English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1140-1157 DOI: 10.7536/PC200301 前一篇   后一篇

• 综述 •

金属纳米材料表面配体聚集效应

秦瑞轩1, 邓果诚1, 郑南峰1,**()   

  1. 1. 厦门大学 化学化工学院 固体表面物理化学国家重点实验室 能源材料化学协同创新中心 纳米材料制备技术国家地方联合工程研究中心 厦门 361005
  • 收稿日期:2020-03-02 修回日期:2020-04-10 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 郑南峰
  • 基金资助:
    国家重点研发项目(2017YFA0207304); 国家自然科学基金项目(21890752); 国家自然科学基金项目(21731005); 国家自然科学基金项目(21721001); 中央高校基本科研业务费专项资金(20720180026)

Assembling Effects of Surface Ligands on Metal Nanomaterials

Ruixuan Qin1, Guocheng Deng1, Nanfeng Zheng1,**()   

  1. 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2020-03-02 Revised:2020-04-10 Online:2020-08-24 Published:2020-04-23
  • Contact: Nanfeng Zheng
  • About author:
  • Supported by:
    the National Key R&D Program of China(2017YFA0207304); National Natural Science Foundation of China(21890752); National Natural Science Foundation of China(21731005); National Natural Science Foundation of China(21721001); Fundamental Research Funds for Central Universities(20720180026)

金属纳米材料表面配体不仅可以稳定金属纳米颗粒,辅助合成特定尺寸和形貌的纳米材料,还可用于调控金属纳米颗粒的表面化学性质。由于现有表征技术的局限性,金属纳米材料表面有机配体的结构和功能一直以来并未被深入研究。得益于分子结构明确金属纳米团簇和其他模型纳米材料体系的发展,配体在金属纳米材料表面的精确配位结构及其对催化过程的促进作用正不断被揭示出来。金属表面有机分子配位不仅可以调控表面金属电子结构,还可以分割表面原子周期性结构。表面有机配体的聚集可以进一步在金属表面构筑3D空间结构,改变纳米材料亲疏水性,并影响催化底物和反应中间体与表面的相互作用强弱和吸附构型。此外,有机配体与表面金属所组成的界面还可以构筑新的活性位点,改变催化反应路径,从而提升催化反应活性和选择性。金属纳米材料表面有机配体的聚集效应使得异相纳米材料可以同时表现出均相催化和酶催化的优势。

Surface ligands on metal nanomaterials play a crucial role in the controlled synthesis of metal nanoparticles with specific size and morphology. However, the detailed molecular-level structures of surface ligands are difficult to be determined by conventional characterizations, leading to our poor understanding over the effects of surface ligands on the chemical properties of metal nanomaterials. Benefiting from the development of metal nanoclusters and other model nanomaterials, increasing research effort has been devoted to revealing the detailed coordination structure of surface ligands on metal nanomaterials and their catalytic effects. The coordination of organic molecules on the metal surface can not only regulate the electronic structure of the surface metal, but also alter the periodic structure of the surface atoms. Moreover, the assembling of surface organic ligands can create 3D spatial structure on the metal surface for manipulating the interaction strength and configuration of reactants and intermediates with the catalytic surface. The interface created by having organic ligands modify metal surface can also lead to the formation of new catalytic sites for changing the catalytic reaction pathways to improve the catalytic activity and selectivity. The assembling effects of surface ligands on metal nanomaterials make them exhibit advantages of heterogeneous catalysis and homogeneous catalysis.

Contents

1 Introduction

2 Metal nanoclusters as the model system

2.1 Coordination structure of organic ligands

2.2 Ensemble effect of surface ligands

2.3 Nanoclusters as model catalysts

3 Hydrophobicity and hydrophilicity

4 Ensemble effect and steric effect

4.1 Ensemble effect of surface coordination

4.2 Steric effect of surface organic assembly

5 Electronic effect of surface organic ligands

6 Synergistic metal-organic catalytic interfaces

7 Conclusion and outlook

()
图1 配体在金属纳米材料表面的局域配位键合结构和排列结构是决定其表面化学性质的重要因素
Fig.1 The local coordination bonding structure and arrangement structure of ligands on the surface of metal nanomaterials are important factors determining their surface chemical properties
图2 (a) 硫醇保护的Au102纳米团簇的分子全结构(左)及其表面-SR-Au-SR-“订书针”单元的配位结构(右)[24]。颜色:金色,内部Au原子;暗绿色,表面+1价Au原子;黄色,S;灰色,C;红色,O。(b) 硫醇保护的Ag44纳米团簇的分子全结构(左)及其表面Ag2(SR)5单元的配位模式(右)[27]。颜色:金色,内核Ag原子;暗绿色,表面和次表面Ag原子;黄色,S;灰色,C
Fig.2 (a) The total structure of thiolated Au102 nanocluster(left) and the coordination structure(right) of the -SR-Au-SR- “staple” motif on the surface of the cluster[24]. Color: gold, inner Au atoms; dark green, surface + 1 valence Au atoms; yellow, S; gray, C; Red, O. Copyright 2007 American Association for the Advancement of Science.(b) The total structure of thiolated Ag44 nanocluster(left) and the coordination structure of its surface Ag2(SR)5 motif(right)[27]. Color: gold, core Ag atoms; dark green, surface and sub-surface Ag atoms; yellow, S; gray, C. Copyright 2013 Springer Nature
图3 配体保护金属团簇上不同类型配体与表面金属形成的典型表面局域配位结构。(a) 硫醇配体[30];(b~d) 炔基配体[31,32,33,34,35];(e) 单齿有机膦配体;(f)一氧化碳配体;(g) 卤素离子配体
Fig.3 The local coordination structures of different surface ligands on typical ligand-stabilized metal nanoclusters.(a) Thoilates[30];(b~d) Alkynyl ligands[31,32,33,34,35];(e) Monodentate phosphines;(f) Carbon monoxide;(g) Halides
图4 以大位阻硫醇为表面保护配体的金属纳米团簇结构。(a) 环己硫醇保护的Ag206[43];(b) 金刚烷硫醇保护的Ag141[44]
Fig.4 The total structures of metal nanoclusters stabilized by bulky ligands.(a) Cyclohexanethiolate-stabilized Ag206[43]. Copyright 2018 Oxford University Press.(b) 1-adamantanethiolate-stabilized Ag141[44]. Copyright 2017 American Chemical Society
图5 (a) Au34Ag28(PA)34团簇配体促进硅烷水解反应[46];(b) Pd3Cl团簇催化Suzuki偶联反应机理[47];(c) Cu25H10团簇催化酮加氢[42]
Fig.5 (a) PA ligand on Au34Ag28(PA)34 nanoclusters promotes the hydrolytic oxidation of organosilanes[46]. Copyright 2016 American Chemical Society.(b) Pd3Cl cluster catalyzed Suzuki-Miyaura reaction[47]. Copyright 2017 American Chemical Society.(c) Cu25H10 nanocluster catalyzed ketone hydrogenation[42]. Copyright 2019 American Chemical Society
图6 Pd NS表面聚乙炔增强疏水性,提高苯乙烯加氢活性[48]
Fig.6 Polymerization of C2H2 on Pd NS enhanced hydrophobicity and styrene hydrogenation activity[48]. Copyright 2014 American Chemical Society
图7 离子液体修饰Pt基材料提升ORR性能[49]
Fig.7 Volcano-shape relationship between the promotional effect of ILs on Pt NPs for ORR and the alkyl chain length of ILs[49]. Copyright 2018 American Chemical Society
图8 不同有机物修饰的Cu基催化剂制备过程及其对CO2RR产物选择性影响[52]
Fig.8 Selectivities of Cu catalyzed CO2RR with different modifiers[52]. Copyright 2019 American Chemical Society
图9 疏水性有机硅烷修饰分子筛负载PdAu纳米颗粒示意图(a)及透射电镜图(b, c)[55]
Fig.9 Schematic(a) and TEM images(b, c) of PdAu NPs in zeolite with hydrophobic silicane modification[55]. Copyright 2020 American Association for the Advancement of Science
图10 Pd(111)表面硫醇SAM示意图[57]
Fig.10 Schematic of SAM on Pd(111)[57]. Copyright 2010 Springer Nature
图11 不同结构硫醇修饰剂优先配位位点不同[61]
Fig.11 Thiols with different structure prefer to occupy different surface site[61]. Copyright 2013 Springer Nature
图12 Pd3Co表面油胺自组装层控制肉桂醛分子吸附构型[68]
Fig.12 Schematic of rigid oleylamine layer on Pt3Co NPs manipulate adsorption configuration of cinnamaldehyde[68]. Copyright 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图13 SPhF2修饰Pd4S纳米片提升中间炔半加氢选择性[31]
Fig.13 SPhF2 modified Pd4S NS for semihydrogenation of internal alkynes[31]. Copyright 2018 Elsevier Inc
图14 金鸡纳碱诱导ethyl pyruvate手性加氢结构模型[73]
Fig.14 Interaction model of ethyl pyruvate and cinchonidine over Pt surface[73]. Copyright 2004 American Chemical Society
图15 表面配体影响量子点荧光产率[83]
Fig.15 Organic ligands enhance photoluminescence quantum yield of QDs[83]. Copyright 2013 American Chemical Society
图16 Pt NWs电镜图与表面乙二胺配体电子效应对硝基苯加氢选择性的影响[89];(a) TEM图;(b) Pt原子Bader Charge分析图;(c) 硝基苯选择性加氢制羟基苯胺示意图
Fig.16 Electronic effect of ethylenediamine on Pt NWs for selective hydrogenation of nitrobenzene to N-hydroxylaniline[89].(a) TEM image of Pt NWs,(b) Bader charge analysis of Pt,(c) Schematic of nitrobenzene hydrogenation on Pt NWs. Copyright 2016 Springer Nature
图17 三苯基膦基聚合物修饰的FDU-12负载的Pd纳米颗粒,提高加氢反应活性和选择性[90]
Fig.17 Polymerization of tris(4-vinylphenyl)phosphine in FDU-12. The chelating of phosphine ligands to the encapsulated Pd NPs enhances catalytic activity and selectivity of hydrogenation[90]. Copyright 2018 American Chemical Society
图18 Au(111)表面CO吸附促进—OH吸附和甲醇电氧化[97]
Fig.18 Electronic effect of CO on Au(111) in promoting the adsorption of hydroxyl and electrooxidation of MeOH[97]. Copyright 2011 Springer Nature
图19 Pd表面(a),ph-POF/Pd/POF(b)和di-POF/Pd/POF(c)表面CO氧化决速步过渡态示意图[98]
Fig.19 Schematic illustration of the interaction between the RDS transition state of CO oxidation and the Pd surface(a) or POF modifiers with different functional group(b, c)[98]. Copyright 2019 Springer Nature
图20 Pd表面HHDMA修饰剂控制过氧化物中间体表面吸附形式,防止O—O键解离,提高双氧水产物选择性[101]
Fig.20 Schematics of adsorption configuration of hydroperoxide intermediates on pure Pd and HHDMA modified Pd surface[101]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图21 L-脯氨酸修饰Pt纳米颗粒促进苯乙酮加氢机理[102]
Fig.21 Proposed C=O group hydrogenation mechanism of L-proline modified Pt NPs[102]. Copyright 2015 American Chemical Society
图22 TiO2表面乙二醇基配体协同单原子Pd催化H2异裂(a);Pd1/TiO2催化苯乙烯加氢一级同位素效应(b);Pd1/TiO2、Pd/C及H2PdCl4催化苯甲醛加氢活性比较(c)[110]
Fig.22 (a) Schematic and energies of heterolytic H2 activation process by ethylene glycol ligands on TiO2.(b) Primary KIE in styrene hydrogenation catalyzed by Pd1/TiO2.(c) Benzaldehyde hydrogenation catalyzed by Pd1/TiO2, Pd/C, and H2PdCl4[110]. Copyright 2016 American Association for the Advancement of Science
[1]
Bell A T. Science, 2003,299:1688. https://www.ncbi.nlm.nih.gov/pubmed/12663908

doi: 10.1126/science.1081056     URL     pmid: 12663908
[2]
Hammer B, Norskov J K. Nature, 1995,376:238.
[3]
Hutchings G. Catal., 1985,96:292.
[4]
Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987,16:405.
[5]
Ishida T, Murayama T, Taketoshi A, Haruta M. Chem. Rev., 2020,120:464. https://www.ncbi.nlm.nih.gov/pubmed/31820953

doi: 10.1021/acs.chemrev.9b00551     URL     pmid: 31820953
[6]
Xie C, Niu Z, Kim D, Li M, Yang P. Chem. Rev., 2020,120:1184. https://www.ncbi.nlm.nih.gov/pubmed/32603100

doi: 10.1021/acs.chemrev.0c00101     URL     pmid: 32603100
[7]
Wu Y, Wang D, Li Y. Chem. Soc. Rev., 2014,43:2112. https://www.ncbi.nlm.nih.gov/pubmed/25103915

doi: 10.1039/c4cs00176a     URL     pmid: 25103915
[8]
Wu B H, Zheng N F. Nano Today, 2013,8:168. 770f513e-2ad9-458b-abf2-a6cfe16d18f9http://dx.doi.org/10.1016/j.nantod.2013.02.006

doi: 10.1016/j.nantod.2013.02.006     URL    
[9]
Yang F, Deng D H, Pan X L, Fu Q, Bao X H. Natl. Sci. Rev., 2015,2:183.
[10]
Serp P, Philippot K. Nanomaterials in Catalysis. John Wiley & Sons, 2012.
[11]
Liu L, Corma A. Chem. Rev., 2018,118:4981. https://www.ncbi.nlm.nih.gov/pubmed/30301355

doi: 10.1021/acs.chemrev.8b00495     URL     pmid: 30301355
[12]
Zhou K, Li Y. Angew. Chem. Int. Ed., 2012,51:602.
[13]
Yin Y, Alivisatos A P. Nature, 2005,437:664. https://www.ncbi.nlm.nih.gov/pubmed/16193041

doi: 10.1038/nature04165     URL     pmid: 16193041
[14]
Rossi L M, Fiorio J L, Garcia M A S, Ferraz C P. Dalton Trans., 2018,47:5889. https://www.ncbi.nlm.nih.gov/pubmed/30480690

doi: 10.1039/c8dt03854f     URL     pmid: 30480690
[15]
Chen M, Wu B, Yang J, Zheng N. Adv. Mater., 2012,24:862. https://www.ncbi.nlm.nih.gov/pubmed/22252856

doi: 10.1002/adma.201104145     URL     pmid: 22252856
[16]
Cargnello M, Chen C, Diroll B T, Doan-Nguyen V V, Gorte R J, Murray C B. J. Am. Chem. Soc., 2015,137:6906. https://www.ncbi.nlm.nih.gov/pubmed/26653152

doi: 10.1021/jacs.5b10879     URL     pmid: 26653152
[17]
Schoenbaum C A, Schwartz D K, Medlin J W. Acc. Chem. Res., 2014,47:1438. https://www.ncbi.nlm.nih.gov/pubmed/25350402

doi: 10.1021/ar500112b     URL     pmid: 25350402
[18]
Vile G, Almora Barrios N, Mitchell S, Lopez N, Perez Ramirez J. Chem. -Eur. J., 2014,20:5926. https://www.ncbi.nlm.nih.gov/pubmed/25367386

doi: 10.1002/chem.201402873     URL     pmid: 25367386
[19]
Vilé G, Albani D, Almora Barrios N, López N, Pérez Ramírez J. ChemCatChem, 2016,8:21.
[20]
Liu P, Qin R, Fu G, Zheng N. Am. Chem. Soc., 2017,139:2122.
[21]
Whetten R L, Price R C. Science, 2007,318:407. https://www.ncbi.nlm.nih.gov/pubmed/17947573

doi: 10.1126/science.1150176     URL     pmid: 17947573
[22]
Jin R, Zeng C, Zhou M, Chen Y. Chem. Rev., 2016,116:10346. https://www.ncbi.nlm.nih.gov/pubmed/27585252

doi: 10.1021/acs.chemrev.5b00703     URL     pmid: 27585252
[23]
Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc., Chem. Commun., 1994,801.
[24]
Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007,318:430. https://www.ncbi.nlm.nih.gov/pubmed/17947577

doi: 10.1126/science.1148624     URL     pmid: 17947577
[25]
Heaven M W, Dass A, White P S, Holt K M, Murray R W. Am. Chem. Soc., 2008,130:3754.
[26]
Zhu M, Aikens C M, Hollander F J, Schatz G C, Jin R. J. Am. Chem. Soc., 2008,130:5883. https://www.ncbi.nlm.nih.gov/pubmed/19554716

doi: 10.1021/ja805274u     URL     pmid: 19554716
[27]
Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Hakkinen H, Zheng N. Nat. Commun., 2013,4:2422. https://www.ncbi.nlm.nih.gov/pubmed/24352200

doi: 10.1038/ncomms3986     URL     pmid: 24352200
[28]
Desireddy A, Conn B E, Guo J, Yoon B, Barnett R N, Monahan B M, Kirschbaum K, Griffith W P, Whetten R L, Landman U, Bigioni T P. Nature, 2013,501:399. ef4ef951-a5b3-4ba4-b183-073b72d4c1c4http://dx.doi.org/10.1038/nature12523

doi: 10.1038/nature12523     URL    
[29]
Yan J, Su H, Yang H, Malola S, Lin S, Hakkinen H, Zheng N. Am. Chem. Soc., 2015,137:11880. https://pubs.acs.org/doi/10.1021/jacs.5b07186

doi: 10.1021/jacs.5b07186     URL    
[30]
Yan J, Teo B K, Zheng N. Acc. Chem. Res., 2018,51:3084. https://www.ncbi.nlm.nih.gov/pubmed/30417644

doi: 10.1021/acs.accounts.8b00285     URL     pmid: 30417644
[31]
Zhao X J, Zhou L Y, Zhang W Y, Hu C Y, Dai L, Ren L T, Wu B H, Fu G, Zheng N F. Chem, 2018,4:1080. https://www.ncbi.nlm.nih.gov/pubmed/29629424

doi: 10.1016/j.chempr.2017.10.015     URL     pmid: 29629424
[32]
Qu M, Li H, Xie L H, Yan S T, Li J R, Wang J H, Wei C Y, Wu Y W, Zhang X M. J. Am. Chem. Soc., 2017,139:12346. https://www.ncbi.nlm.nih.gov/pubmed/28837326

doi: 10.1021/jacs.7b05243     URL     pmid: 28837326
[33]
Gupta A K, Orthaber A. Chem. -Eur. J., 2018,24:7536. https://www.ncbi.nlm.nih.gov/pubmed/30381861

doi: 10.1002/chem.201804686     URL     pmid: 30381861
[34]
Wang Y, Su H, Xu C, Li G, Gell L, Lin S, Tang Z, Hakkinen H, Zheng N. J. Am. Chem. Soc., 2015,137:4324. https://www.ncbi.nlm.nih.gov/pubmed/26653152

doi: 10.1021/jacs.5b10879     URL     pmid: 26653152
[35]
Shen H, Mizuta T. Chem. -Eur. J., 2017,23:17885. https://www.ncbi.nlm.nih.gov/pubmed/29135045

doi: 10.1002/chem.201704643     URL     pmid: 29135045
[36]
Yang H, Yan J, Wang Y, Su H, Gell L, Zhao X, Xu C, Teo B K, Häkkinen H, Zheng N. J. Am. Chem. Soc., 2017,139:31. https://www.ncbi.nlm.nih.gov/pubmed/27992210

doi: 10.1021/jacs.6b10053     URL     pmid: 27992210
[37]
Wan X K, Lin Z W, Wang Q M. J. Am. Chem. Soc., 2012,134:14750. https://www.ncbi.nlm.nih.gov/pubmed/22931402

doi: 10.1021/ja307256b     URL     pmid: 22931402
[38]
Wan X K, Yuan S F, Lin Z W, Wang Q M. Angew. Chem. Int. Ed., 2014,53:2923.
[39]
Yang H, Yan J, Wang Y, Deng G, Su H, Zhao X, Xu C, Teo B K, Zheng N. J. Am. Chem. Soc., 2017,139:16113. https://www.ncbi.nlm.nih.gov/pubmed/29053274

doi: 10.1021/jacs.7b10448     URL     pmid: 29053274
[40]
Yuan X, Sun C, Li X, Malola S, Teo B K, Hakkinen H, Zheng L S, Zheng N. J. Am. Chem. Soc., 2019,141:11905. https://www.ncbi.nlm.nih.gov/pubmed/31294970

doi: 10.1021/jacs.9b03009     URL     pmid: 31294970
[41]
Dhayal R S, van Zyl W E, Liu C W. Acc. Chem. Res., 2016,49:86. https://www.ncbi.nlm.nih.gov/pubmed/26696469

doi: 10.1021/acs.accounts.5b00375     URL     pmid: 26696469
[42]
Sun C, Mammen N, Kaappa S, Yuan P, Deng G, Zhao C, Yan J, Malola S, Honkala K, Hakkinen H, Teo B K, Zheng N. ACS Nano, 2019,13:5975. https://www.ncbi.nlm.nih.gov/pubmed/31794193

doi: 10.1021/acsnano.9b08220     URL     pmid: 31794193
[43]
Yan J, Zhang J, Chen X, Malola S, Zhou B, Selenius E, Zhang X, Yuan P, Deng G, Liu K, Su H, Teo B K, Häkkinen H, Zheng L, Zheng N. Natl. Sci. Rev., 2018,5:694.
[44]
Ren L, Yuan P, Su H, Malola S, Lin S, Tang Z, Teo B K, Häkkinen H, Zheng L, Zheng N. J. Am. Chem. Soc., 2017,139:13288. https://www.ncbi.nlm.nih.gov/pubmed/28892364

doi: 10.1021/jacs.7b07926     URL     pmid: 28892364
[45]
Du Y, Sheng H, Astruc D, Zhu M. Chem. Rev., 2020,120:526. https://www.ncbi.nlm.nih.gov/pubmed/30901198

doi: 10.1021/acs.chemrev.8b00726     URL     pmid: 30901198
[46]
Wang Y, Wan X K, Ren L, Su H, Li G, Malola S, Lin S, Tang Z, Hakkinen H, Teo B K, Wang Q M, Zheng N. J. Am. Chem. Soc., 2016,138:3278. https://www.ncbi.nlm.nih.gov/pubmed/27992204

doi: 10.1021/jacs.6b08697     URL     pmid: 27992204
[47]
Fu F, Xiang J, Cheng H, Cheng L, Chong H, Wang S, Li P, Wei S, Zhu M, Li Y. ACS Catal., 2017,7:1860. https://www.ncbi.nlm.nih.gov/pubmed/29142780

doi: 10.1021/acscatal.7b01749     URL     pmid: 29142780
[48]
Dai Y, Liu S, Zheng N. J. Am. Chem. Soc., 2014,136:5583. https://www.ncbi.nlm.nih.gov/pubmed/25494921

doi: 10.1021/ja5104525     URL     pmid: 25494921
[49]
Zhang G R, Wolker T, Sandbeck D J S, Munoz M, Mayrhofer K J J, Cherevko S, Etzold B J M. ACS Catal., 2018,8:8244. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626     URL     pmid: 30740261
[50]
Snyder J, Fujita T, Chen M W, Erlebacher J. Nat. Mater., 2010,9:904. https://www.ncbi.nlm.nih.gov/pubmed/20953182

doi: 10.1038/nmat2878     URL     pmid: 20953182
[51]
Tan Y M, Xu C F, Chen G X, Zheng N F, Xie Q J. Energy Environ., 2012,5:6923.
[52]
Buckley A K, Lee M, Cheng T, Kazantsev R V, Larson D M, Goddard Iii W A, Toste F D, Toma F M. J. Am. Chem. Soc., 2019,141:7355. https://www.ncbi.nlm.nih.gov/pubmed/31820965

doi: 10.1021/jacs.9b10205     URL     pmid: 31820965
[53]
Rogers S M, Catlow C R A, Chan-Thaw C E, Chutia A, Jian N, Palmer R E, Perdjon R E, Thetford A, Dimitratos N, Villa A, Wells P P. ACS Catal., 2017,7:2266. https://www.ncbi.nlm.nih.gov/pubmed/29142780

doi: 10.1021/acscatal.7b01749     URL     pmid: 29142780
[54]
Shi W, Cao L, Zhang H, Zhou X, An B, Lin Z, Dai R, Li J, Wang C, Lin W. Angew. Chem. Int. Ed., 2017,56:9704.
[55]
Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F S. Science, 2020,367:193. https://www.ncbi.nlm.nih.gov/pubmed/31919221

doi: 10.1126/science.aaw1108     URL     pmid: 31919221
[56]
Wang G, Ruhling A, Amirjalayer S, Knor M, Ernst J B, Richter C, Gao H J, Timmer A, Gao H Y, Doltsinis N L, Glorius F, Fuchs H. Nat. Chem., 2017,9:152. https://www.ncbi.nlm.nih.gov/pubmed/28282049

doi: 10.1038/nchem.2622     URL     pmid: 28282049
[57]
Marshall S T, O'Brien M, Oetter B, Corpuz A, Richards R M, Schwartz D K, Medlin J W. Nat. Mater., 2010,9:853. https://www.ncbi.nlm.nih.gov/pubmed/20835234

doi: 10.1038/nmat2849     URL     pmid: 20835234
[58]
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M, Chem. Rev., 2005,105:1103. https://www.ncbi.nlm.nih.gov/pubmed/16277373

doi: 10.1021/cr0400919     URL     pmid: 16277373
[59]
Marshall S T, Horiuchi C M, Zhang W Y, Medlin J W. J. Phys. Chem. C, 2008,112:20406. https://pubs.acs.org/doi/10.1021/jp804936y

doi: 10.1021/jp804936y     URL    
[60]
Medlin J W, Barteau M A, Vohs J M. J. Mol. Catal. A: Chem., 2000,163:129. https://linkinghub.elsevier.com/retrieve/pii/S1381116900004064

doi: 10.1016/S1381-1169(00)00406-4     URL    
[61]
Pang S H, Schoenbaum C A, Schwartz D K, Medlin J W, Nat. Commun., 2013,4:2448. https://www.ncbi.nlm.nih.gov/pubmed/24352200

doi: 10.1038/ncomms3986     URL     pmid: 24352200
[62]
Pang S H, Schoenbaum C A, Schwartz D K, Medlin J W, ACS Catal., 2014,4:3123. https://www.ncbi.nlm.nih.gov/pubmed/24527267

doi: 10.1021/cs400946x     URL     pmid: 24527267
[63]
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem. Rev., 2018,118:11023. https://www.ncbi.nlm.nih.gov/pubmed/30362725

doi: 10.1021/acs.chemrev.8b00134     URL     pmid: 30362725
[64]
Kumar G, Lien C H, Janik M J, Medlin J W, ACS Catal., 2016,6:5086. https://www.ncbi.nlm.nih.gov/pubmed/27668125

doi: 10.1021/acscatal.6b00829     URL     pmid: 27668125
[65]
Ortuño M A, López N. ACS Catal., 2018,8:6138. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626     URL     pmid: 30740261
[66]
Zhang F Q, Fang J J, Huang L, Sun W M, Lin Z, Shi Z Q, Kang X W, Chen S W. ACS Catal., 2019,9:98. https://pubs.acs.org/doi/10.1021/acscatal.8b04028

doi: 10.1021/acscatal.8b04028     URL    
[67]
Zhao Y, Fu G, Zheng N F. Catal. Today, 2017,279:36. https://linkinghub.elsevier.com/retrieve/pii/S0920586116303431

doi: 10.1016/j.cattod.2016.05.017     URL    
[68]
Wu B, Huang H, Yang J, Zheng N, Fu G. Angew. Chem. Int. Ed., 2012,51:3440.
[69]
Yan C, Yuan R, Pfalzgraff W C, Nishida J, Wang L, Markland T E, Fayer M D. Proc. Natl. Acad. Sci. U. S. A., 2016,113:4929. https://www.ncbi.nlm.nih.gov/pubmed/27965389

doi: 10.1073/pnas.1611861114     URL     pmid: 27965389
[70]
Kahsar K R, Schwartz D K, Medlin J W. J. Am. Chem. Soc., 2014,136:520. 474930da-4221-402d-af12-2f386047395dhttp://dx.doi.org/10.1021/ja411973p

doi: 10.1021/ja411973p     URL    
[71]
Chen T Y, Rodionov V O. ACS Catal., 2016,6:4025. https://www.ncbi.nlm.nih.gov/pubmed/27668125

doi: 10.1021/acscatal.6b00829     URL     pmid: 27668125
[72]
Szewczyk M, Sobczak G, Sashuk V. ACS Catal., 2018,8:2810. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626     URL     pmid: 30740261
[73]
Burgi T B. A. Acc. Chem. Res., 2004,37:909. https://www.ncbi.nlm.nih.gov/pubmed/15612681

doi: 10.1021/ar040072l     URL     pmid: 15612681
[74]
Horvath J D, Gellman A J. J. Am. Chem. Soc., 2001,123:7953. https://www.ncbi.nlm.nih.gov/pubmed/11749545

doi: 10.1021/ja004316i     URL     pmid: 11749545
[75]
Stephenson M J, Lambert R M. J. Phys. Chem. B, 2001,105:12832. https://pubs.acs.org/doi/10.1021/jp012372f

doi: 10.1021/jp012372f     URL    
[76]
Schunack M, Petersen L, Kuhnle A, Laegsgaard E, Stensgaard I, Johannsen I, Besenbacher F. Phys. Rev. Lett., 2001,86:456. https://www.ncbi.nlm.nih.gov/pubmed/11177854

doi: 10.1103/PhysRevLett.86.456     URL     pmid: 11177854
[77]
Humblot V, Haq S, Muryn C, Hofer W A, Raval R. J. Am. Chem. Soc., 2002,124:503. https://www.ncbi.nlm.nih.gov/pubmed/11792223

doi: 10.1021/ja012021e     URL     pmid: 11792223
[78]
Schwalm O, Minder B, Weber J, Baiker A. Catal. Lett., 1994,23:271. http://link.springer.com/10.1007/BF00811362

doi: 10.1007/BF00811362     URL    
[79]
Blaser H U, Jalett H P, Monti D M, Baiker A, Wehrli J T. Stud. Surf. Sci. Catal., 1991,67:147.
[80]
Ye R, Zhukhovitskiy A V, Kazantsev R V, Fakra S C, Wickemeyer B B, Toste F D, Somorjai G A. J. Am. Chem. Soc., 2018,140:4144. https://www.ncbi.nlm.nih.gov/pubmed/29506380

doi: 10.1021/jacs.8b01017     URL     pmid: 29506380
[81]
Boles M A, Ling D, Hyeon T, Talapin D V. Nat. Mater., 2016,15:141. https://www.ncbi.nlm.nih.gov/pubmed/26796733

URL     pmid: 26796733
[82]
Zherebetskyy D, Scheele M, Zhang Y, Bronstein N, Thompson C, Britt D, Salmeron M, Alivisatos P, Wang L W. Science, 2014,344:1380. https://www.ncbi.nlm.nih.gov/pubmed/24970072

doi: 10.1126/science.344.6191.1460-c     URL     pmid: 24970072
[83]
Anderson N C, Hendricks M P, Choi J J, Owen J S. J. Am. Chem. Soc., 2013,135:1856. https://www.ncbi.nlm.nih.gov/pubmed/24320157

doi: 10.1021/ja408772p     URL     pmid: 24320157
[84]
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H, Nat. Nanotechnol., 2012,7:577. https://www.ncbi.nlm.nih.gov/pubmed/22842552

doi: 10.1038/nnano.2012.127     URL     pmid: 22842552
[85]
Aldana J, Wang Y A, Peng X. J. Am. Chem. Soc., 2001,123:8844. https://www.ncbi.nlm.nih.gov/pubmed/11535092

doi: 10.1021/ja016424q     URL     pmid: 11535092
[86]
Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr O M, Sargent E H, Nat. Mater., 2014,13:822. https://www.ncbi.nlm.nih.gov/pubmed/24907929

doi: 10.1038/nmat4007     URL     pmid: 24907929
[87]
Chuang C H, Brown P R, Bulovic V, Bawendi M G. Nat. Mater., 2014,13:796. https://www.ncbi.nlm.nih.gov/pubmed/24859641

doi: 10.1038/nmat3984     URL     pmid: 24859641
[88]
Alivisatos A P. Science, 1996,271:933. https://www.sciencemag.org/lookup/doi/10.1126/science.271.5251.933

doi: 10.1126/science.271.5251.933     URL    
[89]
Chen G, Xu C, Huang X, Ye J, Gu L, Li G, Tang Z, Wu B, Yang H, Zhao Z, Zhou Z, Fu G, Zheng N. Nat. Mater., 2016,15:564. https://www.ncbi.nlm.nih.gov/pubmed/26808458

doi: 10.1038/nmat4555     URL     pmid: 26808458
[90]
Guo M, Li H, Ren Y Q, Ren X M, Yang Q H, Li C. ACS Catal., 2018,8:6476. https://www.ncbi.nlm.nih.gov/pubmed/30740261

doi: 10.1021/acscatal.8b00626     URL     pmid: 30740261
[91]
Ren X, Guo M, Li H, Li C, Yu L, Liu J, Yang Q. Angew. Chem. Int. Ed., 2019,58:14483. https://onlinelibrary.wiley.com/toc/15213773/58/41

doi: 10.1002/anie.v58.41     URL    
[92]
Cao Z, Derrick J S, Xu J, Gao R, Gong M, Nichols E M, Smith P T, Liu X, Wen X, Coperet C, Chang C J. Angew. Chem. Int. Ed., 2018,57:4981.
[93]
Sung S S, Hoffmann R. J. Am. Chem. Soc., 1985,107:578.
[94]
Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat. Nanotechnol., 2011,6:28. https://www.ncbi.nlm.nih.gov/pubmed/21131956

doi: 10.1038/nnano.2010.235     URL     pmid: 21131956
[95]
Dai Y, Mu X, Tan Y, Lin K, Yang Z, Zheng N, Fu G. J. Am. Chem. Soc., 2012,134:7073. https://www.ncbi.nlm.nih.gov/pubmed/23215037

doi: 10.1021/ja310330m     URL     pmid: 23215037
[96]
Chen G, Yang H, Wu B, Zheng Y, Zheng N. Dalton Trans., 2013,42:12699. https://www.ncbi.nlm.nih.gov/pubmed/23732536

doi: 10.1039/c3dt50942g     URL     pmid: 23732536
[97]
Rodriguez P, Kwon Y, Koper M T, Nat. Chem., 2011,4:177. https://www.ncbi.nlm.nih.gov/pubmed/22354413

doi: 10.1038/nchem.1221     URL     pmid: 22354413
[98]
Riscoe A R, Wrasman C J, Herzing A A, Hoffman A S, Menon A, Boubnov A, Vargas M, Bare S R, Cargnello M. Nat. Catal., 2019,2:852. https://doi.org/10.1038/s41929-019-0322-7

doi: 10.1038/s41929-019-0322-7     URL    
[99]
Xu X, Goodman D W. Phys. Chem., 1993,97:7711.
[100]
Falsig H, Hvolbaek B, Kristensen I S, Jiang T, Bligaard T, Christensen C H, Norskov J K. Angew. Chem. Int. Ed., 2008,47:4835.
[101]
Lari G M, Puertolas B, Shahrokhi M, Lopez N, Perez-Ramirez J. Angew. Chem. Int. Ed., 2017,56:1775.
[102]
Schrader I, Warneke J, Backenkohler J, Kunz S. J. Am. Chem. Soc., 2015,137:905. https://www.ncbi.nlm.nih.gov/pubmed/25530504

doi: 10.1021/ja511349p     URL     pmid: 25530504
[103]
Fiorio J L, López N, Rossi L M, ACS Catal., 2017,7:2973. https://www.ncbi.nlm.nih.gov/pubmed/29142780

doi: 10.1021/acscatal.7b01749     URL     pmid: 29142780
[104]
Xu S, Carter E A. J. Am. Chem., 2019,141:9895.
[105]
Xu S, Carter E A. J. Am. Chem., 2018,140:8732.
[106]
Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, McCafferty D G, Meyer T J. Chem. Rev., 2012,112:4016. https://www.ncbi.nlm.nih.gov/pubmed/22937828

doi: 10.1021/cr300208b     URL     pmid: 22937828
[107]
Cukier R I, Nocera D G. Rev. Phys. Chem., 1998,49:337.
[108]
Luska K L, Migowski P, El Sayed S, Leitner W. Angew. Chem. Int. Ed., 2015,54:15750.
[109]
Zhang J, Ellis L D, Wang B W, Dzara M J, Sievers C, Pylypenko S, Nikolla E, Medlin J W, Nat. Catal., 2018,1:148.
[110]
Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 2016,352:797. https://www.ncbi.nlm.nih.gov/pubmed/27174982

doi: 10.1126/science.aaf5251     URL     pmid: 27174982
[1] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[2] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[3] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[4] 郑勇鹏, 许家喜. Thorpe-Ingold效应及其在有机成环反应中的应用[J]. 化学进展, 2014, 26(09): 1471-1491.
[5] 杨群峰, 刘建云, 陈华萍, 王显祥, 黄乾明, 单志. 贵金属纳米团簇的制备及在生物检测中的应用[J]. 化学进展, 2011, 23(5): 880-892.
阅读次数
全文


摘要

金属纳米材料表面配体聚集效应