English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1100-1114 DOI: 10.7536/PC200431 前一篇   后一篇

• 综述 •

生物矿化中的凝聚态化学

桑艳华1, 潘海华2**(), 唐睿康1,2,**()   

  1. 1.浙江大学化学系 杭州 310027
    2.浙江大学求是高等研究院 杭州 310027
  • 收稿日期:2020-02-29 修回日期:2020-03-08 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 唐睿康
  • 基金资助:
    国家自然科学基金项目(21771160); 国家自然科学基金项目(21625105); 浙江省自然科学基金项目(LY17B010001); 中央高校基本科研业务费(2016QN81020)

Condensed-Matter Chemistry in Biomineralization

Yanhua Sang1, Haihua Pan2**(), Ruikang Tang1,2,**()   

  1. 1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
    2. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
  • Received:2020-02-29 Revised:2020-03-08 Online:2020-08-24 Published:2020-04-23
  • Contact: Ruikang Tang
  • About author:
    ** e-mail: (Ruikang Tang);
    (Haihua Pan)
  • Supported by:
    the National Natural Science Foundation of China(21771160); the National Natural Science Foundation of China(21625105); Zhejiang Natural Science Foundation(LY17B010001); Fundamental Research Funds for the Central Universities(2016QN81020)

不同于研究体相或分子与分子之间的常规化学,凝聚态化学重点关注的是多层次结构的凝聚态物质,主要研究凝聚态物质的化学性质与功能、构筑机制、凝聚态物质之间的反应以及结构与功能间的关系,也是生物矿化研究中特别感兴趣的科学问题。生物矿化是通过有机基质调控无机矿物的生成,构筑具有多层次结构和特殊功能(如保护、传感和运动等)的生物凝聚态物质。研究生物矿化中的化学构筑与结构-功能关系,通过仿生矿化可以设计并制备具有类生物矿物结构和先进功能的仿生凝聚态材料。本文从凝聚态化学的角度介绍生物矿化和仿生矿化领域的概况以及取得的重要成果和新认识,重点综述了本课题组近年来受生物矿化启发,基于无机离子寡聚体的仿生新材料构筑和功能方面的研究成果。相信生物矿化将为新兴凝聚态化学的研究和发展提供良好参考,同时从凝聚态化学的新高度看待和指导生物矿化,也将促进生物矿化研究走向新的台阶。

Instead of focusing on bulk phase or individual molecule as the classical chemistry, the condensed-matter chemistry pays special attention to the multi-level structured condensed matters. The primary topics of the condensed-matter chemistry include but not limited to fundamental chemical properties and functionalities of condensed matters and their chemical reactions, construction principles of the multi-level structures, and the structure-property relationship, which is also the interests of the fundamental research in biomineralization. Biomineralization is the process by which organic matrices regulate the formation of inorganic minerals, which can build the biological condensed matter with multi-levelled structures and distinct functions(such as protection, sensing, movement, etc.). Inspired by the construction strategy and the structure-property relationship in biominerals, many biomimetic condensed materials with advanced functions have been fabricated via biomimetic mineralization. In this review, from the context of condensed-matter chemistry, we introduce the fundaments and some important findings and understandings of bio- and biomimetic-mineralization, and mainly overview the fabrication and advanced functions of novel biomimetic materials by the cross-linking of inorganic ionic oligomers developed in our lab, which is inspired by biomineralization. We believe that biomineralization provides many good examples for the research and development of the new scientific discipline of condensed-matter chemistry and in the same while, biomineralization will also benefit from the guidance from the perspective of condensed-matter chemistry.

Contents

===1 Introduction

===2 Biomineralization and biomimetic preparation

===2.1 Biomineralization

===2.2 Biomineral

===2.3 Biomimetic mineralization

===3 Crystal nucleation

===3.1 Classical nucleation theory

===3.2 Nonclassical nucleation model

===3.3 Understanding of nucleating precursors

===4 Inorganic ionic oligomers and polymerization

===4.1 Preparation

===4.2 Structure

===4.3 Polymerization and cross-linking

===4.4 Continuous structure

===4.5 Moulded preparation

===5 Biomimetic preparation based on inorganic polymerization

===5.1 Tissue repair

===5.2 Organic-inorganic copolymerization

===5.3 Organic-inorganic composite construction

===6 Conclusion and outlook

()
图1 (A)天然骨在纳米尺度上的结构水平; (B)将分子自组装、分子间交联和仿生矿化相结合的策略,制备类似于骨纳米结构的人工复合材料[43]
Fig.1 Illustration of(A) the structural levels of natural bone at nanoscale and(B) the current strategy combining molecular self-assembly, intermolecular crosslinking, and biomimetic mineralization, to prepare artificial composite resembling bone nanostructure[43]. Copyright 2015, Wiley-VCH
图2 结晶过程的路径[67]
Fig.2 Pathways to crystallization by particle attachment[67]. Copyright 2015, AAAS
图3 (CaCO3)n寡聚体的制备和表征。(a)封端策略和制备凝胶状(CaCO3)n寡聚体的示意图;(b)不同Ca∶TEA摩尔比(CaCO3)n寡聚体的质谱图;(c)CO2或在乙醇中不同Ca∶TEA摩尔比的(CaCO3)n寡聚体的液体核磁共振碳谱图;(d)小角X射线散射测量的(CaCO3)n散射图;(e)(CaCO3)n寡聚体的对距离分布函数(P(r))[95]
Fig.3 (a) scheme of the capping strategy and reaction conditions for producing gel-like(CaCO3)n oligomers;(b) Mass spectra of(CaCO3)n oligomers with different Ca∶TEA molar ratios;(c) Liquid-state 13C NMR spectra of CO2 or the carbonates of(CaCO3)n oligomers with different Ca∶TEA molar ratios in ethanol;(d) Scattering plots of(CaCO3)n measured by SAXS;(e) Pair-distance distribution function(P(r)) of the(CaCO3)n oligomers[95]. Copyright 2019, Springer Nature
图4 (CaCO3)n寡聚体的可控交联。(a)Ca—O(来自碳酸根)配位数演变的分子动力学模拟;(b)平均团簇大小;(c)被TEA封端的典型的模拟CaCO3簇; (d)在(CaCO3)n寡聚体干燥过程中的原位傅里叶变换红外光谱;(e)交联过程中Ca—O配位数的变化;(f)不同Ca∶TEA比例(1∶100~1∶2)(CaCO3)n寡聚体生长的高分辨TEM图; (g)TEM图描述了(CaCO3)n寡聚体在聚合过程中向更大结构的转变[95]
Fig.4 Controllable crosslinking of(CaCO3)n oligomers.(a) Molecular dynamics simulation of the evolution of the Ca—O(from carbonate) coordination number;(b) The average cluster size;(c) A typical simulated CaCO3 cluster capped with TEA;(d) In situ FT-IR spectra during the drying of(CaCO3)n oligomers;(e)The change in the coordination number of Ca—O during crosslinking;(f) High-resolution TEM images of(CaCO3)n oligomers grown at different Ca∶TEA ratios from 1∶100 to 1∶2;(g) TEM images depicting the transformation of(CaCO3)n oligomers to larger structures during condensation[95]. Copyright 2019, Springer Nature
图5 通过(CaCO3)n寡聚体交联制备无定形和类单晶CaCO3块体材料。(a)由(CaCO3)n寡聚体制备得来单块ACC的图;(b~e)扫描电镜(b,c)和透射电镜(d,e)图显示了制备的单块ACC的连续固相;(f)从单块ACC制备得到方解石的快照图;(g)制备单块方解石的偏振光光学显微镜图(POM);(h)结晶的单块CaCO3表面的SEM图;(i,j)结晶单块CaCO3的内部透射电镜图[95]
Fig.5 Construction of amorphous and single-crystalline-like CaCO3 bulk materials by the crosslinking of(CaCO3)n oligomers.(a) Photograph of monolithic ACC prepared from(CaCO3)n oligomers;(b~e)SEM(b, c) and TEM(d, e) images indicating the continuous solid phase of the prepared monolithic ACC;(f) Snapshot of monolithic calcite prepared from monolithic ACC;(g) Polarized-light optical microscopy(POM) image of the prepared monolithic calcite;(h) SEM image of a surface on crystallized monolithic CaCO3;(i, j) TEM images of the inner bulk of crystallized monolithic CaCO3[95]. Copyright 2019, Springer Nature
图6 通过使用(CaCO3)n寡聚体对CaCO3单晶材料进行可构建的工程化:(a)具有不同尺寸和形状的可塑CaCO3;(b,c)具有不同图案的可塑CaCO3;(d)在单晶方解石上图案构造的方案(顶部路径),以及将粗糙的单晶方解石修复成平滑的方解石的方案(底部路径);(e)以不同角度旋转的图案化方解石的POM图;(f,g)修复后的方解石的SEM图[95]
Fig.6 Constructible engineering of CaCO3 single-crystalline materials by using(CaCO3)n oligomers.(a) Molded CaCO3 with different dimensions and morphologies;(b, c) Molded CaCO3 with different patterns;(d) Schemes for pattern construction on single-crystalline calcite(top path), and the repair of rough single-crystalline calcite to smooth calcite(bottom path);(e) POM images of the patterned calcite rotated at different angles;(f, g) SEM images of the repaired calcite[95]. Copyright 2019, Springer Nature
图7 牙釉质复杂结构的复制(A)酸蚀和修复后牙釉质的SEM图; (B)修复后牙釉质的三维AFM图; (C) (A)图中红色圆圈区域的高倍SEM图[103]
Fig.7 Replication of the complicated structure of enamel.(A) SEM image showing both acid-etched enamel and repaired enamel;(B) A three-dimensional AFM image of repaired enamel;(C) High-magnification SEM image of the red circle in(A)[103]. Copyright 2019, AAAS
图8 (a)均相PCC的共聚过程和分子链结构的示意图;(b)反应过程示意图[110]
Fig.8 (a) Illustration of the copolymerization process and the molecular chain structure of the homogeneous PCC;(b) The actual reaction process[110]. Copyright 2020, Wiley-VCH
图9 (a)PVA/Alg/HAP混合微纤维的制备过程和网络微观结构的示意图;(b)PVA/Alg/CaP复合膜的光学照片;(c)PVA/Alg/CaP复合膜超薄部分的TEM图[112]
Fig.9 (a) Schematic illustration of the preparation process and network microstructure of the PVA/Alg/HAP hybrid microfiber;(b) Optical photograph of the PVA/Alg/CaP hybrid film;(c) TEM image of the ultrathin section of the PVA/Alg/CaP hybrid film[112]. Copyright 2020, Wiley-VCH
[1]
Xu R. Natl. Sci. Rev., 2018,5:1.
[2]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019,6(2):191.
[3]
Koutsoukos P, Amjad Z, Tomson M B, Nancollas G H. Am. Chem. Soc., 1980,102(5):1553. https://pubs.acs.org/doi/abs/10.1021/ja00525a015

doi: 10.1021/ja00525a015     URL    
[4]
Wang L, Nancollas G H. Chem. Rev., 2008,108(11):4628.
[5]
Hu Q, Ji H, Liu Y, Zhang M, Xu X, Tang R. Biomed. Mater., 2010,5(4):041001.
[6]
Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Biomaterials, 2013,34(2):422.
[7]
Chen Y, Dang B, Jin C, Sun Q. ACS. Nano, 2019,13(1):371.
[8]
Kuo D, Nishimura T, Kajiyama S, Kato T. ACS Omega, 2018,3(10):12722.
[9]
Lei Z, Wu P. Nat. Commun., 2018,9(1):1.
[10]
Wang B, Liu P, Jiang W, Pan H, Xu X, Tang R. Angew. Chem. Int. Ed., 2008,47(19):3560.
[11]
Addadi L, Weiner S. Phys. Scr., 2014,89(9):098003.
[12]
Sun S, Mao L, Lei Z, Yu S, Cölfen H. Angew. Chem. Int. Ed., 2016,55:1176.
[13]
Zhai H, Quan Y, Li L, Liu X, Xu X, Tang R. Nanoscale, 2013,5(7):3006.
[14]
Quan Y, Zhai H, Zhang Z, Xu X, Tang R. CrystEngComm., 2012,14(21):7184.
[15]
Hajir M, Graf R, Tremel W. Chem. Commun., 2014,50(49):6534.
[16]
Wang L, Nancollas G H. Met. Ions. Life. Sci., 2010,4:413.
[17]
Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade B A. Adv. Colloid. Interface. Sci., 2014,209:40.
[18]
Sun M, Sundaresan G, Jose P, Yang L, Hoffman D, Lamichhane N, Zweit J. J. Mater. Chem. B, 2014,2(28):4456.
[19]
Paques J P, van der Linden E, van Rijn C J, Sagis L M. Adv. Colloid. Interface. Sci., 2014,209:163.
[20]
Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Chem. Commun., 2010,46(22):3843.
[21]
Nudelman F, Sommerdijk N A. Angew. Chem. Int. Ed., 2012,51(27):6582.
[22]
Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Nat. Chem., 2014,6(3):188.
[23]
Lin C R, Tseng Y T, Ovchinnikov S G, Ivantsov R D, Edelman I S, Fedorov A S, Kuzubov A A, Fedorov D A, Starchikov S S, Lyubutin I S. Mater. Res. Express, 2014,1(2):025033.
[24]
Mapp J J I, Fisher M H, Atwood R C, Bell G D, Greco M K, Songer S, Hunter E. Fish. Biol., 2016,88(5):2075. http://doi.wiley.com/10.1111/jfb.2016.88.issue-5

doi: 10.1111/jfb.2016.88.issue-5     URL    
[25]
Xiong W, Yang Z, Zhai H, Wang G, Xu X, Ma W, Tang R. Chem. Commun., 2013,49(68):7525.
[26]
Liu Z, Xu X, Tang R. Adv. Funct. Mater., 2016,26(12):1862.
[27]
Beniash E, Aizenberg J, Addadi L, Weiner S. Philos Trans. R. Soc. Lond. B. Biol. Sci., 1997,264(1380):461.
[28]
Politi Y, Arad T, Klein E, Weiner S, Addadi L. Science, 2004,306(5699):1161.
[29]
Weiss I M, Tuross N, Addadi L I A, Weiner S. J. Exp. Zool., 2002,293(5):478. https://www.ncbi.nlm.nih.gov/pubmed/12486808

doi: 10.1002/jez.90004     URL     pmid: 12486808
[30]
Mahamid J, Sharir A, Addadi L, Weiner S. Proc. Natl. Acad. Sci., 2008,105(35):12748.
[31]
Weiner S, Wagner H D. Annu. Rev. Mater. Res., 1998,28(1):271.
[32]
Limeback H. Curr. Opin. Dent., 1991,1(6):826.
[33]
Cui F Z, Ge J. Tissue. Eng. Regen. Med., 2007,1(3):185.
[34]
Hildebrand M. Chem. Rev., 2008,108(11):4855.
[35]
Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1998,95(11):6234.
[36]
Devouard B, Posfai M, Hua X, Bazylinski D A, Frankel R B, Buseck P R. Am. Mineral., 1998,83(11):1387.
[37]
Towe K M, Lowenstam H A. Ultrastruct. Res., 1967,17(1/2):1.
[38]
Barber A H, Lu D, Pugno N M. Soc. Interface, 2015,12(105):20141326.
[39]
Mao L, Gao H, Yao H, Liu L, Cölfen H, Liu G, Chen S, Li S, Yan Y, Liu Y, Yu S. Science, 2016,354(6308):107.
[40]
Yoo S C, Park Y K, Park C, Ryu H, Hong S H. Adv. Funct. Mater., 2018,28(51):1805948.
[41]
Gao H, Chen S, Mao L, Song Z, Yao H, Cölfen H, Luo X, Zhang F, Pan Z, Meng Y, Ni Y, Yu S. Nat. Commun., 2017,8(1):1.
[42]
Chen S, Gao H, Sun X, Ma Z, Ma T, Xia J, Zhu Y, Zhao R, Yao H, Wu H, Yu S. Matter., 2019,1(2):412.
[43]
He W X, Rajasekharan A K, Tehrani-Bagha A R, Andersson M. Adv. Mater., 2015,27(13):2260.
[44]
Kirillova A, Kelly C, Von Windheim N, Gall K. Adv. Healthc. Mater., 2018,7(17):1800467.
[45]
Zhang K, Gao H, Pan X, Zhou P, Xing X, Xu R, Pan Z, Wang S, Zhu Y, Hu B, Zou D, Yu S. Matter., 2019,1(3):770.
[46]
Kashchiev D J. Chem. Phys., 2003,118(4):1837.
[47]
Wolf S E, Lieberwirth I, Natali F, Bardeau J F, Delorme N, Emmerling F, Barrea R, Kappl M, Marin F. Faraday. Discuss., 2012,159(1):433.
[48]
Wang F, Richards V N, Shields S P, Buhro W E. Chem. Mater., 2014,26(1):5.
[49]
De Yoreo J J, Vekilov P G. Rev. Mineral. Geochem., 2003,54(1):57.
[50]
Dirksen J A, Ring T A. Chem. Eng. Sci., 1991,46(10):2389.
[51]
Olafson K N, Li R, Alamani B G, Rimer J D. Chem. Mater., 2016,28(23):8453.
[52]
Zhang R, Khalizov A, Wang L, Hu M, Xu W. Chem. Rev., 2012,112(3):1957.
[53]
Hohenberg P C, Halperin B I. Rev. Mod. Phys., 1977,49(3):435.
[54]
Bazylinski D A, Frankel R B. Rev. Mineral. Geochem., 2003,54(1):217.
[55]
Frankel R B, Bazylinski D A. Rev. Mineral. Geochem., 2003,54:95.
[56]
Brecevic L, Nielsen A. Cryst. Growth., 1989,98:504. https://linkinghub.elsevier.com/retrieve/pii/0022024889901681

doi: 10.1016/0022-0248(89)90168-1     URL    
[57]
Tobler D J, Rodriguez-Blanco J D, Dideriksen K, Bovet N, Sand K K, Stipp S L. Adv. Funct. Mater., 2015,25(20):3081.
[58]
Lowenstam H A, Weiner S. Science., 1985,227(4682):51.
[59]
Wang L, Li S, Ruiz Agudo E, Putnis C V, Putnis A. CrystEngComm., 2012,14(19):6252.
[60]
Habraken W J, Tao J, Brylka L J, Friedrich H, Bertinetti L, Schenk A S, Verch A, Dmitrovic V, Bomas P H, Frederik P M, Laven J, Schoot P V, Aichmayer B, With G D, De Yoreo J J, Sommerdijk Sommerdijk. Nat. Commun., 2013,4(1):1.
[61]
Jiang S, Chen Y, Pan H, Zhang Y, Tang R. Phys. Chem. Chem. Phys., 2013,15(30):12530.
[62]
Wang T, Porter D, Shao Z. Adv. Funct. Mater., 2012,22(2):435.
[63]
Hang Z, Zhang G. Cryst. Growth. Des., 2012,12(4):1816.
[64]
Gebauer D, Völkel A, Cölfen H. Science, 2008,322(5909):1819.
[65]
Gower L B, Odom D J. Cryst. Growth., 2000,210(4):719. https://linkinghub.elsevier.com/retrieve/pii/S0022024899007496

doi: 10.1016/S0022-0248(99)00749-6     URL    
[66]
Li D, Nielsen M H, Lee J R, Frandsen C, Banfield J F, De Yoreo J J. J. Science, 2012,336(6084):1014.
[67]
De Yoreo J J, Gilbert P U, Sommerdijk N A, Penn R L, Whitelam S, Joester D, Zhang H, Rimer J D, Navrotsky A, Banfield J F, Wallace A F, Michel M, Meldrum F C, Cölfen H, Dove P M. Science, 2015,349(6247):aaa6760.
[68]
Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L. Proc. Natl. Acad. Sci.U. S. A., 2010,107(14):6316.
[69]
Fratzl P, Gupta H S, Paschalis E P, Roschger P. Mater. Chem., 2004,14(14):2115. http://xlink.rsc.org/?DOI=B402005G

doi: 10.1039/B402005G     URL    
[70]
Liu Z, Xiao Y, Chen W, Wang Y, Wang B, Wang G, Xu X, Tang R. J. Mater. Chem. B, 2014,2(22):3480.
[71]
Stephens C J, Kim Y Y, Evans S D, Meldrum F C, Christenson H. K. J. Am. Chem. Soc., 2011,133(14):5210. cf835df0-79d9-47bc-bc1f-b3e968e5e512http://dx.doi.org/10.1021/ja200309m

doi: 10.1021/ja200309m     URL    
[72]
Stephens C J, Ladden S F, Meldrum F C, Christenson H K. Adv. Funct. Mater., 2010,20(13):2108.
[73]
Tester C C, Brock R E, Wu C H, Krejci M R, Weigand S, Joester D. CrystEngComm., 2011,13(12):3975.
[74]
Politi Y, Batchelor D, Zaslansky P, Chmelka B F, Weaver J C, Sagi I, Weiner S, Addadi L. Chem. Mater., 2010,22(1):161.
[75]
Hermassi M, Valderrama C, Dosta J, Cortina J L, Batis N H. Chem. Eng. J., 2016,283:572.
[76]
Wolf S E, Leiterer J, Pipich V, Barrea R, Emmerling F, Tremel W. Am. Chem. Soc., 2011,133(32):12642. https://pubs.acs.org/doi/10.1021/ja202622g

doi: 10.1021/ja202622g     URL    
[77]
Pan H, Liu X, Tang R, Xu H. Chem. Commun., 2010,46(39):7415.
[78]
Nielsen M H, Aloni S, De Yoreo J. J. Science, 2014,345(6201):1158.
[79]
Zou Z, Habraken W J, Bertinetti L, Politi Y, Gal A, Weiner S, Addadi L, Fratzl P. Adv. Mater. Interfaces, 2017,4(1):1600076.
[80]
Pouget E M, Bomans P H H, Goos J A C M, Frederik P M. Science, 2009,323(5920):1455.
[81]
Dey A, Bomans P H, Müller F A, Will J, Frederik P M. Nat. Mater., 2010,9:1010.
[82]
Addadi L, Raz S, Weiner S T. Adv. Mater., 2003,15(12):959.
[83]
Cölfen H. Top. Curr. Chem., 2007,271:1.
[84]
Jiang S, Pan H, Chen Y, Xu X, Tang R. Faraday. Discuss., 2015,179:451.
[85]
Wallace A F, Hedges L O, Fernandez Martinez A, Raiteri P, Gale J D, Waychunas G, Whirelam S, Banfield J F, De Yoreo J. J. Science, 2013,341(6148):885.
[86]
Gower L B. Chem. Rev., 2008,108(11):4551.
[87]
Yao S, Lin X, Xu Y, Chen Y, Qiu P, Shao C, Jin B, Mu Z, Sommerdijk N A, Tang R. Adv. Sci., 2019,6(19):1900683.
[88]
Yao S, Xu Y, Zhou Y, Shao C, Liu Z, Jin B, Zhao R, Cao H, Pan H, Tang R. ACS. Appl. Bio. Mater., 2019,2(10):4408.
[89]
Dey A, Bomans P H, Müller F A, Will J, Frederik P M. Nat. Mater., 2010,9(12):1010.
[90]
Demichelis R, Raiteri P, Gale J D, Quigley D, Gebauer D. Nat. Commun., 2011,2(1):1.
[91]
Lewis J A. Am. Chem. Soc., 2000,83(10):2341.
[92]
Eckel Z C, Zhou C, Martin J H, Jacobsen A J, Carter W B, Schaedler T A. Science, 2016,351(6268):58.
[93]
Liu H, Gong Q, Yue Y, Guo L, Wang X. Am. Chem. Soc., 2017,139(25):8579.
[94]
Koltzenburg S, Maskos M, Nuyken O. Polymer Chemistry. Berlin: Springer-Verlag, 2017. 14.
[95]
Liu Z, Shao C, Jin B, Zhang Z, Zhao Y, Xu X, Tang R. Nature, 2019,574(7778):394.
[96]
O’Brien W J. Inc., Chicago, 2002,113.
[97]
Ferracane J L, Hilton T J. Dent. Mater., 2016,32(1):1.
[98]
Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R. Mater. Chem., 2008,18(34):4079. http://xlink.rsc.org/?DOI=b806090h

doi: 10.1039/b806090h     URL    
[99]
Posner A S, Betts F. Acc. Chem. Res., 1975,8(8):273.
[100]
Onuma K, Ito A. Chem. Mater., 1998,10(11):3346.
[101]
Gebauer D, Völkel A, Cölfen H. Science, 2008,322(5909):1819.
[102]
Sun S, Gebauer D, Cölfen H. Chem. Sci., 2017,8(2):1400.
[103]
Shao C, Jin B, Mu Z, Lu H, Zhao Y, Wu Z, Yan L, Zhang Z, Zhou Y, Pan H, Liu Z, Tang R. Sci. Adv., 2019,5(8):eaaw9569.
[104]
Stupp S I, Braun P V. Science, 1997,277(5330):1242.
[105]
Tang Z, Kotov N A, Magonov S, Ozturk B. Nat. Mater., 2003,2(6):413.
[106]
Taloni A, Vodret M, Costantini G, Zapperi S, Nat. Rev. Mater., 2018,3:211.
[107]
Zou H, Wu S, Shen J. Chem. Rev., 2008,108(9):3893.
[108]
Choi M, Kleitz F, Liu D, Lee H Y, Ahn W S, Ryoo R. Am. Chem. Soc., 2005,127(6):1924. https://pubs.acs.org/doi/10.1021/ja044907z

doi: 10.1021/ja044907z     URL    
[109]
Zhang L, Cui T, Cao X, Zhao C, Chen Q, Wu L, Li H. Angew. Chem. Int. Ed., 2017,129(31):9141.
[110]
Yu Y, Mu Z, Jin B, Liu Z, Tang R. Angew. Chem. Int. Ed., 2020,132(5):2087.
[111]
Gosline J M, Denny M W, Demont M. Nature, 1984,309:55.
[112]
Yu Y, He Y, Mu Z, Zhao Y, Kong K, Liu Z, Tang R. Adv. Funct. Mater., 2020,30(6):1908556.
[113]
Wang G, Cao R, Chen R, Mo L, Han J, Wang X, Xu X, Jiang T, Deng Y, Lyu K, Zhu S, Qin E, Tang R, Qin C. Proc. Natl. Acad. Sci. U. S. A., 2013,110(19):7619.
[114]
Wang X, Yang D, Li S, Xu X, Qin C, Tang R. Biomaterials, 2016,106:286.
[115]
Xiong W, Zhao X, Zhu G, Shao C, Li Y, Ma W, Xu X, Tang R. Angew. Chem. Int. Ed., 2015,54:11961.
[116]
Zhao R, Liu X, Yang X, Jin B, Shao C, Kang W, Tang R. Adv. Mater., 2018,30(27):1801304.
[117]
Wang B, Wang G, Zhao B, Chen J, Zhang X, Tang R. Chem. Sci., 2014,5(9):3463.
[118]
Zhao R, Wang B, Yang X, Xiao Y, Wang X, Shao C, Tang R. Angew. Chem. Int. Ed., 2016,55(17):5225.
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[4] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[5] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[6] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[7] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[8] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
[9] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[10] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[11] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[12] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
[13] 潘宇, 历娜, 周润宏, 赵敏. 趋磁细菌纳米磁小体的研究与应用[J]. 化学进展, 2013, 25(10): 1781-1794.
[14] 王本, 唐睿康*. 生物矿化:无机化学和生物医学间的桥梁之一[J]. 化学进展, 2013, 25(04): 633-641.
[15] 欧阳健明*, 张广娜, 王凤新, 李君君. 草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系[J]. 化学进展, 2013, 25(04): 642-649.
阅读次数
全文


摘要

生物矿化中的凝聚态化学