English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 229-241 DOI: 10.7536/PC140951 前一篇   后一篇

• 综述与评论 •

二氧化硅的仿生矿化

王生杰*, 蔡庆伟, 杜明轩, 曹美文, 徐海   

  1. 中国石油大学 (华东) 生物工程与技术中心 青岛 266580
  • 收稿日期:2014-09-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 王生杰 E-mail:sjwang@upc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21103229)

Biomimetic Mineralization of Silica

Wang Shengjie*, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai   

  1. Center for Bioengineering and Biotechnology, Chinese University of Petroleum (East China), Qingdao 266580, China
  • Received:2014-09-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21103229).

自然界的进化赋予某些生物体在生理条件下制备复杂结构生物矿物的能力。它们复杂而多尺度有序的结构、特殊的功能以及物种特异的遗传控制特征远非当前的人工合成技术所能实现,因此,师法自然,仿生矿化成为先进材料制备的重要手段之一。研究发现,生物体中的有机基质在生物矿物的形成过程中起着至关重要的作用,例如从含有生物二氧化硅的硅藻、海绵骨针中分离得到的silaffins、长链聚胺,从海绵中提取的silicateins等,这些生物分子通过操纵有机-无机界面作用,从分子水平上控制无机矿物的成核与生长,从而使生物矿物具有特殊的分级结构和组装方式。人们设计或选用具有相似结构或功能的有机分子,模拟生物矿化过程,仿生制备了不同形态、结构和功能的二氧化硅纳米材料。本文以有机-无机界面作用为核心,以认识自然、学习自然、矿物合成及构型调控为主线,从生物二氧化硅的形成机制、仿生矿化的研究进展、应用概况进行了评述,指出了当前研究存在的问题及相应的解决思路,并对仿生矿化的前景进行了展望。

The course of evolution in nature endows some organisms with distinguished ability of constructing complex inorganic structures that have intricate and multi-scale ordered structures, special functionalities and species-specific genetic characteristics. Therefore, learning from nature and biomimetic mineralization become one of important approaches to advanced materials. Research on the biomineralization indicate that certain biomolecules play a key important role during the biosilica formation. For example, silaffins and long chain polyamine extracted from diatom and silicateins from sponges, control the nucleation and growth of silicious species at a molecular level by manipulating the interfacial interactions between organic molecules and inorganic species, and therefore result in the generation of biosilica with organized hierarchical structures. Simulating the biomineralization process, people have prepared silica nanomaterials with various morphologies, structures and properties based on the designed organic molecules during the recent decades. In this review, four sections are involved. Firstly, we introduce the results about the formation mechanism of biosilica including the identification of bioextracts and their functions, catalyzing and stabilizing mechanisms, morphology generation of biosilica. Secondly but importantly, we review the recent progress in biomimetic synthesis of silica. This content can also be divided into four units, bioextracts regulating biosilicification, artificial synthetic molecules mediating mineralization, external forces driving morphogenesis and tools in biomimetic mineralization. Thirdly, we introduc the potential application of biomimeticly synthesized silica in cell culture, drug and gene delivery system, catalysis, separation and detection, protecting biomolecules and functional materials construction. Finally, we point out the problems of the present researches and give some resolution, and then present some likely main research direction in this field.

Contents
1 Introduction
2 Biomineralizing mechanisms
2.1 Extracts from biosilica
2.2 Catalyzing mechanism of organic molecules
2.3 Stabilizing mechanism of organic molecules
2.4 Regulation on structures and morphologies of silica
3 Biomimetic synthesis and structure regulation of silica
3.1 Biomimetic mineralization templated by bioextracts
3.2 Biomimetic mineralization mediated by artificial synthetic molecules
3.3 Environmental effects on biomimetic mineralization
3.4 Tools in biomimetic mineralization
4 Application of the biomimeticly synthesized silica
4.1 Scaffolds for cell culture
4.2 Separation, gene and drug delivery
4.3 Protection for biomolecules and catalytic center
4.4 Preparation of functional materials and catalysis
5 Problems and outlook

中图分类号: 

()

[1] 崔福斋(Cui F Z). 生物矿化(Biomineralization). 第一版(1st ed). 北京(Beijing):清华大学出版社(Tstinghua University Press), 2007, 324.
[2] Mann S. Biomineralization: Principles and concepts in Bioinorganic Materials Chemistry. 1st ed. New York: Oxford University Press, 2001. 6.
[3] Kröger N. Science, 2009, 325: 1351.
[4] Hildebrand M. Chem. Rev., 2008, 108: 4855.
[5] Aizenberg J, Weaver J C, Thanawala M S, Sundar V C, Morse D E, Fratzl P. Science, 2005, 309: 275.
[6] Kröger N, Deutzmann R, Sumper M. Science, 1999, 286: 1129.
[7] Kröger N, Deutzmann R, Bergsdorf C, Sumper M. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 14133.
[8] Shimizu K, Cha J, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 6234.
[9] Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E. Proc. Natl. Acad. Sci. U. S. A., 1999, 96: 361.
[10] Sumper M, Kröger N. J. Mater. Chem., 2004, 14: 2059.
[11] Jensen M, Keding R, Höche T, Yue Y. J. Am. Chem. Soc., 2009, 131: 2717.
[12] Rai A, Perry C C. Langmuir, 2010, 26: 4152.
[13] Zlotnikov I, Werner P, Blumtritt H, Graff A, Dauphin Y, Zolotoyabko E, Fratzl P. Adv. Mater., 2014, 26: 1682.
[14] Wenzl S, Hett R, Richthammer P, Sumper M. Angew. Chem. Int. Ed., 2008, 47: 1729.
[15] Woesz A, Weaver J C, Kazanci M, Dauphin Y, Aizenberg J, Morse D E, Fratzl P. J. Mater. Res., 2006, 21: 2068.
[16] Miserez A, Weaver J C, Thurner P J, Aizenberg J, Dauphin Y, Fratzl P, Morse D E, Zok F W. Adv. Funct. Mater., 2008, 18: 1241.
[17] Kröger N, Lorenz S, Brunner E, Sumper M. Science, 2002, 298: 584
[18] Poulsen N, Scheffel A, Sheppard V C, Chesley P M, Kröger N. J. Biol. Chem., 2013, 288: 20100.
[19] Scheffel A, Poulsen N, Shian S, Kröger N. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 3175.
[20] Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée K H. Angew. Chem. Int. Ed., 2009, 48: 9724.
[21] Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E. Angew.Chem. Int. Ed., 1999, 38: 779.
[22] Roth K M, Zhou Y, Yang W J, Morse D E. J. Am. Chem. Soc., 2005, 127: 325.
[23] Brott L L, Naik R R, Pikas D J, Kirkpatrik S M, Tomlin D W, Whitlock P W, Clarson S J, Stone M O. Nature, 2001, 413: 291.
[24] Iler R K. The Chemistry of Silica: Solubility. New York: John Wiley & Sons, 1979. 103.
[25] Delak K M, Sahai N. J. Phys. Chem. B, 2006, 110: 17819.
[26] Spinde K, Pachis K, Antonakaki I, Paasch S, Brunner E, Demadis K D. Chem. Mater., 2011, 23: 4676.
[27] Sumper M. Science, 2002, 295: 2430.
[28] Sumper M. Angew. Chem. Int. Ed., 2004, 43, 2251.
[29] Sumper M, Brunner E. Adv. Funct. Mater., 2006, 16: 17.
[30] Sumper M, Lorenz S, Brunner E. Angew. Chem. Int. Ed., 2003, 42: 5192.
[31] Brunner E, Lutz K, Sumper M. Phys. Chem. Chem. Phys., 2004, 6: 854.
[32] Lutz K, Groger C, Sumper M, Brunner E. Phys. Chem. Chem. Phys., 2005, 7: 2812.
[33] Bernecker A, Wieneke R, Riedel R, Seibt M, Geyer A, Steinem C. J. Am. Chem. Soc., 2010, 132: 1023.
[34] Sumper M, Lehmann G. ChemBioChem, 2006, 7: 1419.
[35] Knecht M R, Wright D W. Chem. Commun., 2003, 3038.
[36] Marner W D, Shaikh A S, Muller S J, Keasling J D. Biomacromolecules, 2007, 9: 1.
[37] Lechner C C, Becker C F W. J. Pept. Sci., 2014, 20: 152.
[38] Steinmetz N F, Shah S N, Barclay J E, Rallapalli G, Lomonossoff G P, Evans D J. Small, 2009, 5: 813.
[39] Royston E S, Brown A D, Harris M T, Culver J N. J. Colloid Interface Sci., 2009, 332: 402.
[40] Zhang Z, Buitenhuis J. Small, 2007, 3: 424.
[41] Chen Y, Li Y L, Zhou G T, Li H, Lin Y T, Xiao X, Wang F P. Sci. Rep., 2014, 4: 8.
[42] Galarneau A, Sartori F, Cangiotti M, Mineva T, di Renzo F, Ottaviani M F. J. Phys. Chem. B, 2010, 114: 2140.
[43] Shchipunov Y, Shipunova N. Colloids Surf. B, 2008, 63: 7.
[44] Spinde K, Kammer M, Freyer K, Ehrlich H, Vournakis J N, Brunner E. Chem. Mater., 2011, 23: 2973.
[45] Shi J F, Zhang S H, Wang X L, Yang C, Jiang Z Y. J. Mater. Chem. B, 2014, 2: 4289.
[46] Kröger N, Dickerson M B, Ahmad G, Cai Y, Haluska M S, Sandhage K H, Poulsen N, Sheppard V C. Angew. Chem. Int. Ed., 2006, 45: 7239.
[47] Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Small, 2006, 2: 640.
[48] Shiomi T, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K. Chem. Mater., 2007, 19: 4486.
[49] Shiomi T, Tsunoda T, Kawai A, Chiku H, Mizukami F, Sakaguchi K. Chem. Commun., 2005, 5325.
[50] Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108: 4935.
[51] Adamson D H, Dabbs D M, Pacheco C R, Giotto M V, Morse D E, Aksay I A. Macromolecules, 2007, 40: 5710.
[52] Demadis K D, Neofotistou E. Chem. Mater., 2007, 19: 581.
[53] Belton D, Paine G, Patwardhan S V, Perry C C. J. Mater. Chem., 2004, 14: 2231.
[54] Noll F, Sumper M, Hampp N. Nano Lett., 2002, 2: 91.
[55] Belton D J, Patwardhan S V, Perry C C. J. Mater. Chem., 2005, 15: 4629.
[56] Delak K M, Sahai N. Chem. Mater., 2005, 17: 3221.
[57] Yuan J J, Jin R H. Adv. Mater., 2005, 17: 885.
[58] Knecht M R, Sewell S L, Wright D W. Langmuir, 2005, 21: 2058.
[59] Knecht M R, Wright D W. Langmuir, 2004, 20: 4728.
[60] Mirau P A, Serres J L, Lyons M. Chem. Mater., 2008, 20: 2218.
[61] Pires J, Fernandes A C, Avo R. J. Mater. Sci., 2014, 49: 6087.
[62] Zhou F, Li S, Vo C D, Yuan J J, Chai S, Gao Q, Armes S P, Lu C, Cheng S. Langmuir, 2007, 23: 9737.
[63] Altunbas A, Sharma N, Lamm M S, Yan C, Nagarkar R P, Schneider J P, Pochan D J. ACS Nano, 2010, 4: 181.
[64] Chen A, Komura M, Kamata K, Iyoda T. Adv. Mater., 2008, 20: 763.
[65] Kent M S, Murton J K, Zendejas F J, Tran H, Simmons B A, Satija S, Kuzmenko I. Langmuir, 2009, 25: 305.
[66] Wu J C, Wang Y, Chen C C, Chang Y C. Chem. Mater., 2008, 20: 6148.
[67] Mullner M, Yuan J Y, Weiss S, Walther A, Fortsch M, Drechsler M, Muller A H E. J. Am. Chem. Soc., 2010, 132: 16587.
[68] Deng S X, Shi C X, Xu X Y, Zhao H, Sun P C, Chen T H. Langmuir, 2014, 30: 2329.
[69] Sun Q Y, Kooyman P J, Grossmann J G, Bomans P H H, Frederik P M, Magusin P C M M, Beelen T P M, van Santen R A, Sommerdijk N A J M. Adv. Mater., 2003, 15: 1097.
[70] Botterhuis N E, Sun Q Y, Magusin P C M M, van Santen R A, Sommerdijk N A J M. Chem. Eur. J., 2006, 12: 1448.
[71] Wei J, Yue Q, Sun Z, Deng Y, Zhao D. Angew. Chem. Int. Ed., 2012, 51: 6149.
[72] Chen C L, Rosi N L. Angew. Chem. Int. Ed., 2010, 49: 1924.
[73] Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu J R. Langmuir, 2013, 29: 13457.
[74] Meegan J E, Aggeli A, Boden N, Brydson R, Brown A P, Carrick L, Brough A R, Hussain A, Ansell R J. Adv. Funct. Mater., 2004, 14: 31.
[75] Holmström S C, King P J S, Ryadnov M G, Butler M F, Mann S, Woolfson D N. Langmuir, 2008, 24: 11778.
[76] Pouget E, Dujardin E, Cavalier A, Moreac A, Valery C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F. Nat. Mater., 2007, 6: 434.
[77] Acar H, Garifullin R, Guler M O. Langmuir, 2011, 27: 1079.
[78] Yuwono V M, Hartgerink J D. Langmuir, 2007, 23: 5033.
[79] Xu H, Wang Y, Ge X, Han S, Wang S, Zhou P, Shan H, Zhao X, Lu J R. Chem. Mater., 2010, 22: 5165.
[80] Wang S, Ge X, Xue J, Fan H, Mu L, Li Y, Xu H, Lu J R. Chem. Mater., 2011, 23: 2466.
[81] Wang S, Xue J, Zhao Y, Du M, Deng L, Xu H, Lu J R. Soft Matter, 2014, 10: 7623.
[82] Wang S, Xue J, Ge X, Fan H, Xu H, Lu J R. Chem. Commun., 2012, 48: 9415.
[83] Cha J N, Stucky G D, Morse D E, Deming T J. Nature, 2000, 403: 289.
[84] Kessel S, Thomas A, Börner H G. Angew. Chem. Int. Ed., 2007, 46: 9023.
[85] Lei S, Zhang J, Wang J, Huang J. Langmuir, 2009, 26: 4288.
[86] Hawkins K M, Wang S S S, Ford D M, Shantz D F. J. Am. Chem. Soc., 2004, 126: 9112.
[87] Tomczak M M, Glawe D D, Drummy L F, Lawrence C G, Stone M O, Perry C C, Pochan D J, Deming T J, Naik R R. J. Am. Chem. Soc., 2005, 127: 12577.
[88] Patwardhan S V, Maheshwari R, Mukherjee N, Kiick K L, Clarson S J. Biomacromolecules, 2006, 7: 491.
[89] Xia L, Li Z. Langmuir, 2010, 27: 1116.
[90] Jan J S, Shantz D F. Adv. Mater., 2007, 19: 2951.
[91] Wong M S, Cha J N, Choi K S, Deming T J, Stucky G D. Nano Lett., 2002, 2: 583.
[92] 王静(Wang J), 刘英(Liu Y), 张春(Zhang C), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2011, 23: 669.
[93] Qiu H, Che S. Chem. Soc. Rev., 2011, 40: 1259.
[94] Liu B, Cao Y, Huang Z, Duan Y, Che S. Adv. Mater., 2014, DOI: 10.1002/adma.201401485.
[95] Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Nature, 2004, 429: 281.
[96] Matsukizono H, Jin R H. Angew. Chem. Int. Ed., 2012, 51: 5862.
[97] Liu B, Yao Y, Che S. Angew. Chem. Int. Ed., 2013, 52: 14186.
[98] Jin R H, Yao D D, Levi R.Chem. Eur. J., 2014, 20: 7196.
[99] Qiu H, Inoue Y, Che S. Angew. Chem. Int. Ed., 2009, 48: 3069.
[100] Xie J, Duan Y, Che S. Adv. Funct. Mater., 2012, 22: 3784.
[101] Liu W, Zhu Z, Deng K, Li Z, Zhou Y, Qiu H, Gao Y, Che S, Tang Z. J. Am. Chem. Soc., 2013,135: 9659.
[102] Huang Z, Yao Y, Che S. Chem.Eur. J., 2014, 20: 3273.
[103] Fukao M, Sugawara A, Shimojima A, Fan W, Arunagirinathan M A, Tsapatsis M, Okubo T. J. Am. Chem. Soc., 2009, 131: 16344.
[104] Zhou S, Sakamoto T, Wang J, Sugawara-Narutaki A, Shimojima A, Okubo T. Langmuir, 2012, 28: 13181.
[105] Wang J, Sugawara A, Shimojima A, Okubo T. Langmuir, 2010, 26: 18491.
[106] Rodríguez F, Glawe D D, Naik R R, Hallinan K P, Stone M O. Biomacromolecules, 2004, 5: 261.
[107] Ramanathan R, Campbell J L, Soni S K, Bhargava S K, Bansal V. PLoS One, 2011, 6: e17707.
[108] Tilburey G E, Patwardhan S V, Huang J, Kaplan D L, Perry C C. J. Phys. Chem. B, 2007, 111: 4630.
[109] Minaberry Y, Jobbagy M. Chem. Mater., 2011, 23: 2327.
[110] Fan J, Boettcher S W, Tsung C K, Shi Q, Schierhorn M, Stucky G D. Chem. Mater., 2008, 20: 909.
[111] Naik R R, Whitlock P W, Rodriguez F, Brott L L, Glawe D D, Clarson S J, Stone M O. Chem. Commun., 2003, 238.
[112] Yu J, Wang Q R, Zhang X. Appl. Surf. Sci., 2014, 311: 799.
[113] Bellomo E G, Deming T J. J. Am. Chem. Soc., 2006, 128: 2276.
[114] Bauer C A, Robinson D B, Simmons B A. Small, 2007, 3: 58.
[115] El Rassy H, Belamie E, Livage J, Coradin T. Langmuir, 2005, 21: 8584.
[116] Gautier C, Lopez P J, Hemadi M, Livage J, Coradin T. Langmuir, 2006, 22: 9092.
[117] Sumper M, Brunner E. ChemBioChem, 2008, 9: 1187.
[118] Roehrich A, Drobny G. Acc. Chem. Res., 2013, 46: 2136.
[119] Nudelman F, Sommerdijk N A. Angew. Chem. Int. Ed., 2012, 51: 6582.
[120] Coradin T, Durupthy O, Livage J. Langmuir, 2002, 18: 2331.
[121] Coradin T, Eglin D, Livage J. Spectroscopy, 2004, 18: 567.
[122] Wallace A F, DeYoreo J J, Dove P M. J. Am. Chem. Soc., 2009, 131: 5244.
[123] Lenoci L, Camp P J. J. Am. Chem. Soc., 2006, 128: 10111.
[124] Rimola A, Sodupe M, Ugliengo P. J. Phys. Chem. C, 2009, 113: 5741.
[125] Milligan A J, Morel F M M. Science, 2002, 297: 1848.
[126] Hale M S, Mitchell J G. Aquat. Microb. Ecol., 2001, 24: 287.
[127] Raven J A, Waite A M. New Phytol., 2004, 162: 45.
[128] De Tommasi E, Rea I, Mocella V, Moretti L, de Stefano M, Rendina I, de Stefano L. Opt. Express, 2010, 18: 12203.
[129] Yamanaka S, Yano R, Usami H, Hayashida N, Ohguchi M, Takeda H, Yoshino K. J. Appl. Phys., 2008, 103.
[130] De Stefano L, Rea I, Rendina I, de Stefano M, Moretti L. Opt. Express, 2007, 15: 18082.
[131] Jeffryes C, Campbell J, Li H Y, Jiao J, Rorrer G. Energy Environ. Sci., 2011, 4: 3930.
[132] Qiu P, Mao C. ACS Nano, 2010, 4: 1573.
[133] Qiu P, Qu X, Brackett D J, Lerner M R, Li D, Mao C. Adv. Mater., 2013, 25: 2492.
[134] Sun Q, Vrieling E G, van Santen R A, Sommerdijk N A J M. Curr. Opin. Solid State Mater. Sci., 2004, 8: 111.
[135] Bauerlein E. Angew. Chem. Int. Ed., 2003, 42: 614.
[136] Davis S A, Burkett S L, Mendelson N H, Mann S. Nature, 1997, 385: 420.
[137] Izqierdo-Barba I, Arcos D, Sakamoto Y, Terasaki O, Lopez-Noriega A, Vallet-Regi M. Chem. Mater., 2008, 20: 3191.
[138] Han L, Che S. Chem. Soc. Rev., 2013: 42: 3740.
[139] Kobler J, Moller K, Bein T. ACS Nano, 2008, 2: 791.
[140] Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J. Nat. Mater., 2009, 8: 331.
[141] Tang L, Fan T M, Borst L B, Cheng J. ACS Nano, 2012, 6: 3954.
[142] Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. ACS Nano, 2011, 5: 5390.
[143] Lin Y S, Abadeer N, Hurley K R, Haynes C L. J. Am. Chem. Soc., 2011, 133: 20444.
[144] Singh N, Karambelkar A, Gu L, Lin K, Miller J S, Chen C S, Sailor M J, Bhatia S N. J. Am. Chem. Soc., 2011, 133: 19582.
[145] Chen H, Xia L, Fu W, Yang Z, Li Z. Chem. Commun., 2013, 49: 1300.
[146] Zhang Y, Wu H, Li J, Li L, Jian Y, Jiang Y, Jiang Z. Chem. Mater., 2007, 20: 1041.
[147] Eby D M, Farrington K E, Johnson G R. Biomacromolecules,2008, 9: 2487.
[148] Haase N R, Shian S, Sandhage K H, Kröger N. Adv. Funct. Mater., 2011, 21: 4243.
[149] Qian J, Gharibi A, He S L. J. Biomed. Opt., 2009, 14: 6.
[150] Im H, Lee S H, Wittenberg N J, Johnson T W, Lindquist N C, Nagpal P, Norris D J, Oh S H. ACS Nano, 2011, 5: 6244.
[151] Das S K, Khan M M R, Guha A K, Naskar N. Green Chem., 2013, 15: 2548.
[152] Xu Y, Wu Z, Zhang L, Lu H, Yang P, Webley P A, Zhao D. Anal. Chem., 2009, 81: 503.
[153] McAlpine M C, Agnew H D, Rohde R D, Blanco M, Ahmad H, Stuparu A D, Goddard W A, Heath J R. J. Am. Chem. Soc., 2008, 130: 9583.
[154] Sowjanya J A, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N. Colloid Surf. B, 2013, 109: 294.
[155] Kavya K C, Jayakumar R, Nair S, Chennazhi K P. Int. J. Biol. Macromol., 2013, 59: 255.
[156] Chen Z W, Li Z H, Lin Y H, Yin M L, Ren J S, Qu X G. Biomaterials, 2013, 34: 1364.
[157] Mann S. Nature, 1993, 365: 499.
[158] Zhang L X, Li P C, Liu X H, Du L W, Wang E K. Adv. Mater., 2007, 19: 4279.
[159] Khripin C Y, Pristinski D, Dunphy D R, Brinker C J, Kaehr B. ACS Nano, 2011, 5: 1401.
[160] Masse S, Laurent G, Chuburu F, Cadiou C, Déchamps I, Coradin T. Langmuir, 2008, 24: 4026.
[161] Christian P. Langmuir, 2009, 26: 1405.
[162] Wang Q R, Yu J, Zheng J H, Liu D J, Jiang F, Zhang X, Li W Q. RSC Adv., 2013, 3: 15955.
[163] Dehsorkhi A, Hamley I W. Soft Matter, 2014, 10: 1660.
[164] Yang Y, Nakazawa M, Suzuki M, Kimura M, Shirai H, Hanabusa K. Chem. Mater., 2004, 16: 3791.
[165] Qiao Y, Lin Y, Wang Y, Yang Z, Liu J, Zhou J, Yan Y, Huang J. Nano Lett., 2009, 9: 4500.
[166] Lin Y, Qiao Y, Gao C, Tang P, Liu Y, Li Z, Yan Y, Huang J. Chem. Mater., 2010, 22: 6711.
[167] Shi J Y, Yao Q Z, Zhou G T, Fu S Q. Chem. Eur. J., 2013, 19: 8073.
[168] Xu M, Gratson G, Duoss E, Shepherd R, Lewis J. Soft Matter, 2006, 2: 205.
[169] Melanie M T, Morley O S, Rajesh R N. Biomolecular Catal., ACS Symposium Series, 2008, 986: 171.
[170] Tan C F, Sun Z H, Hong Y L, Li Y Y, Chen X S, Zhang X D. J. Mater. Chem. B, 2013, 1: 3694.
[171] Qian J, Gharibi A, He S L. J. Biomed. Opt., 2009, 14: 6.
[172] Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J. J. Phys. Chem. C, 2011, 115: 7323.
[173] Chen G, Li M, Li F, Sun S, Xia D. Adv. Mater., 2010, 22: 1258.
[174] Liu L, Yang L Q, Liang H W, Cong H P, Jiang J, Yu S H. ACS Nano, 2013, 7: 1368.
[175] Yao H B, Fang H Y, Wang X H, Yu S H. Chem. Soc. Rev., 2011, 40: 3764.
[176] Sumerel J L, Yang W, Kisailus D, Weaver J C, Choi J H, Morse D E. Chem. Mat., 2003, 15: 4804.
[177] Sewell S L, Wright D W. Chem. Mat., 2006, 18: 3108.
[178] Yan Y, Hao B, Chen G. J. Mater. Chem., 2011, 21: 10755.
[179] Nonoyama T, Kinoshita T, Higuchi M, Nagata K, Tanaka M, Sato K, Kato K. J. Am. Chem. Soc., 2012, 134: 8841.
[180] Schoen A P, Schoen D T, Huggins K N L, Arunagirinathan M A, Heilshorn S C. J. Am. Chem. Soc., 2011, 133: 18202.
[181] Bedford N M, Bhandari R, Slocik J M, Seifert S, Naik R R, Knecht M R. Chem. Mater., 2014, 26: 4082.
[182] Imaz I, Rubio-Martínez M, Saletra W J, Amabilino D B, Maspoch D. J. Am. Chem. Soc., 2009, 131: 18222.
[183] Chiu C Y, Ruan L, Huang Y. Chem. Soc. Rev., 2013, 42: 2512.
[184] Yang H, Li M, Fu L, Tang A, Mann S. Sci Rep., 2013, 3: 1336.

[1] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[2] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[3] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[4] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[5] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[6] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[7] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[8] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[9] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[10] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[11] 杨皓程, 陈一夫, 叶辰, 万灵书, 徐志康. 有机-无机复合多孔膜制备与应用[J]. 化学进展, 2015, 27(8): 1014-1024.
[12] 曾峰, 潘真真, 张梦, 黄永焯, 崔彦娜, 徐勤. 有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用[J]. 化学进展, 2015, 27(10): 1356-1373.
[13] 卞书娟, 吴宏庆, 江旭恒, 龙亚峰, 陈勇. 复合介孔二氧化硅膜的制备及应用[J]. 化学进展, 2014, 26(08): 1352-1360.
[14] 邵再东, 张颖, 程璇. 新型力学性能增强二氧化硅气凝胶块体隔热材料[J]. 化学进展, 2014, 26(08): 1329-1338.
[15] 陈凯玲, 赵蕴慧*, 袁晓燕*. 二氧化硅粒子的表面化学修饰——方法、原理及应用[J]. 化学进展, 2013, 25(01): 95-104.
阅读次数
全文


摘要

二氧化硅的仿生矿化