English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1824-1834 DOI: 10.7536/PC200568 前一篇   后一篇

• 综述 •

基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物

杨宇东1, 游劲松1,*()   

  1. 1. 四川大学化学学院 绿色化学与技术教育部重点实验室 成都 610064
  • 收稿日期:2020-05-27 修回日期:2020-07-29 出版日期:2020-09-01 发布日期:2020-09-01
  • 通讯作者: 游劲松
  • 作者简介:

    游劲松

    四川大学化学学院教授,国家杰出青年基金获得者(2010年),入选“万人计划科技创新领军人才”(2016年)。四川大学化学学院院长和四川大学双一流建设化学与绿色化工学科群首席科学家。致力于有机光电材料的合成化学基础研究,发展基于C—H键直接高效、高选择性转化构筑各种π共轭结构的新方法、新策略,开发结构新颖、性能优异的有机发光材料、电子和空穴传输材料以及柔性显示器件等。

    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21432005)

Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics

Yudong Yang1, Jingsong You1,*()   

  1. 1. Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received:2020-05-27 Revised:2020-07-29 Online:2020-09-01 Published:2020-09-01
  • Contact: Jingsong You
  • Supported by:
    the National Natural Science Foundation of China(21432005)

稠杂芳烃的合成是有机化学的重要研究内容之一,对有机光电功能材料和器件研究具有重要意义。C—H键是有机化合物中最广泛存在的化学键。利用C—H键的断裂与重组成键直接构筑稠杂芳烃具有简洁、高效的优势,能够解决传统合成方法在底物制备和产物结构类型方面的局限。本文对近六年来,本课题组在基于导向过渡金属催化(杂)芳环与(杂)芳环之间的C—H/C—H氧化交叉偶联/分子内环化反应策略构筑稠(杂)芳环方面所做的系列工作进行了评述,重点讨论了有关反应的特点、优势和催化机理,并对该策略在新型有机光电材料开发中的应用进行了阐述。最后,对该策略目前存在的问题进行了总结,并展望了其发展前景。

The synthesis of fused heteroaromatics is an important research area in organic chemistry and it has significant implications on the investigations of organic optoelectronic materials and devices. C—H bond is one of the most ubiquitous chemical bonds in organic compounds. The direct construction of fused heteroaromatics via the C—H bond cleavage and direct functionalization features concision and high efficiency, which could solve the limitations on the substrate preparation and product structural diversity in conventional synthetic methods. In this account, we review our works on the construction of fused heteroaromatics based on chelation-assisted transition metal-catalyzed oxidative C—H/C—H cross-coupling between(hetero)arenes/intramolecular cyclization during the past six years, including a comprehensive discussion of the features, advantages and reaction mechanisms of these reactions, and the applications of these strategies in the exploration of novel organic optoelectronic materials. Finally, the existing problems and development prospect of this area are elaborated.

Contents

1 Introduction

2 Construction of ladder-type fused heteroaromatic frameworks

2.1 Construction of pyrrole-fused ladder-type heteroaromatic frameworks

2.2 Construction of furan-fused ladder-type heteroaromatic frameworks

3 Construction of fused benzo[de]thiochromenes

4 Construction of fluorenone- and coumarin-type frameworks

5 Construction of(hetero)aryl-fused sultams and thiophene 5,5-dioxides

6 Construction of phenanthridine- and phenanthrone-type frameworks

6.1 Construction of phenanthridine-type frameworks

6.2 Construction of phenanthrone-type frameworks

7 Construction of cationic fused heteroaromatic frameworks

8 Conclusion and outlook

()
图式1 螯合导向C—H/C—H氧化交叉偶联/环化反应构筑稠(杂)环策略
Scheme 1 Construction of Fused(hetero)aromatics via chelation-assisted oxidative C—H/C—H cross-coupling between(hetero)arenes/cyclization
图式2 Rh(Ⅰ)催化苯胺类衍生物与杂芳环的C—H/C—H氧化交叉偶联反应[10]
Scheme 2 Rhodium(Ⅰ)-catalyzed oxidative cross-coupling reactions between aromatic amines and heteroarenes[10]
图式3 吡咯稠合的梯形S,N-杂并七环1的合成[10]
Scheme 3 The synthesis of pyrrole-fused ladder-type S,N-heteropentacene 1[10]
图式4 Rh(Ⅲ)催化苯酚类衍生物与杂芳环的C—H/C—H氧化交叉偶联反应[11]
Scheme 4 Rhodium(Ⅲ)-catalyzed oxidative cross-coupling reactions between phenols and heteroarenes[11]
图式5 (a)不对称2,6-双杂芳基化苯酚及(b)呋喃稠合的梯形S,O-杂并五环的合成[11]
Scheme 5 (a)The synthesis of unsymmetric 2,6-diheteroaryl phenol and(b)furan-fused ladder-type S,O-heteropentacenes[11]
图式6 Rh(Ⅲ)催化1-萘甲硫醚衍生物peri-位选择性杂芳基化[15]
Scheme 6 Rhodium(Ⅲ)-catalyzed peri-selective heteroarylation of 1-(methylthio)naphthalenes[15]
图式7 (a)分步法及(b)一步法合成苯并噻吩稠合的苯并[de]硫色烯[15]
Scheme 7 (a)Stepwise and(b)one-pot synthesis of benzothiophene-fused benzo[de]thioacenes[15]
图式8 银介导的联杂芳基甲硫醚分子内环化的可能机理[15]
Scheme 8 Proposed mechanism for Ag-mediated intramolecular cyclization of biheteroaryl sulfide[15]
图式9 铑(Ⅲ)催化(杂)芳环羧酸与(杂)芳环之间的C—H/C—H氧化交叉偶联反应[19]
Scheme 9 Rh(Ⅲ)-catalyzed oxidative cross-coupling reactions between(hetero)aromatic carboxylic acids and heteroarenes[19]
图式10 钯(Ⅱ)催化联(杂)芳基羧酸的分子内氧化内酯化反应[19]
Scheme 10 Pd(Ⅱ)-catalyzed intramolecular oxidative C—H/C—H lactonization[19]
图式11 芴酮类化合物的构筑[19]
Scheme 11 The construction of fluorenones[19]
图式12 基于芴类结构的并七杂环梯形分子的构筑[19]
Scheme 12 The construction of fluorene-based ladder-type heteroheptacene[19]
图式13 有机太阳能电池光敏剂的合成[19]
Scheme 13 The synthesis of sensitizer for organic solar cell[19]
图式14 钯(Ⅱ)催化苯甲酸与简单芳烃之间的串联C—H/C—H氧化交叉偶联/分子内傅-克酰基化反应[20]
Scheme 14 Cascade Pd(Ⅱ)-catalyzed oxidative C—H/C—H cross-coupling of aromatic carboxylic acids with simple arenes/intramolecular Friedel-Crafts acylation[20]
图式15 基于芴酮结构的有机发光分子的合成[20]
Scheme 15 The synthesis of fluorenone-based organic luminescent molecule[20]
图式16 铱(Ⅲ)催化(杂)芳基羧酸或α,β-不饱和羧酸与(苯并)噻吩之间的一步氧化环化反应[21]
Scheme 16 Ir(Ⅲ)-catalyzed one-pot oxidative annulation reactions of thiophenes with(hetero)aromatic carboxylic acids or α,β-unsaturated carboxylic acids[21]
图式17 铱(Ⅲ)催化苯甲酰甲酸与苯并噻吩类衍生物C—H/C—H氧化偶联/环化串联反应[22]
Scheme 17 Ir(Ⅲ)-catalyzed oxidative cross-coupling reactions between phenylglyoxylic acids with benzo[b]thiophenes/cyclization cascade reaction[22]
图式18 RhCl3催化(杂)芳环磺酰胺与(杂)芳环之间的C—H/C—H氧化交叉偶联反应[25]
Scheme 18 RhCl3-Catalyzed oxidative C—H/C—H cross-coupling of(hetero)aromatic sulfonamides with(hetero)arenes[25]
图式19 (a)苯并磺内酰胺和(b)二苯并二氧化噻吩衍生物的合成[25]
Scheme 19 The synthesis of(a)benzosultam and(b)dibenzo[b,d]thiophene 5,5-dioxide derivatives[25]
图式20 铱(Ⅲ)催化(杂)芳醛肟醚与富电杂芳环之间的C—H/C—H氧化交叉偶联/环化串联反应[29]
Scheme 20 Ir(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling of(hetero)aromatic aldoxime ethers with electron-rich heteroarenes/cyclization cascade reaction[29]
图式21 铱(Ⅲ)催化(杂)芳醛肟醚与富电杂芳环之间的C—H/C—H氧化交叉偶联/环化串联反应的可能机理[29]
Scheme 21 Proposed mechanism for Ir(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling of(hetero)aromatic aldoxime ethers with heteroarenes/cyclization cascade reaction[29]
图式22 瞬态导向基团辅助的铑(Ⅲ)催化苯甲醛与富电杂芳环之间的C—H/C—H氧化交叉偶联反应[30]
Scheme 22 Transient directing ligand-assisted Rh(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling between benzaldehydes and electron-rich heteroarenes[30]
图式23 芴酮类多环芳烃的合成[30]
Scheme 23 Construction of fluorenone-type polycyclic structures[30]
图式24 瞬态导向基团辅助的铑(Ⅲ)催化苯甲醛与富电杂芳环之间的C—H/C—H氧化交叉偶联/季铵化环化/去季铵化串联反应[30]
Scheme 24 Transient directing ligand-assisted oxidative C—H/C—H cross-coupling/quaternization cyclization/dequaternization cascade reaction[30]
图式25 铑(Ⅲ)催化苯甲醛与富电杂芳环之间的C—H/C—H氧化交叉偶联/季铵化环化/去季铵化串联反应的可能机理[30]
Scheme 25 Proposed mechanism for Rh(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling between benzaldehydes and electron-rich heteroarenes/quaternization cyclization/dequaternization cascade reaction[30]
图式26 铑(Ⅲ)催化吲哚酮与富电杂芳环之间的C—H/C—H氧化交叉偶联/铜(Ⅱ)促进的分子环化串联反应[32]
Scheme 26 Rh(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling between indolyl ketones and electron-rich heteroarenes/Cu(Ⅱ)-promoted intramolecular cyclization cascade reaction[32]
图式27 铑(Ⅲ)催化N-(杂)芳环咪唑鎓盐与(杂)芳环之间的双重C—H/C—H氧化交叉偶联反应[34]
Scheme 27 Rh(Ⅲ)-catalyzed 2-fold C—H/C—H oxidative cross-coupling reaction of N-(hetero)arylimidazolium salts with(hetero)arenes[34]
图式28 铑(Ⅲ)催化N-(杂)芳环咪唑鎓盐与(杂)芳环之间的双重C—H/C—H氧化交叉偶联反应的可能机理[34]
Scheme 28 Proposed mechanism for Rh(Ⅲ)-catalyzed 2-fold C—H/C—H oxidative cross-coupling reaction of N-(hetero)arylimidazolium salts with(hetero)arenes[34]
[1]
Katritzky A, R , Ramsden C A, Scriven E F V, Taylor R J K. Comprehensive Heterocyclic Chemistry Ⅲ. Elsevier, 2008.
[2]
Wang, C, Dong, H, Hu, W, Liu, Y , Zhu D. Chem. Rev., 2012,112: 2208.
[3]
Tsuji, H , Nakamura E. Acc. Chem. Res., 2017,50: 396.
[4]
Li, Z, Zhao, X, Li, X, Gao, Z, Mi, B , Huang, W. Sci. China Chem., 2012,55: 553.
[5]
Hirai, M, Tanaka, N, Sakai, M , Yamaguchi S. Chem. Rev., 2019,119: 8291.
[6]
Parke S, M, Boone M, P , Rivard E. Chem. Commun., 2016,52: 9485.
[7]
Yang, Y, Lan, J , You J. Chem. Rev., 2017,117: 8787.
[8]
Liu, C, Yuan, J, Gao, M, Tang, S, Li, W, Shi, R , Lei A. Chem. Rev., 2015,115: 12138.
[9]
Cai, Z, Awais M, A, Zhang, N , Yu L. Chem., 2018,4: 2538.
[10]
Huang, Y, Wu, D, Huang, J, Guo, Q, Li, J , You J. Angew. Chem. Int. Ed., 2014,53: 12158.
[11]
Wu, Y, Li, W, Jiang, L, Zhang, L, Lan, J , You J. Chem. Sci., 2018,9: 6878.
[12]
Li, B, Lan, J, Wu, D , You J. Angew. Chem. Int. Ed., 2015,54: 14008.
[13]
Wu, Q, Chen, Y, Yan, D, Zhang, M, Lu, Y, Sun W, Y , Zhao J. Chem. Sci., 2017,8: 169.
[14]
Takimiya, K, Shinamura, S, Osaka, I , Miyazaki E. Adv. Mater., 2011,23: 4347.
[15]
Yang, S, Cheng, R, Zhang, M, Bin, Z , You J. ACS Catal., 2019,9: 6188.
[16]
Lu, L, Zheng, T, Wu, Q, Schneider A, M, Zhao, D , Yu L. Chem. Rev., 2015,115: 12666.
[17]
Wei, Y, Hu, P, Zhang, M , Su W. Chem. Rev., 2017,117: 8864.
[18]
Qin, X, Sun, D, You, Q, Cheng, Y, Lan, J , You J. Org. Lett., 2015,17: 1762.
[19]
Qin, X, Li, X, Huang, Q, Liu, H, Wu, D, Guo, Q, Lan, J, Wang, R , You J. Angew. Chem. Int. Ed., 2015,54: 7167.
[20]
Sun, D, Li, B, Lan, J, Huang, Q , You J. Chem. Commun., 2016,52, 3635.
[21]
Tan, G, You, Q, Lan, J , You J. Angew. Chem. Int. Ed., 2018,57: 6309.
[22]
Wang, Z, Yang, M , Yang Y. Org. Lett., 2018,20: 3001.
[23]
Melkonyan F, S, Zhao, W, Drees, M, Eastham N, D, Leonardi M, J, Butler M, R, Chen, Z, Yu, X, Chang R P, H, Ratner M, A, Facchetti A, F , Marks T J. J. Am. Chem. Soc., 2016,138: 6944.
[24]
Dias F, B, Santos, J, Graves D, R, Data, P, Nobuyasu R, S, Fox M, A, Batsanov A, S, Palmeira, T, Berberan-Santos M, N, Bryce M, R , Monkman A P. Adv. Sci., 2016,3: 1600080.
[25]
Ran, Y, Yang, Y, You, H , You J. ACS Catal., 2018,8: 1796.
[26]
Ramalingam B, M, Moorthy N, D, Chowdhury S, R, Mageshwaran, T, Vellaichamy, E, Saha, S, Ganesan, K, Rajesh B, N, Iqbal, S, Majumder H, K, Gunasekaran, K, Siva, R , Mohanakrishnan A K. J. Med. Chem., 2018,61: 1285.
[27]
Czapar A, E, Zheng Y, R, Riddell I, A, Shukla, S, Awuah S, G, Lippard S, J , Steinmetz N F. ACS Nano, 2016,10: 4119.
[28]
Qin, D, Wang, J, Qin, X, Wang, C, Gao, G , You J. Chem. Commun., 2015,51: 6190.
[29]
Yu, Z, Zhang, Y, Tang, J, Zhang, L, Liu, Q, Li, Q, Gao, G , You J. ACS Catal., 2020,10: 203.
[30]
Sun, D, Du, J, Fang, H, Lan, J, Wu, D , You J. Chem. Commun., 2019,55: 7518.
[31]
Zhu, M , Yang C. Chem. Soc. Rev., 2013,42: 4963.
[32]
Pu, X, Zhang, M, Lan, J, Chen, S, Liu, Z, Liang, W, Yang, Y, Zhang, M , You J. Org. Lett., 2019,21: 1139.
[33]
Parenty A D, C, Guthrie K, M, Song Y, F, Smith L, V, Burkholder, E , Cronin L. Chem. Commun., 2006,1194.
[34]
She, Z, Wang, Y, Wang, D, Zhao, Y, Wang, T, Zheng, X, Yu Z, X, Gao, G , You J. J. Am. Chem. Soc., 2018,140: 12566.
[1] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[2] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[3] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[4] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[5] 杜瑾, 廖睿, 张幸林, 孙会彬, 黄维. 电致荧光变色材料的主要分类及变色机理[J]. 化学进展, 2018, 30(2/3): 286-294.
[6] 郑勇鹏, 许家喜. Thorpe-Ingold效应及其在有机成环反应中的应用[J]. 化学进展, 2014, 26(09): 1471-1491.
[7] 张文生, 李伟, 匡春香. 1,1-二溴-2-取代苯基乙烯在环化反应中的应用[J]. 化学进展, 2013, 25(07): 1149-1157.
[8] 张胜兰 陈润锋 姜鸿基 刘斌 黄维. 含磷有机电致发光材料*[J]. 化学进展, 2010, 22(05): 898-904.
[9] 王琦芳,宋肖锴,颜朝国. 丙二腈在多组分反应中的应用* [J]. 化学进展, 2009, 21(05): 997-1007.
[10] 廉永福,袁福龙,郭丽华,刘美玲. 内嵌金属富勒烯的笼外化学修饰*[J]. 化学进展, 2008, 20(06): 909-917.