English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 907-913 DOI: 10.7536/PC200671 前一篇   后一篇

• 综述 •

铀催化的氮气活化

陶学兵1, 于吉攀2, 梅雷2, 聂长明1,*(), 柴之芳2,3, 石伟群2,*()   

  1. 1 南华大学化学化工学院 衡阳 421000
    2 中国科学院高能物理研究所核能放射化学实验室 北京 100049
    3 中国科学院宁波材料技术与工程研究所 先进能源材料工程实验室 宁波 315201
  • 收稿日期:2020-06-24 修回日期:2020-08-19 出版日期:2021-06-20 发布日期:2020-12-22
  • 通讯作者: 聂长明, 石伟群
  • 基金资助:
    国家自然科学(21806167); 国家自然科学(21925603); 科学挑战计划(TZ2016004); 中国科学院青年创新促进会基金(2017020)

Dinitrogen Activation by Uranium Complex

Xuebing Tao1, Jipan Yu2, Lei Mei2, Changming Nie1,*(), Zhifang Chai2,3, Weiqun Shi2,*()   

  1. 1 School of Chemistry and Chemical Engineering, University of South China,Hengyang 421000, China
    2 Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049, China
    3 Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2020-06-24 Revised:2020-08-19 Online:2021-06-20 Published:2020-12-22
  • Contact: Changming Nie, Weiqun Shi
  • About author:
    * Corresponding author e-mail: (Changming Nie);
    (Weiqun Shi)
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21806167); National Natural Science Foundation of China(21925603); Science Challenge Project(TZ2016004); Youth Innovation Promotion Association of CAS(2017020)

氮气约占空气总体积的78%,是大自然赋予人类的宝贵资源。如何实现氮气转化为动植物可利用的含氮化合物,关系着人类的未来和社会的可持续发展。氮气活化,作为一个非常重要的研究领域,一直以来都是科学家面临的重大挑战。目前,低价铀金属有机化合物展现出良好的小分子活化能力。本综述主要介绍了含铀化合物对氮气活化的研究进展,并对其未来进行了展望。

Dinitrogen is the most abundant gas in the air(approximately 78% of the total air volume), which is a precious resource endowed by nature. How to make use of dinitrogen and transform it into useful nitrogenous compounds is important for humans and sustainable development of society. Dinitrogen activation, as a very important research field, has always been a major challenge. At present, low valent uranium complexes exhibit excellent performance in the small molecule activation. This review mainly introduces and summarizes the application of uranium complexes in dinitrogen activation and transformation, and the prospect of this field is prognosticated.

Contents

1 Introduction

2 Uranium-catalyzed dinitrogen activation

3 Conclusion

()
图1 金属-N2复合物的质子化过程
Fig.1 Proposed mechanisms A-C protonation of M-N2 complexes
图2 {U(NN'3)}2(μ2-η2:η2-N2) 的合成[27,28]
Fig.2 Synthesis of{U(NN'3)}2(μ2-η2:η2-N2) Complex[27,28]
图3 铀/钼杂双金属氮气复合物的合成[31]
Fig.3 Synthesis of Heterodinuclear Uranium/Molybdenum Dinitrogen Complexes[31]
图4 并环戊二烯基铀复合物活化氮气[32]
Fig.4 Activation of N2 by Uranium(Ⅲ) Complex with Pentalene Ligand[32]
图5 三茂铀-氮气络合物的合成[34]
Fig.5 Synthesis of(C5Me5)3U(N2) Complex[34]
图6 三价铀复合物活化氮气[35]
Fig.6 Activation of N2 by Uranium(Ⅲ) Complex[35]
图7 大位阻硅醇配体螯合的三价铀复合物活化氮气[36]
Fig.7 Activation of N2 by uranium(Ⅲ) complex with large steric resistance silanol ligand[36]
图8 大位阻硅醇配体螯合的三价铀复合物活化氮气[37]
Fig.8 Activation of N2 by uranium(Ⅲ) complex with large steric resistance silanol ligand[37]
图9 基于四齿芳酚配体双核铀复合物活化氮气[38]
Fig.9 Activation of N2 by binuclear uranium(Ⅲ) complex with phenol ligand[38]
[1]
Grubel K, Brennessel W W, Mercado B Q, Holland P L. J. Am. Chem. Soc., 2014, 136:16807.

doi: 10.1021/ja507442b     URL    
[2]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140:46.

doi: 10.1021/jacs.7b10354     URL    
[3]
Mus F, Alleman A B, Pence N, Seefeldt L C, Peters J W. Metallomics, 2018, 10:523.

doi: 10.1039/C8MT00038G     URL    
[4]
Huang H, Wang X S, Philo D, Ichihara F, Song H, Li Y X, Li D, Qiu T, Wang S Y, Ye J H. Appl. Catal. B-Environ. 2020,267.
[5]
Hu X L, Zhang W J, Yong Y W, Xu Y, Wang X H, Yao X X. Appl. Surf. Sci., 2020, 510:145413.

doi: 10.1016/j.apsusc.2020.145413     URL    
[6]
Qiu P Y, Liang Z Q, Liu X, Qian X, Cui H Z, Tian J. J. Colloid Interface Sci., 2020, 571:318.

doi: 10.1016/j.jcis.2020.03.062     URL    
[7]
Shen Z K, Yuan Y J, Wang P, Bai W F, Pei L, Wu S T, Yu Z T, Zou Z G. ACS Appl. Mater. Interfaces, 2020, 12:17343.

doi: 10.1021/acsami.9b21167     URL    
[8]
Wang J W, Hua C H, Dong X L, Wang Y, Zheng N. Sustain. Energy Fuels, 2020, 4:1855.

doi: 10.1039/C9SE01136F     URL    
[9]
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. J. Am. Chem. Soc., 2017, 139:10929.

doi: 10.1021/jacs.7b06634     pmid: 28712297
[10]
Shi R, Zhao Y X, Waterhouse G I N, Zhang S, Zhang T R. ACS Catal., 2019, 9:9739.

doi: 10.1021/acscatal.9b03246     URL    
[11]
Banerjee A, Yuhas B D, Margulies E A, Zhang Y B, Shim Y, Wasielewski M R, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137:2030.

doi: 10.1021/ja512491v     URL    
[12]
Li H, Shang J, Ai Z H, Zhang L Z. J. Am. Chem. Soc., 2015, 137:6393.

doi: 10.1021/jacs.5b03105     URL    
[13]
Liu J, Kelley M S, Wu W Q, Banerjee A, Douvalis A P, Wu J S, Zhang Y B, Schatz G C, Kanatzidis M G. PNAS, 2016, 113:5530.

doi: 10.1073/pnas.1605512113     URL    
[14]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352:448.

doi: 10.1126/science.aaf2091     URL    
[15]
Chen X Z, Li N, Kong Z Z, Ong W J, Zhao X J. Mater. Horiz., 2018, 5:9.

doi: 10.1039/C7MH00557A     URL    
[16]
Zhang N, Jalil A, Wu D X, Chen S M, Liu Y F, Gao C, Ye W, Qi Z M, Ju H X, Wang C M, Wu X J, Song L, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2018, 140:9434.

doi: 10.1021/jacs.8b02076     pmid: 29975522
[17]
Ling C Y, Niu X H, Li Q, Du A J, Wang J L. J. Am. Chem. Soc., 2018, 140:14161.

doi: 10.1021/jacs.8b07472     URL    
[18]
Vu M H, Sakar M, Hassanzadeh-Tabrizi S A, Do T O. Adv. Mater. Interfaces, 2019, 6:1900091.

doi: 10.1002/admi.v6.12     URL    
[19]
Jia H P, Quadrelli E A. Chem. Soc. Rev., 2014, 43:547.

doi: 10.1039/C3CS60206K     URL    
[20]
Burford R J, Fryzuk M D. Nat. Rev. Chem., 2017, 1:0026.

doi: 10.1038/s41570-017-0026     URL    
[21]
Fryzuk M D. Science, 1997, 275:1445.

doi: 10.1126/science.275.5305.1445     URL    
[22]
Liddle S T. Angew. Chem. Int. Ed., 2015, 54:8604.

doi: 10.1002/anie.201412168     URL    
[23]
Fox A R, Bart S C, Meyer K, Cummins C C. Nature, 2008, 455:341.

doi: 10.1038/nature07372     URL    
[24]
Castro-Rodríguez I, Meyer K. Chem. Commun., 2006: 1353.
[25]
Taylor L J, Kays D L. Dalton Trans., 2019, 48:12365.

doi: 10.1039/C9DT02402F     URL    
[26]
Barluzzi L, Falcone M, Mazzanti M. Chem. Commun., 2019, 55:13031.

doi: 10.1039/C9CC05605J     URL    
[27]
Roussel P, Scott P. J. Am. Chem. Soc., 1998, 120:1070.

doi: 10.1021/ja972933+     URL    
[28]
Roussel P, Hitchcock P B, Tinker N, Scott P. Chem. Commun., 1996:2053.
[29]
Wilkinson P G, Houk N B. J. Chem. Phys., 1956, 24:528.

doi: 10.1063/1.1742541     URL    
[30]
Fryzuk M D, Haddad T S, Mylvaganam M, McConville D H, Rettig S J. J. Am. Chem. Soc., 1993, 115:2782.

doi: 10.1021/ja00060a028     URL    
[31]
Odom A L, Arnold P L, Cummins C C. J. Am. Chem. Soc., 1998, 120:5836.

doi: 10.1021/ja980095t     URL    
[32]
Cloke F G N, Hitchcock P B. J. Am. Chem. Soc., 2002, 124:9352.

doi: 10.1021/ja027000e     URL    
[33]
Evans W J, Brady J C, Ziller J W. J. Am. Chem. Soc., 2001, 123:7711.

pmid: 11480999
[34]
Evans W J, Kozimor S A, Ziller J W. J. Am. Chem. Soc., 2003, 125:14264.

doi: 10.1021/ja037647e     URL    
[35]
Mansell S M, Kaltsoyannis N, Arnold P L. J. Am. Chem. Soc., 2011, 133:9036.

doi: 10.1021/ja2019492     URL    
[36]
Falcone M, Chatelain L, Scopelliti R, Živković I, Mazzanti M. Nature, 2017, 547:332.

doi: 10.1038/nature23279     URL    
[37]
Falcone M, Barluzzi L, Andrez J, Fadaei Tirani F, Živković I, Fabrizio A, Corminboeuf C, Severin K, Mazzanti M. Nat. Chem., 2019, 11:154.

doi: 10.1038/s41557-018-0167-8     pmid: 30420774
[38]
Arnold P L, Ochiai T, Lam F Y T, Kelly R P, Seymour M L, Maron L. Nat. Chem., 2020, 12:654.

doi: 10.1038/s41557-020-0457-9     pmid: 32366961
[1] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[2] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[3] 马晓川, 费浩. 金属配位在多肽与蛋白质研究中的应用[J]. 化学进展, 2016, 28(2/3): 184-192.
[4] 罗勤慧. 我国配位化学的开拓者和奠基人 ——戴安邦先生[J]. 化学进展, 2011, 23(12): 2405-2411.
[5] 孟庆金. 传承戴安邦先生的科学精神和学术理念[J]. 化学进展, 2011, 23(12): 2412-2416.
[6] 蒋琪英 沈娟 钟国清 . 含铋(Ⅲ)配合物的合成及其铋的配位性质[J]. 化学进展, 2006, 18(12): 1634-1645.
[7] 刘琴,张俊勇,郭子建,唐雯霞. 神经生物系统中的配位化学问题*[J]. 化学进展, 2002, 14(04): 292-.
[8] 金国新,孔庆安. 环戊二烯类有机金属含硫族化学的新进展[J]. 化学进展, 1998, 10(01): 16-.
阅读次数
全文


摘要

铀催化的氮气活化