English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 633-641 DOI: 10.7536/PC121059 前一篇   后一篇

• 生物矿化 •

生物矿化:无机化学和生物医学间的桥梁之一

王本1,2, 唐睿康*1,3   

  1. 1. 浙江大学化学系 生物物质与信息调控研究中心 杭州 310027;
    2. 浙江大学生物医学工程与仪器科学学院 杭州 310027;
    3. 浙江大学求是高等研究院 杭州 310027
  • 收稿日期:2012-10-01 修回日期:2012-12-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 唐睿康 E-mail:rtang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.30973350)资助

Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine

Wang Ben1,2, Tang Ruikang*1,3   

  1. 1. Department of Chemistry, Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou 310027, China;
    2. College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China;
    3. Qiushi Academy of Advanced Studies, Zhejiang University, Hangzhou 310027, China
  • Received:2012-10-01 Revised:2012-12-01 Online:2013-04-24 Published:2013-04-09

生物矿化是生物体制造生物矿物的过程。在自然界中,生物矿物是在有机基质控制下可控有序组装而成的,这就决定了它不同于实验室中合成的普通矿物。单细胞矿化以及生理和病理性矿化,对于人们开展硬组织生物学研究以及生物材料设计合成具有很好的借鉴和启发意义。作为骨骼、牙齿的基本构筑单元,以及其良好的生物相容性和优异的骨牙整合性,磷酸钙纳米颗粒在生物矿物的组装方面和生物硬组织修复、组织工程等方面扮演着重要的角色。另外,受单细胞生物矿化启发的细胞(或病毒)壳化,可以赋予细胞(或病毒)更好的抗逆境能力。本文综述了生物矿化,尤其是单细胞矿化和生理、病理性矿化对生物医学的启示。结合近年来国内外相关研究进展,我们从骨、牙组织修复,细胞(病毒)壳化两个方面分别阐述了生物矿化作为无机化学和生物医学的桥梁作用。深入研究生物矿化的机理以及基于生物矿化的材料合成,对于生理性矿化的仿生修复、病理性矿化的预防治疗以及细胞界面工程等方面都具有重要的启发和实践意义。

Biomineralization refers to the processes by which organisms form minerals. The control exerted by many organisms over mineral formation distinguishes these processes from abiotic mineralization. In living organisms, nanoscale building blocks combine into self-assembled biominerals under the control of an organic matrix. Biomineralization, especially mineralization of unicellular organisms, physiologic and pathological mineralization, plays a vital role in biology and materials research and could offer a variety of inspirations for biomaterials design and biomedical engineering. As the basic building blocks of biological hard tissues such as bone, dentin, and enamel, hydroxyapatite (HAP) nanoparticles play an important role in the construction of biominerals. As analogues of biological units, nano-HAP can be used as ideal biomaterials due to their nice biocompatibility and bone/enamel integration. The construction of nanostructured calcium phosphates is highlighted in bone/tooth hard tissue engineering. Inspired by unicellular organisms, single cell and virus were entrapped in a biomimetic mineral shell and were endowed with enhanced resistance abilities in the hostile environment. Several ongoing works and related proceedings in this fields are highlighted in this article. The perspective from biomineralization to biomedical research including bone and teeth repair, cellular (virus) shell engineering are illustrated. As the bridge of inorganic chemistry and biomedicine, biomineralization is the well of knowledge for hard tissue repair, the guiding principle for preventing disease of pathological mineralization, the inspiration for cell interfacial engineering, and need to be exploited adequately.

Contents
1 Introduction
1.1 The summary of biomineralization
1.2 Calcium phosphate
2 Biomedical engineering inspired by biomineralization
2.1 Bone and teeth repair
2.2 Cellular (virus) shell engineering
3 Conclusions and outlook

中图分类号: 

()

[1] Lowenstam H A, Weiner S. On Biomineralization. New York: Oxford University Press, 1989
[2] Wang L, Nancollas G H. Chem. Rev., 2008, 108, 4628-4669
[3] Brown W E, Eidelman N, Tomazic, B. Adv. Dent. Res. 1987, 1: 306-313
[4] Legeros R Z, Daculsi G, Orly I, Abergas T, Torres W. Scanning Microscopy, 1989, 3: 129-138
[5] Johnsson M S A, Nancollas G H. Crit. Rev. Oral. Biol. M., 1992, 3: 61-82
[6] Weiner S, Wagner H D. Annu. Rev. Mater. Sci., 1998, 28: 271-298
[7] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294: 1684-1688
[8] Lakes R. Nature, 1993, 361: 511-515
[9] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Progress in Materials Science, 2008, 53: 1-206
[10] Daculsi G, Kerebel B. J. Ultrastruct. Res., 1978, 65: 163-172
[11] Busch S, Schwarz U, Kniep R. Chem. Mater., 2001, 13: 3260-3271
[12] Dorozhkin S V, Epple M. Angew. Chem. Int. Ed., 2002, 41: 3130-3146
[13] Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas A M C, de Ruiter A, Walsh W R, van Blitterswijk C A, de Bruijn J D. Proc. Natl. Acad. Sci. USA, 2010, 107: 13614-13619
[14] Langer R, Vacanti J. P. Science, 1993, 260: 920-926
[15] Griffith L G, Naughton G. Science, 2002, 295: 1009-1014
[16] Aumailley M, Gayraud B. J. Mol. Med., 1998, 76: 253-265
[17] Ryadnov M G, Woolfson D N. Nat. Mater., 2003, 2: 329-332
[18] Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky A J. Proc. Natl. Acad. Sci. USA, 2002, 99: 9996-10001
[19] Stevens M M, George J. H. Science, 2005, 310: 1135-1138
[20] Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Science, 2005, 307: 1450-1454
[21] Cai Y R, Liu Y K, Yan W Q, Hu Q H, Tao J H, Zhang M, Shi Z L, Tang R K. J. Mater. Chem., 2007, 17: 3780-3787
[22] Tang R, Wang L, Orme C A, Bonstein T, Bush P J, Nancollas G H. Angew. Chem., 2004, 116: 2751-2755
[23] Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H. J. Mater. Chem., 2007, 17: 4690-4698
[24] Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, Gu X, Tang R. Adv. Mater., 2011, 23: 4695-4701
[25] Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R. J. Mater. Chem., 2008, 18: 4079-4084
[26] Tao J, Pan H, Zeng Y, Xu X, Tang R. J. Phys. Chem. B, 2007, 111: 13410-13418
[27] Sole R V, Rasmussen S, Bedau M. Philos T. R. Soc. B, 2007, 362: 1725-1725
[28] Roodbeen R, van Hest J. BioEssays, 2009, 31: 1299-1308
[29] Arias J, Arias J, Fernandez M. in Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry (Behrens P, Baeuerlein E, Eds.). Wiley-VCH: Weinheim, 2007, 109-117
[30] Karlsson H L, Cronholm P, Gustafsson J, Möller L. Chem. Res. Toxicol., 2008, 21: 1726-1732
[31] Hamm C E, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Nature, 2003, 421: 841-843
[32] Wang B, Liu P, Jiang W G, Pan H H, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2008, 47: 3560-3564
[33] Wang B, Liu P, Tang R K. BioEssays, 2010, 32: 698-708
[34] Wang G C, Wang L J, Liu P, Yan Y, Xu X R, Tang R K. ChemBioChem, 2010, 11: 2368-2373
[35] Yang S H, Lee K B, Kong B, Kim J H, Kim H S, Choi I S. Angew. Chem. Int. Ed., 2009, 48: 9160-9163
[36] Yang S H, Ko E H, Jung Y H, Choi I. S. Angew. Chem. Int. Ed., 2011, 50: 6115-6118
[37] Yang S H, Ko E H, Choi I S. Langmuir, 2011, 28, 2151-2155
[38] Yang S H, Lee T, Seo E, Ko E H, Choi I S, Kim B S. Macromol. Biosci., 2012, 12: 61-66
[39] Yang S H, Kang S M, Lee K B, Chung T D, Lee H, Choi I S. J. Am. Chem. Soc., 2011, 133: 2795-2797
[40] Fakhrullin R F, Minullina R T. Langmuir, 2009, 25: 6617-6621
[41] Fakhrullin R F, Garcia-Alonso J, Paunov V N. Soft Matter, 2010, 6: 391-397
[42] Fakhrullin R F, Zamaleeva A I, Morozov M V, Tazetdinova D I, Alimova F K, Hilmutdinov A K, Zhdanov R I, Kahraman M, Culha M. Langmuir, 2009, 25: 4628-4634
[43] Fakhrullin R F, Zamaleeva A I, Minullina R T, Konnova S A, Paunov V N. Chem. Soc. Rev., 2012, 41: 4189-4206
[44] Ma X, Chen H, Yang L, Wang K, Guo Y, Yuan L. Angew. Chem. Int. Ed., 2011, 50: 7414-7417
[45] Wang B, Liu P, Tang Y, Pan H, Xu X, Tang R. PLoS ONE 2010, 5: e9963. doi:10.1371/journal.pone.0009963
[46] Xu X, Wang B, Tang R. ChemSusChem, 2011, 4: 1439-1446
[47] Wang X, Deng Y, Li S, Wang G, Qin E, Xu X, Tang R, Qin C. Adv. Healthcare Mater., 2012, 1: 443-449
[48] Wang X, Deng Y, Shi H, Mei Z, Zhao H, Xiong W, Liu P, Zhao Y, Qin C, Tang R. Small, 2010, 6: 351-354
[49] Wang G, Li X, Mo L, Song Z, Chen W, Deng Y, Zhao H, Qin E, Qin C, Tang R. Angew. Chem. Int. Ed., 2012, 51, 10576-10579

[1] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[2] 王雪, 陈中慧, 卿光焱*. 基于磷脂膜的界面相互作用研究[J]. 化学进展, 2018, 30(7): 888-901.
[3] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[4] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[5] 潘宇, 历娜, 周润宏, 赵敏. 趋磁细菌纳米磁小体的研究与应用[J]. 化学进展, 2013, 25(10): 1781-1794.
[6] 欧阳健明*, 张广娜, 王凤新, 李君君. 草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系[J]. 化学进展, 2013, 25(04): 642-649.
[7] 刘闯, 王元贵, 耿家青, 姜忠义, 杨冬. 无机纳米粒子的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521.
[8] 吴聪孟, 王小强, 赵康, 曹美文, 徐海, 吕建仁. 原子力显微镜法研究方解石(104)面的生长及溶解[J]. 化学进展, 2011, 23(01): 107-124.
[9] 欧阳健明 杨如娥 谈金. 肾上皮细胞损伤对草酸钙形成和黏附的影响*[J]. 化学进展, 2010, 22(08): 1665-1671.
[10] 蔡国斌,郭晓辉,俞书宏. 聚合物控制模拟生物矿化*[J]. 化学进展, 2008, 20(0708): 1001-1014.
[11] 徐旭荣,蔡安华,刘睿,潘海华,唐睿康. 生物矿化中的无定形碳酸钙*[J]. 化学进展, 2008, 20(01): 54-59.
[12] 欧阳健明. 单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配*[J]. 化学进展, 2005, 17(05): 931-937.
[13] 欧阳健明. 生物矿物及其矿化过程*[J]. 化学进展, 2005, 17(04): 749-756.
[14] 欧阳健明,陈德志. 自组装膜调控下生物矿物晶体的生长*[J]. 化学进展, 2005, 17(03): 563-572.
[15] 王荔军,郭中满,李铁津,李敏. 生物矿化纳米结构材料与植物硅营养[J]. 化学进展, 1999, 11(02): 119-.