/pola.28627     URL     pmid: 28781424
[35]
Xue Y, Ma D, Zhang T, Lin S, Shao S, Gu N . J. Macromol. Sci. A, 2014,51(5):456.
[36]
Ott C, Easton C D, Gengenbach T R, McArthur S L, Gunatillake P A . Polym. Chem., 2011,2(12):2782.
[37]
Huang J, Xu W . J. Appl. Polym. Sci., 2011,122(2):1251.
[38]
Lowe A B, Hoyle C E, Bowman C N . J. Mater. Chem., 2010,20(23):4745.
[39]
Goldmann A S, Barner L, Kaupp M, Vogt A P, Barner-Kowollik C . Prog. Polym. Sci., 2012,37(7):975.
[40]
Li X, Sun D, Zhang Y . J. Polym. Res., 2014,21(1):1.
[41]
Fournier D, De Geest B G, Du Prez F E . Polymer, 2009,50(23):5362. e36922ea-a3f9-4602-99e5-5d9aac9b65c1 http://www.sciencedirect.com/science/article/pii/S0032386109008040

doi: 10.1016/j.polymer.2009.09.047     URL    
[42]
Nguyen L T, Devroede J, Plasschaert K, Jonckheere L, Haucourt N, Du Prez F E . Polym. Chem., 2013,4(5):1546.
[43]
Velencoso M M, Gonzalez A S B, Garcıa-Martınez J C, Ramos M J, Lucas A D, Rodriguez J F . Polym. Int., 2013,62(5):783. http://doi.wiley.com/10.1002/pi.2013.62.issue-5

doi: 10.1002/pi.2013.62.issue-5     URL    
[44]
Baier G, Siebert J M, Landfester K, Musyanovych A . Macromolecules, 2012,45(8):3419.
[45]
Kantheti S, Narayan R, Raju K V S N . Polym. Int., 2015,64(2):267.
[46]
Ding Y, Sun Z, Shi R, Cui H, Liu Y, Mao H, Wang B, Zhu D, Yan F . ACS Appl. Mater. Interfaces, 2019,11(3):2860. https://www.ncbi.nlm.nih.gov/pubmed/30586274

doi: 10.1021/acsami.8b19746     URL     pmid: 30586274
[47]
Palermo E F, Lienkamp K, Gillies E R, Ragogna P J . Angew. Chem. Int.Ed., 2019,58(12):3690. https://www.ncbi.nlm.nih.gov/pubmed/30653795

doi: 10.1002/anie.201813810     URL     pmid: 30653795
[48]
Basko M, Bednarek M, Billiet L, Kubisa P, Goethals E, Du Prez. F . J. Polym. Sci. Part A: Polym. Chem., 2011,49(7):1597.
[49]
Peng K, Dai X, Mao H, Zou H, Yang Z, Tu W, Hu J . J. Coat. Tech. Res., 2018,15(6):1239. https://doi.org/10.1007/s11998-018-0068-1

doi: 10.1007/s11998-018-0068-1     URL    
[50]
邹滔 (Zou T), 王若男 (Wang R N), 彭开美 (Peng K M), 涂伟萍 (Tu W P), 胡剑青 (Hu J Q) . 化工进展( Chemical Industry and Engineering Progress), 2018,37(7):2704.
[51]
Peng K, Hu J, Dai X, Yang Z, Wang R, Tu W . RSC Adv., 2019,9(23):13159.
[52]
Kantheti S, Narayan R, Raju K V S N . J. Coat. Tech. Res., 2013,10(5):609.
[53]
Morgan A B, Tour J M . Macromolecules, 1998,31(9):2857.
[54]
Knudseny R L, Jensenz B J . High Perform. Polym., 1996,8(1):57. http://journals.sagepub.com/doi/10.1088/0954-0083/8/1/004

doi: 10.1088/0954-0083/8/1/004     URL    
[55]
Bertini F, Audisio G, Kiji J, Masayuki F . J. Anal. Appl. Pyrol., 2003,68/69:61.
[56]
Levchik S V, Weil E D . J. Fire Sci., 2006,24(5):345.
[57]
Borreguero A M, Sharma P, Spiteri C, Velencoso C M, Carmona M S, Moses J E, Rodríguez J F . React. Funct. Polym., 2013,73(9):1207.
[58]
Sykam K, Meka K K R, Donempudi S . ACS Omega, 2019,4(1):1086. https://www.ncbi.nlm.nih.gov/pubmed/31459384

doi: 10.1021/acsomega.8b02968     URL     pmid: 31459384
[59]
李兴建( Li X J), 杨子江 (Yang Z J), 孙道兴 (Sun D X), 张宜恒 (Zhang Y H) . 高分子材料科学与工程( Polymer Materials Science and Engineering), 2015,31(9):17.
[60]
Sun D, Li R, Li X, Wang W, Hu J . Comb. Chem. High T. Scr., 2012,15(7):522. https://www.ncbi.nlm.nih.gov/pubmed/22480239

doi: 10.2174/138620712801619186     URL     pmid: 22480239
[61]
李兴建( Li X J), 鞠云鹏 (Ju Y P), 常德功 (Chang D G), 张宜恒 (Zhang Y H) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2016,37(8):1580.
[62]
Zhao Q, Qi H J, Xie T . Prog. Polym. Sci., 2015,49/50:79.
[63]
郑宁( Zheng N), 谢涛 (Xie T) . 高分子学报( Acta Polymerica Sinica), 2017, ( 11):1715.
[64]
Zhang G G, Peng W J, Wu J J, Zhao Q, Xie T . Nat. Commun., 2018,9:4002. https://www.ncbi.nlm.nih.gov/pubmed/30275498

doi: 10.1038/s41467-018-06420-w     URL     pmid: 30275498
[65]
李兴建( Li X J), 王亚茹 (Wang Y R), 郑朝晖 (Zheng Z H), 丁小斌 (Ding X B), 彭宇行 (Peng Y X) . 化学进展( Progress in Chemistry), 2013,25(10):1726.
[66]
Rousseau I A . Polym. Eng. Sci., 2008,48(11):2075.
[67]
Mu T, Liu L, Lan X, Liu Y, Leng J . Compos. Sci. Technol., 2018,160(26):169.
[68]
Leng J, Lan X, Liu Y, Du S . Prog. Mater. Sci., 2011,56(7):1077.
[69]
Yadav S K, Yoo H J, Cho J W . J. Polym. Sci. Part B: Polym. Phys., 2013,51(1):39.
[70]
Kantheti S, Gaddam R R, Narayan R, Raju K V S N . RSC Adv., 2014,4(47):24420.
[71]
Mahapatra S S, Ramasamy M S, Yoo H J, Yi D H, Cho J W . J. Appl. Polym. Sci., 2016,133(17):43358.
[72]
Sun D, Miao X, Zhang K, Kim H, Yuan Y . J. Colloid Interf. Sci., 2011,361(2):483. https://www.ncbi.nlm.nih.gov/pubmed/21669435

doi: 10.1016/j.jcis.2011.05.062     URL     pmid: 21669435
[73]
Sravendra R S, Jae W, Cho J W, Indresh K I . J. Nanosci. Nanotechno., 2010,10(9):5700. https://www.ncbi.nlm.nih.gov/pubmed/21133094

doi: 10.1166/jnn.2010.2434     URL     pmid: 21133094
[74]
Yadav S K, Mahapatra S S, Cho J W . Polymer, 2012,53(10):2023. https://linkinghub.elsevier.com/retrieve/pii/S0032386112002182

doi: 10.1016/j.polymer.2012.03.010     URL    
[75]
Mahapatra S S, Yadav S K, Cho J W . J. Appl. Polym. Sci., 2017,134(12):44631.
[76]
Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani S . Macromolecules, 2013,46(19):7777.
[77]
Wang G, Guo S, Ding Y . Macromol. Chem. Phys., 2015,216(18):1894.
[78]
Kantheti S, Narayan R, Raju K V S N . J. Coat. Technol. Res., 2013,10(5):609.
[79]
Kantheti S, Narayan R, Raju K V S N . Ind. Eng. Chem. Res., 2014,53(20):8357. https://pubs.acs.org/doi/10.1021/ie500627x

doi: 10.1021/ie500627x     URL    
[80]
Kantheti S, Sarath P S, Narayan R, Raju K V S N . React. Funct. Polym., 2013,73(12):1597. da234b11-d15c-4e24-8e4d-cd25cf4b2ea8 http://dx.doi.org/10.1016/j.reactfunctpolym.2013.09.002

doi: 10.1016/j.reactfunctpolym.2013.09.002     URL    
[81]
李兴建( Li X J), 胡静 (Hu J), 孙道兴 (Sun D X), 张宜恒 (Zhang Y H) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2013,34(12):2871. b77a2d70-3644-430e-9241-aa4faf217b11 http://www.cjcu.jlu.edu.cn/CN/abstract/abstract25156.shtml

doi: 10.7503/cjcu20130789     URL    
[82]
Li X, Hu J, Sun D, Zhang Y . J. Coat. Technol. Res., 2014,11(4):517.
[83]
Hu J, Peng K, Guo J, Shan D, Kim G B, Li Q, Gerhard E, Zhu L, Tu W, Lv W, Hickner M A, Yang J . ACS Appl. Mater. Interfaces, 2016,8(27):17499. https://www.ncbi.nlm.nih.gov/pubmed/27326894

doi: 10.1021/acsami.6b02131     URL     pmid: 27326894
[84]
Babaei N, Yeganeh H, Gharibi R . Eur. Polym. J., 2019,112:636.
[85]
Tanver A, Huang M H, Luo Y, Khalid S, Hussain T . RSC Adv., 2015,5(79):64478.
[86]
Becer C R, Hoogenboom R, Schubert U S . Angew. Chem. Int. Ed., 2009,48(27):4900. https://www.ncbi.nlm.nih.gov/pubmed/19475588

doi: 10.1002/anie.200900755     URL     pmid: 19475588
[87]
Qin A, Tang L, Lam J W Y, Jim C K W, Yu Y, Zhao H, Sun J, Tang B T . Adv. Funct. Mater., 2009,19(12):1891.
[88]
Agard N J, Prescher J A, Bertozzi C R . J. Am. Chem. Soc., 2004,126(46):15046. https://www.ncbi.nlm.nih.gov/pubmed/15547999

doi: 10.1021/ja044996f     URL     pmid: 15547999
[89]
Pramudya I, Kim C, Chung H . Polym. Chem., 2018,9(26):3638.
[90]
Hoyle C E, Bowman C N . Angew. Chem. Int. Ed., 2010,49(9):1540. https://www.ncbi.nlm.nih.gov/pubmed/20166107

doi: 10.1002/anie.200903924     URL     pmid: 20166107
[91]
Jin K, Leitsch E K, Chen X, Heath W H, Torkelson J M . Macromolecules, 2018,51(10):3620.
[92]
Hoogenboom R . Angew. Chem. Int. Ed., 2010,49(20):3415. https://www.ncbi.nlm.nih.gov/pubmed/20394091

doi: 10.1002/anie.201000401     URL     pmid: 20394091
[93]
Anseth K S, Klok H A . Biomacromolecules, 2016,17(1):1. https://www.ncbi.nlm.nih.gov/pubmed/26750314

doi: 10.1021/acs.biomac.5b01660     URL     pmid: 26750314
[94]
Tasdelen M A, Yagci Y . Angew. Chem. Int. Ed., 2013,52(23):5930. https://www.ncbi.nlm.nih.gov/pubmed/23653429

doi: 10.1002/anie.201208741     URL     pmid: 23653429
[95]
Meudtner R M, Hecht S . Macromol. Rapid Commun., 2008,29(4):347.
[96]
Yuan J, Fang X, Zhang L, Hong G, Lin Y, Zheng Q, Xu Y, Ruan Y, Weng W, Xia H, Chen G . J. Mater. Chem., 2012,22(23):11515. http://xlink.rsc.org/?DOI=c2jm31347b

doi: 10.1039/c2jm31347b     URL    
[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[3] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[4] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[5] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[6] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[7] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[8] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[9] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[10] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[11] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[12] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[13] 刘江波, 王丽华, 左小磊. 基于DNA的细胞膜功能化[J]. 化学进展, 2019, 31(8): 1067-1074.
[14] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[15] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.