English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1184-1202 DOI: 10.7536/PC200435 前一篇   后一篇

• 综述 •

高压条件下的凝聚态化学

刘晓旸1,**()   

  1. 1. 吉林大学化学学院 无机合成与制备化学国家重点实验室 长春 130031
  • 收稿日期:2020-02-28 修回日期:2020-04-20 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 刘晓旸
  • 基金资助:
    国家自然科学基金项目(21271082); 国家自然科学基金项目(40673051); 国家自然科学基金项目(20471022)

Condensed Matter Chemistry under High Pressure

Xiaoyang Liu1,**()   

  1. 1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130031, China
  • Received:2020-02-28 Revised:2020-04-20 Online:2020-08-24 Published:2020-04-23
  • Contact: Xiaoyang Liu
  • About author:
    ** e-mail:
  • Supported by:
    the National Natural Science Foundation of China(21271082); the National Natural Science Foundation of China(40673051); the National Natural Science Foundation of China(20471022)

本文介绍了高压条件对凝聚态物质电子结构和晶体结构的影响,其中包括高压对元素外层电子结构、能带结构和晶体缺陷的影响,高压导致的原子配位数的增加、元素非正常氧化态、结构相变和态变。同时从十个方面介绍了高压条件下凝聚态物质间的化学反应,最后对高压条件下凝聚态化学未来的发展做了展望。

This article introduces the effects of high-pressure conditions on the electronic structure and crystal structure of condensed matter, including the outer electronic structure, band structure and crystal defects, and also the increase in atomic coordination number, the element’s abnormal oxidation, structural phase transitions, and state transitions. At the same time, the chemical reactions of condensed matter under high pressure are introduced from ten aspects. Finally, the future development of condensed matter chemistry under high pressure is prospected.

Contents

1 Introduction

2 Effect of high pressure on the electronic and crystal structure of condensed matter

2.1 Effect of high pressure on the outer electronic structure of the elements

2.2 An increase in the atomic number caused by high pressure

2.3 Abnormal oxidation states of elements caused by high pressure

2.4 Structural phase transitions caused by high pressure

2.5 Effect of high pressure on band structure

2.6 Effect of high pressure on crystal defects

2.7 State changes caused by high pressure

3 Chemical reaction of condensed matter under high pressure

3.1 Metallization of hydrogen

3.2 High-pressure polymerization of small inorganic molecules

3.3 High-pressure polymerization of organic compounds

3.4 High-pressure synthesis of poly-nitrogen compounds

3.5 High-pressure synthesis of MOFs

3.6 High-pressure synthesis of inert element oxides

3.7 Reaction of alkali metal with inert gas under high pressure

3.8 Effect of high pressure on the morphology and structure of nanocrystals

3.9 Synthesis of Na-Cl compounds under high pressure

3.10 Promoting effect of high pressure on chemical reaction

4 Conclusions and outlook

()
图1 LaCoO3的原胞体积和晶格常数随压力变化关系图[6]
Fig.1 LaCoO3 cell volume and lattice constant as a function of pressure [6]. Copyright 2007, American Physical Society
图2 超高压对LaCoO3晶体中Co—O键长和Co—O—Co—O键角的影响[6]
Fig.2 Effect of high pressure on Co—O bond length and Co—O—Co—O bond angle in LaCoO3 crystals [6]. Copyright 2007, American Physical Society
图3 Fe2+中3d轨道电子自旋态随压力的变化示意图[7]
Fig.3 Schematic diagram of change of Fe2+ 3d orbital electron spin state with pressure[7]. Copyright 2005, United States
图4 理想ABO3钙钛矿型结构的晶胞[9]
Fig.4 Unit cell of ideal ABO3 perovskite structure[9]. Copyright 2004, John Wiley and Sons Inc
图5 氧化锰在高压环境下自旋重排的示意图[23]
Fig.5 Schematic diagram of spin rearrangement of manganese oxide under high pressure[23]. Copyright 2007, IOP Publishing Ltd
图6 在压力下Ge在Ge-Te3四面体上翻转。蓝色:Ge,绿色:Cr,粉红色:Te[40]
Fig.6 Ge flips on a Ge-Te3 tetrahedron under pressure. Blue: Ge, Green: Cr, Pink: Te[40]. Copyright 2019, American Chemical Society
图7 相Ⅲ和相关数据:(a)在室温下212 GPa的条件下(Ⅲ相),通过透射光和反射光照射观察到的氢样品的显微镜图像,插图为样品的Raman振动;(b)合并原始图像得到的X-射线衍射点——在图(b)~(d)中,红色、绿色和蓝色分别代表着(100)、(002)和(101)晶面的反射;(c)26个X-射线衍射点的拼图;(d)在不同Ω角下测量的(100)、(002)和(101)晶面的d间距,虚线为使用拟合单元格参数计算的d值[51]
Fig.7 Phase Ⅲ sample and data.(a) Microscope image of the hydrogen sample at 212 GPa and room temperature(phase Ⅲ conditions), illuminated by both transmitted and reflected light. The inset shows the measured Raman vibron;(b) Merged raw XRD images showing the XRD spots. The colour code defined in the key—with red, green and blue representing the(100),(002) and(101) reflections, respectively—is used in b~d;(c) Montage of the 26 XRD spots, showing the quality of the data;(d) Quality of indexing, showing the d spacing of the(100),(002) and(101) reflections measured at different Ω angles. Dashed lines show the d values calculated using fitted unit cell parameters[51]. Copyright 2019, Nature Publishing Group
图8 相Ⅳ和相关数据:(a)在室温下232 GPa的条件下(Ⅳ相),通过透射光和反射光照射观察到的氢样品的显微镜图像,上插图为红色虚线框对应的采样区放大后的图像,三个蓝点为SXRD的采样位置,下插图为样品的Raman振动,蓝色箭头标记了相Ⅳ的特征峰;(b)合并原始图像得到的X-射线衍射点——在图(b)~(d)中,红色、绿色和蓝色分别代表着(100)、(002)和(101)晶面的反射;(c)40个X-射线衍射点的拼图;(d)在不同Ω角下测量的(100)、(002)和(101)晶面的d间距,虚线为使用拟合单元格参数计算的d值;(e)使用2×1 μm2的X-射线照射与纳米探针测量的样品d间距的对比图[51]
Fig.8 Phase Ⅳ sample and data.(a) Microscope image of the H2 sample at 232 GPa and room temperature(phase Ⅳ conditions) illuminated by both transmitted and reflected light. The upper inset shows a magnified image on the sample area corresponding to the red dashed box; the three blue dots mark the SXRD sampling positions. The lower inset shows the measured Raman vibrons(v1 and v2); the blue arrow marks the characteristic new peak of phase Ⅳ;(b) Merged raw XRD images showing the XRD spots. Red, green and blue symbols denote the(100),(002) and(101) reflections, respectively, in b~d;(c) Montage of 40 XRD spots showing the quality of the data;(d) Quality of indexing, showing the d spacing of the(100),(002) and(101) reflections measured at different Ω angles. Dashed lines show the d values calculated using fitted unit cell parameters;(e) Comparison of d spacings of reflections from samples measured using the 2 × 1 μm2 X-ray beam with those measured using the nano-probe[51]. Copyright 2019, Nature Publishing Group
图9 [—(C=O)—]n多羰基链,具有C=O的交替头尾取向灰色球:C原子,红色球:O原子[57]
Fig.9 [—(C=O)—]n polycarbonyl chain with alternating head-to-tail orientation of C=O Gray: C atom, Red: O atom[57]. Copyright 2015, Royal Society of Chemistry
图10 聚合吡啶的结构[60]
Fig.10 Structure of polymerized pyridine[60]. Copyright 2017, Royal Society of Chemistry
图11 铁氮化合物Fe3N2的晶体结构(橙色和蓝色的小球分别表示Fe原子和N原子的位置)[63]
Fig.11 Crystal structure of Fe3N2 (orange: Fe, blue: N) [63]. Copyright 2018, Nature Publishing Group
图12 具有NiAs结构的铁氮化合物FeN(橙色和蓝色的小球分别表示Fe原子和N原子的位置)[63]
Fig.12 Crystal structure of FeN with NiAs type(orange: Fe, blue: N)[63]. Copyright 2018, Nature Publishing Group
图13 (a)从ZnO和2-甲基咪唑无溶剂合成ZIF-8的机理;(b,c)反应时间为5 min的ZIF-8高分辨率透射电子显微镜图;(d)图(c)中选定区域的快速傅里叶变换,对应[321]晶带轴[73]
Fig.13 (a) Mechanism for the solventless high pressure synthesis of ZIF-8 from 2-methylimidazole(mlm) and ZnO;(b, c) high-resolution TEM images of ZIF-8 HP 5 min;(d) FFT of the inset of image(c) which corresponds to the [321] zone axis[73]. Copyright 2013, Royal Society of Chemistry
图14 300 GPa压力下Na2He的晶体结构:(a)Na2He结构的球棍模型,其中粉色为Na,灰色为He;(b)300 GPa下[110]晶面的电子定域函数[86]
Fig.14 Crystal structure of Na2He at 300 GPa:(a) Ball-and-stick representation(pink: Na, grey: He);(b) Electron localization function(ELF) plotted in the [110] plane at 300 GPa[86]. Copyright 2017, Nature Publishing Group
图15 可能的压力对结构的影响过程示意图[90]
Fig.15 Schematic demonstration of the proposed pressure-sintering process[90]. Copyright 2017, American Chemical Society
图16 Na-Cl体系化合物的晶体结构[96]:(A)Pm3-NaCl7;(B)Pnma-NaCl3;(C)Pm3n-NaCl3;(D)P4/mmm-Na3Cl;(E)P4/m-Na3Cl2;(F)Cmmm-Na3Cl2;(G)P4/mmm-Na2Cl;(H)Cmmm-Na2Cl;(I)Imma-Na2Cl. 蓝色和绿色的球分别表示Na和Cl原子
Fig.16 Crystal structures of Na chlorides.(A)Pm3-NaCl7;(B)Pnma-NaCl3;(C)Pm3n-NaCl3;(D)P4/mmm-Na3Cl;(E)P4/m-Na3Cl2;(F)Cmmm-Na3Cl2;(G)P4/mmm-Na2Cl;(H)Cmmm-Na2Cl;(I)Imma-Na2Cl. Blue and green spheres denote Na and Cl atoms, respectively. Copyright 2013, American Association for the Advancement of Science
[1]
(a) Xu R. Natl. Rev. Sci., 2018, 5: 1;
(b) Xu R, Wang K, Chen G, Yan W. Natl. Rev. Sci., 2019,6:191.
[2]
McMillan P F. Chem. Soc. Rev., 2006,35:855. https://www.ncbi.nlm.nih.gov/pubmed/17003892

doi: 10.1039/b610410j     URL     pmid: 17003892
[3]
Xu R, Xu Y. Modern Inorganic Synthetic Chemistry. 2nd ed. Amsterdam: Elsevier, 2017. 1051.
[4]
Walsh P S, Freedman D E. Acc. Chem. Res., 2018,51:1315. https://www.ncbi.nlm.nih.gov/pubmed/29812893

doi: 10.1021/acs.accounts.8b00143     URL     pmid: 29812893
[5]
Abelson P H. Science, 1999,283:1263.
[6]
Kozlenko D P, Golosova N O, Jirak Z, Dubrovinsky L S, Savenko B N, Tucker M G. Phys. Rev. B, 2007,5:064422.
[7]
Speziale S, Milner A, Lee V E, Clark S M, Pasternak M P, Jeanloz R. Proc. Natl. Acad. Sci. U. S. A., 2005,102:17918. https://www.ncbi.nlm.nih.gov/pubmed/16330758

doi: 10.1073/pnas.0508919102     URL     pmid: 16330758
[8]
胡娟(Hu J). 超硬材料工程(Super-hard Materials Engineering), 2006,5:48.
[9]
Zhao J, Ross N L, Angel R J. Acta Crystallogr. B, 2004,60:263. https://www.ncbi.nlm.nih.gov/pubmed/15148429

doi: 10.1107/S0108768104004276     URL     pmid: 15148429
[10]
李莉萍(Li L), 魏诠(Wei Q), 刘宏建(Liu H), 郑大方(Zheng D), 苏文辉(Su W). 高压物理学报(Chin. J. High Pressure Phys.), 1994,3:184.
[11]
周建十(Zhou J), 苏文辉(Su W). 中国稀土学报(J. Chin. Rare Earth Soc.), 1988,2:57.
[12]
周建十(Zhou J). 高压物理学(Chin. J. High Pressure Phys.), 1992,1:7.
[13]
Frost D J, Liebske C, Langenhorst F, McCammon C A, Trønnes R G, Rubie D C. Nature, 2004,428:409. https://www.ncbi.nlm.nih.gov/pubmed/15042086

doi: 10.1038/nature02413     URL     pmid: 15042086
[14]
Frost D J, McCammon C A. Annual Review of Earth & Planetary Sciences, 2008,36:389.
[15]
苟清泉(Gou Q). 固体物理(Solid State Physics). 北京:人民教育出版社( Beijing: Remin Education Press), 1978. 205.
[16]
Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B, Liu B. Phys. Rev. Lett., 2017,118:245701. https://www.ncbi.nlm.nih.gov/pubmed/28665670

doi: 10.1103/PhysRevLett.118.245701     URL     pmid: 28665670
[17]
Zou Y, Liu B, Wang L, Liu D, Yu S, Wang P, Wang T, Yao M, Li Q, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B, Mao H. Proc. Natl. Acad. Sci. U.S. A., 2009,106:22135.
[18]
Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wågberg T, Sundqvist B. Phys. Rev. B, 2007,76:195417.
[19]
Caillier C, Machon D, San Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L. Phys. Rev. B, 2008,77:125418.
[20]
Wang Y, Panzik J E, Kiefer B, Lee K K M. Sci. Rep., 2012,2:520. https://www.ncbi.nlm.nih.gov/pubmed/22816043

doi: 10.1038/srep00520     URL     pmid: 22816043
[21]
Xu W M, Machavariani G Y, Rozenberg G K, Pasternak M P. Phys. Rev. B, 2004,70:174106.
[22]
Zakharov B A, Boldyreva E V. Cryst Eng Comm, 2019,21:10.
[23]
Kasinathan D, Koeperni K, Pickett W E. New J. Phys., 2007,9:235.
[24]
McMahon M I, Nelmes R J. Chem. Soc. Rev., 2006,35:943. https://www.ncbi.nlm.nih.gov/pubmed/17003900

doi: 10.1039/b517777b     URL     pmid: 17003900
[25]
Mao H, Hemley R J. Science, 1989,244:1462.
[26]
Li R, Han N, Cheng Y, Huang W. J. Phys: Condens. Matter, 2019,31:50550.
[27]
Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V. Nature, 2009,458:182. https://www.ncbi.nlm.nih.gov/pubmed/19279632

doi: 10.1038/nature07786     URL     pmid: 19279632
[28]
Zhu H, Li Y, Li H, Su T, Pu C, Zhao Y, Ma Y, Zhu P, Wang X. High Pressure Res., 2017,37:36.
[29]
Wang Y, Lu X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z, Zhao Y. Am. Chem. Soc., 2015,137:11144.
[30]
Zhang Q, Ai X, Wang L, Chang Y, Luo Y, Jiang W, Cheng L. Adv. Funct. Mater., 2015,25:966. http://doi.wiley.com/10.1002/adfm.201402663

doi: 10.1002/adfm.201402663     URL    
[31]
Guo X, Qin J, Jia X, Jiang D. Inorg. Chem. Front., 2018,5:1540.
[32]
Bounos G, Karnachoriti M, Kontos A G, Stoumpos C C, Tsetseris L, Kaltzoglou A, Guo X, Lu X, Raptis Y S, Kanatzidis M G. J. Phys. Chem C, 2018,122:24004.
[33]
Christensen N, Gorczyca I, Svane A, Szwacki N G, Boguslawski P. Phys. Status Solidi(B), 2003,235:374.
[34]
Londos C, Potsidi M, Bak Misiuk J, Misiuk A, Emtsev V. Cryst. Res. Technol., 2003,38:1058.
[35]
Wang L, Yang W, Ding Y, Ren Y, Xiao S, Liu B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G. Phys. Rev. Lett., 2010,105:095701. https://www.ncbi.nlm.nih.gov/pubmed/20868175

doi: 10.1103/PhysRevLett.105.095701     URL     pmid: 20868175
[36]
Lu X, Hu Q, Yang W, Bai L, Sheng H, Wang L, Wen J, Miller D, Huang F, Zhao Y. Am. Chem. Soc., 2013,135:13947.
[37]
Peiris S M, Sweeney J S, Campbell A J, Heinz D L. Chem. Phys., 1996,104:11.
[38]
Kolobov A V, Haines J, Pradel A, Ribes M, Fons P, Tominaga J, Katayama Y, Hammouda T, Uruga T. Phys. Rev. Lett., 2006,97:035701. https://www.ncbi.nlm.nih.gov/pubmed/16907512

doi: 10.1103/PhysRevLett.97.035701     URL     pmid: 16907512
[39]
Caravati S, Bernasconi M, Kuhne T D, Krack M, Parrinello M. Phys. Rev. Lett., 2009,102:205502. https://www.ncbi.nlm.nih.gov/pubmed/19519039

doi: 10.1103/PhysRevLett.102.205502     URL     pmid: 19519039
[40]
Yu Z, Xia W, Xu K, Xu M, Wang H, Wang X, Yu N, Zou Z, Zhao J, Wang L, Miao X, Guo Y. J. Phys. Chem. C, 2019,123:13885.
[41]
Du M, Yao M, Dong J, Ge P, Dong Q, Kováts É, Pekker S, Chen S, Liu R, Liu B, Cui T, Sundqvist B, Liu B. Adv. Mater., 2018,30:1706916.
[42]
Cui W, Yao M, Liu S, Ma F, Li Q, Liu R, Liu B, Zou B, Cui T, Liu B. Adv. Mater., 2014,26:7257. https://www.ncbi.nlm.nih.gov/pubmed/25227982

doi: 10.1002/adma.201402519     URL     pmid: 25227982
[43]
Brazhkin V V, Lyapin A G, Stalgorova O V, Gromnitskaya E L, Popova S V, Tsiok O B. J. Non-Crystal. Solids, 1997,212:49. https://linkinghub.elsevier.com/retrieve/pii/S0022309396005595

doi: 10.1016/S0022-3093(96)00559-5     URL    
[44]
Wang L, Huang X, Li D, Li F, Zhao Z, Li W, Huang Y, Wu G, Zhou Q, Liu B, Cui T. J. Phys. Chem. C, 2015,119:19312. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b04246

doi: 10.1021/acs.jpcc.5b04246     URL    
[45]
Silvera I F, Wijngaarden R J. Rev. Sci. Instrum., 1985,56:121.
[46]
Dias R P, Silvera I F. Science, 2017,355:715. https://www.ncbi.nlm.nih.gov/pubmed/28126728

doi: 10.1126/science.aal1579     URL     pmid: 28126728
[47]
Wigner E, Huntington H B. Chem. Phys., 1935,3:764.
[48]
Hazen R M, Mao H K, Finger L W. Phys. Rev. B, 1987,36:3944. https://link.aps.org/doi/10.1103/PhysRevB.36.3944

doi: 10.1103/PhysRevB.36.3944     URL    
[49]
Mazin I I, Hemley R J, Goncharov A F. Phys. Rev. Lett., 1997,78:1066. https://link.aps.org/doi/10.1103/PhysRevLett.78.1066

doi: 10.1103/PhysRevLett.78.1066     URL    
[50]
Howie R T, Guillaume C L, Scheler T. Phys. Rev. Lett., 2012,108:125501. https://www.ncbi.nlm.nih.gov/pubmed/22540596

doi: 10.1103/PhysRevLett.108.125501     URL     pmid: 22540596
[51]
Ji C, Li B, Liu W, Smith J S, Majumdar A, Luo W, Ahuja R, Shu J, Wang J, Sinogeikin S, Meng Y, Prakapenka V B, Greenberg E, Xu R, Huang X, Yang W, Shen G, Mao W, Mao H. Nature, 2019,573:558. https://www.ncbi.nlm.nih.gov/pubmed/31554980

doi: 10.1038/s41586-019-1565-9     URL     pmid: 31554980
[52]
Katz A I, Schiferl D, Mill R L. Phys. Chem., 1984,88:3176.
[53]
Mills R L, Olinger B, Cromer D T. Chem. Phys., 1986,84:2837. https://pubs.acs.org/doi/abs/10.1021/j100459a001

doi: 10.1021/j100459a001     URL    
[54]
Evans W J, Lipp M J, Yoo C S, Cynn H, Herberg J L, Maxwell R S. Chem. Mat., 2006,18:2520. https://pubs.acs.org/doi/10.1021/cm0524446

doi: 10.1021/cm0524446     URL    
[55]
Lipp M J, Evans W J, Baer B J, Yoo C. Nature Mater., 2005,4:211. https://doi.org/10.1038/nmat1321

doi: 10.1038/nmat1321     URL    
[56]
Sun J, Klug D D, Pickard C J, Needs R J. Phys. Rev. Lett., 2011,106:145502. https://www.ncbi.nlm.nih.gov/pubmed/21561202

doi: 10.1103/PhysRevLett.106.145502     URL     pmid: 21561202
[57]
Santoro M, Dziubek K, Scelta D, Ceppatelli M, Gorelli F A, Bini R, Thibaud J M, Renzo F D, Cambon O, Rouquette J. Chem. Mater., 2015,27:6486. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b02596

doi: 10.1021/acs.chemmater.5b02596     URL    
[58]
Fitzgibbons T C, Guthrie M, Xu E, Crespi V H, Davidowski S K, Cody G D, Alem N, Badding J V. Nat. Mater., 2015,14:43. https://www.ncbi.nlm.nih.gov/pubmed/25242532

doi: 10.1038/nmat4088     URL     pmid: 25242532
[59]
Wen X, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O. Proc. Natl. Acad. Sci. U.S. A., 2011,108:6833. http://www.pnas.org/cgi/doi/10.1073/pnas.1103145108

doi: 10.1073/pnas.1103145108     URL    
[60]
Silveira J F R V, Muniz A R. Phys. Chem. Chem. Phys., 2017,19:7132. https://www.ncbi.nlm.nih.gov/pubmed/28229141

doi: 10.1039/c6cp08655a     URL     pmid: 28229141
[61]
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Nat. Mater., 2004,3:558. https://www.ncbi.nlm.nih.gov/pubmed/15235595

doi: 10.1038/nmat1146     URL     pmid: 15235595
[62]
Zhao Z, Bao K, Li D, Duan D, Tian F, Jin X, Chen C, Huang X, Liu B, Cui T. Sci. Rep., 2014,4:4797. https://www.ncbi.nlm.nih.gov/pubmed/24762713

URL     pmid: 24762713
[63]
Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnadi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N, Dubrovinsky L. Nat. Commun., 2018,9:2756. https://www.ncbi.nlm.nih.gov/pubmed/30013071

doi: 10.1038/s41467-018-05143-2     URL     pmid: 30013071
[64]
Niwa K, Dzivenko D, Suzuki K, Riedel R, Troyan I, Eremets M, Hasegawa M. Inorg. Chem., 2014,53:697. https://www.ncbi.nlm.nih.gov/pubmed/24393052

doi: 10.1021/ic402885k     URL     pmid: 24393052
[65]
Laniel D, Dewaele A, Anzellini S, Guignot N. Alloy. Compd., 2018,733:53. https://linkinghub.elsevier.com/retrieve/pii/S0925838817337039

doi: 10.1016/j.jallcom.2017.10.267     URL    
[66]
Bykov M, Bykova E, Koemets E, Fedotenko T, Aprilis G, Glazyrin K, Liermann H P, Ponomareva A V, Tidholm J, Tasnádi F, Abrikosov I A, Dubrovinskaia N, Dubrovinsky L. Angew. Chem. Inter. Ed., 2018,57:9048. http://doi.wiley.com/10.1002/anie.201805152

doi: 10.1002/anie.201805152     URL    
[67]
Shi X, Yao Z, Liu B. J. Phys. Chem. C, 2020,124:4044.
[68]
Shi X, Liu B, Yao Z, Liu B B. Chin. Phys. Lett., 2020,37:047101.
[69]
Hirshberg B, Gerber R B, Krylov A I. Nat. Chem., 2014,6:52. https://www.ncbi.nlm.nih.gov/pubmed/24345947

doi: 10.1038/nchem.1818     URL     pmid: 24345947
[70]
Liu S, Zhao L, Yao M, Miao M, Liu B. Adv. Sci., 2020, https://doi.org/10.1002/advs.201902320. https://www.ncbi.nlm.nih.gov/pubmed/5809201

URL     pmid: 5809201
[71]
Friscic T. Mater. Chem., 2010,20:7599.
[72]
Friscic T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimaki V, Dinnebier R E. Nat. Chem., 2013,5:66. https://www.ncbi.nlm.nih.gov/pubmed/23247180

doi: 10.1038/nchem.1505     URL     pmid: 23247180
[73]
Tanaka S, Kida K, Nagaoka T, Ota T, Miyake, Y. Chem. Commun., 2013,49:7884.
[74]
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U.S.A., 2006,103:10186. https://www.ncbi.nlm.nih.gov/pubmed/16798880

doi: 10.1073/pnas.0602439103     URL     pmid: 16798880
[75]
Kaupp G, Schmeyers J, Boy J. Chemosphere, 2001,43:55. https://www.ncbi.nlm.nih.gov/pubmed/11233826

doi: 10.1016/s0045-6535(00)00324-6     URL     pmid: 11233826
[76]
Grochala W. Chem. Soc. Rev., 2007,36:1632. https://www.ncbi.nlm.nih.gov/pubmed/17721587

doi: 10.1039/b702109g     URL     pmid: 17721587
[77]
Smith D F. Am. Chem. Soc., 1963,85:816.
[78]
Selig H, Claassen H H, Chernick C L, Malm J G, Huston J L. Science, 1964,143:1322. https://www.ncbi.nlm.nih.gov/pubmed/17799234

URL     pmid: 17799234
[79]
Jephcoat A. Phys. Rev. Lett., 1987,59:2670. https://www.ncbi.nlm.nih.gov/pubmed/10035618

doi: 10.1103/PhysRevLett.59.2670     URL     pmid: 10035618
[80]
Goettel K A, Eggert J H, Silvera I F, Moss W C. Phys. Rev. Lett., 1989,62:665. https://www.ncbi.nlm.nih.gov/pubmed/10040297

doi: 10.1103/PhysRevLett.62.665     URL     pmid: 10040297
[81]
Agnes D, Nicholas W, Chris J P, Richard J N, Sakura P, Olivier M, Mohamed M, Tetsuo I. Nature Chem., 2016,8:784.
[82]
Hiby J W. Ann. Phys.-Berlin, 1939,426:473.
[83]
Loubeyre P, Jean Louis M, LeToullec R, Charon-Gérard L. Phys. Rev. Lett., 1993,70:181.
[84]
Liu H, Yao Y, Klug D D. Phys. Rev. B, 2015,91:014102.
[85]
Miao M, Wang X, Brgoch J, Spera F, Jackson M G, Kresse G, Lin H. Am. Chem. Soc., 2015,137:14122. https://pubs.acs.org/doi/10.1021/jacs.5b08162

doi: 10.1021/jacs.5b08162     URL    
[86]
Dong X, Oganov A R, Goncharow A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer VL, Dronskowski R, Zhou X F, Prakapenka V B, Konopkova Z, Popov I A, Boldyrev A I, Wang H. Nat. Chem., 2017,9:440. https://www.ncbi.nlm.nih.gov/pubmed/28430195

doi: 10.1038/nchem.2716     URL     pmid: 28430195
[87]
Boles M A, Engel M, Talapin D V. Chem. Rev., 2016,116:11220. https://www.ncbi.nlm.nih.gov/pubmed/27552640

doi: 10.1021/acs.chemrev.6b00196     URL     pmid: 27552640
[88]
Choi S H, Kim E G, Hyeon T. Am. Chem. Soc., 2006,128:2520. https://pubs.acs.org/doi/10.1021/ja0577342

doi: 10.1021/ja0577342     URL    
[89]
Wu H M, Wang Z W, Fan H Y. Am. Chem. Soc., 2014,136:7634. https://pubs.acs.org/doi/10.1021/ja503320s

doi: 10.1021/ja503320s     URL    
[90]
Zhu H, Nagaoka Y, Hills Kimball K, Tan R, Yu L, Fang Y, Wang K, Li R, Wang Z, Chen O. Am. Chem. Soc., 2017,139:8408. https://pubs.acs.org/doi/10.1021/jacs.7b04018

doi: 10.1021/jacs.7b04018     URL    
[91]
Wang T, Li R, Quan Z, Loc W S, Bassett W A, Xu H W, Cao Y, Fang J, Wang Z. Adv. Mater., 2015,27:4544. https://www.ncbi.nlm.nih.gov/pubmed/26179895

doi: 10.1002/adma.201502070     URL     pmid: 26179895
[92]
Sata N, Shen G, Rivers M L, Sutton S R. Phys. Rev. B, 2002,65:104114.
[93]
Ono S. Phys. Conf. Ser., 2010,215:012196.
[94]
Ross M. Chem. Phys., 1972,56:4651.
[95]
Oganov A R, Glass C W. Chem. Phys., 2006,124:244704.
[96]
Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B, Konôpková Z. Science, 2013,342:1502. https://www.ncbi.nlm.nih.gov/pubmed/24357316

doi: 10.1126/science.1244989     URL     pmid: 24357316
[97]
Ballini R. Eco-friendly Synthesis of Fine Chemicals. Cambridge: The Royal Society of Chemistry, 2009,237.
[98]
Li Q, Zhang L, Chen Z, Quan Z. J. Mater. Chem. A, 2019,7:16089. http://xlink.rsc.org/?DOI=C9TA04930D

doi: 10.1039/C9TA04930D     URL    
[99]
Ferreira A R F C, Figueiredo A B, Evtuguin D V, Saraiva J A. Green Chem., 2011,13:2764. 8ff23f92-f3bf-4a2e-a970-de5d26954dcdhttp://dx.doi.org/10.1039/c1gc15500h

doi: 10.1039/c1gc15500h     URL    
[100]
Smith D, Howie R T, Crowe I F, Simionescu C L, Muryn C, Vishnyakov V, Novoselov K S, Kim Y, Halsall M P, Gregoryanz E, Proctor J E. ACS Nano, 2015,9:8279. https://www.ncbi.nlm.nih.gov/pubmed/26256819

doi: 10.1021/acsnano.5b02712     URL     pmid: 26256819
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[5] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[6] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[10] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[11] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[12] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[13] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[14] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[15] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
阅读次数
全文


摘要

高压条件下的凝聚态化学