English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1511-1523 DOI: 10.7536/PC180807 前一篇   后一篇

• 综述 •

基于细胞仿生矿化合成纳米材料及其应用

谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*   

  1. 河南师范大学化学化工学院 新乡 453007
  • 收稿日期:2018-08-13 修回日期:2018-08-22 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 马晓明, 杨林 E-mail:yanglin1819@163.com;sunshinyma@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.21571053,21877027,21601052)、国家“111”引智基地(No.D17007)和河南省外籍科学家工作室(No.GZS2018003)资助

Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications

Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*   

  1. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received:2018-08-13 Revised:2018-08-22 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21571053, 21877027, 21601052), the 111 Project (No. D17007), and the Henan Center for Outstanding Overseas Scientists(No. GZS2018003).
近年来,随着纳米科学技术的发展,纳米材料的“绿色合成方法”研究显得愈发重要。基于细胞活体及其分泌物模拟生物矿化合成纳米材料已成为绿色合成纳米材料的研究前沿。该方法具有操作简单、安全经济和环境友好等优点,合成得到的纳米材料具有良好的分散性、稳定性和特殊的性能。该方法得到的纳米材料已在化学、材料学、生物医学等领域展现出了广泛的应用前景,引起了人们的极大关注。本文综述了应用细菌、真菌、植物及人体细胞等活体细胞或分泌物仿生矿化合成各种形貌及不同尺寸的无机纳米结构材料的研究进展;着重评述了纳米材料的仿生矿化合成方法、合成机制以及应用研究现状与前景,并对纳米材料基于细胞合成技术的发展趋势进行了展望。
Biomineralization has endowed many organisms with peculiar functions under the modification of the inorganic nanostructure biosynthesized under the mediation of the cells. Recently, with the development of biosynthesis and nanotechnology, using organisms to synthesize nanomaterials has attracted the wide attention of researchers. Compared with traditional physical and chemical synthesis methods, biosynthesis has the advantages of simple operation and environmental friendliness. So far, there have been many studies on the use of bacteria, fungi, some plants and human cells to successfully produce various shapes and sizes of inorganic nanomaterials. The obtained nanomaterials not only have good dispersibility and stability, but also have excellent application performance. Hence, it is widely used in the fields of catalysis, electrology, optics and biomedicine, etc. The biomimetic mineralization synthesis of nanoparticles is likely to provide scientific reference for the discovery of novel nanomaterials. This review presents the related knowledge of biological nanotechnology and the research progresseof nanomaterials synthesized by different organisms. The current main problems of biosynthetic nanomaterials, progress of research contents and innovation points of are elaborated in detail.
Contents
1 Introduction
2 Biomimetic mineralization synthesis of nanomaterials under the mediation of living cells
2.1 Bacterial cells
2.2 Fungus cells
2.3 Human cells
2.4 Plant cells extract
3 Study of biosynthetic mechanism of nanomaterials under the mediation of living cells
3.1 Biosynthetic mechanism of nanomaterials under the mediation of living cells
3.2 Regulating factors of biosynthesis mechanism of nanomaterials
4 Applications of the nanomaterials
5 Conclusion and outlook

中图分类号: 

()
[1] Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R. Nature, 1989, 338:596.
[2] Thakkar K N, Mhatre S S, Parikh R Y. Nanomedicine Nanotechnology Biology & Medicine, 2010, 6:257.
[3] Syed B, Bisht N, Bhat P S, Nikhil K R, Prasad A, Dhananjaya B L, Satish S, Prasad H, Nagendra P M N. Nano-Structures & Nano-Objects, 2017, 10:112.
[4] Mallick K, Witcomb M J, Scurrell M S. J. Mater. Sci., 2004, 39:4459.
[5] Rasool U, Hemalatha S. Mater. Lett., 2017, 194:176.
[6] Roh Y, Lauf R J, Mcmillan A D, Zhang C, Rawn C J, Bai J, Phelps T J. Solid State Commun., 2001, 118:529.
[7] Órdenesaenishanslins N A, Saona L A, Durántoro V M, Monrás J P, Bravo D M, Pérezdonoso J M. Microb. Cell. Fact., 2014, 13:1.
[8] Nair B, Pradeep T. Cryst. Growth Des., 2002, 2:293.
[9] Srivastava P, Kowshik M. Appl. Environ. Microbiol., 2017, 83(7):e03091.
[10] Husseiny M I, El-Aziz M A, Badr Y, Mahmoud M A. Spectrochim Acta A, 2007, 67(3/4):1003.
[11] Khan S A, Ahmad A. Mater. Res. Bull., 2013, 48:4134.
[12] Ahmad A. Nanotechnology, 2003, 14:824.
[13] Bhainsa K C, D'Souza S F. Colloids Surf., B, 2006, 47:160.
[14] Kalaiselvi A, Roopan S M, Madhumitha G, Ramalingam C, Elango G. Spectrochim. Acta A, 2015, 135:116.
[15] Merzlyak A, Lee S W. Curr. Opin. Chem. Biol., 2006, 10:246.
[16] Wang T, Jin X, Chen Z, Megharaj M, Naidu R. Sci. Total Environ., 2014, 466, 210.
[17] Salvadori M R, Lepre L F, Ando R A, Ca O D N. PLoS One, 2013, 8:80519.
[18] Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2008, 10:507.
[19] Phanjom P, Ahmed G. Nanoscience & Nanotechnology, 2015, 5:14.
[20] Hussain I, Singh N B, Singh A, Singh H, Singh S C. Biotechnol. Lett., 2016, 38:545.
[21] Bindhu M R, Umadevi M. Spectrochim. Acta A, 2015, 135:373.
[22] Sunkar S, Nachiyar C V. Asian Pac. J. Trop. Biomed., 2012, 2:953.
[23] Richter A P, Brown J S, Bharti B, Wang A, Gangwal S, Houck K, Hubal E A C, Paunov V N, Stoyanov S D, Velev O D. Nat. Nanotechnol., 2015, 10:817.
[24] Kothari S K, Marschner H, George E. New Phytol., 1990, 116:303.
[25] Jayaseelan C, Rahuman A A, Kirthi A V, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao K V. Spectrochim. Acta A, 2012, 90:78.
[26] Wen L, Lin Z H, Gu P Y, Zhou J Z, Yao B Y, Chen G L, Fu J K. J. Nanopart. Res., 2009, 11:279.
[27] Murugan M, Anthony K J P, Jeyaraj M, Rathinam N K, Gurunathan S. J. Ind. Eng. Chem., 2014, 20:1713.
[28] Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M. Process Biochem., 2015, 50:1076.
[29] Ghorbani H. Minerva Biotecnologica, 2015, 27:171.
[30] Narayanan K B, Sakthivel N. Adv. Colloid Interface Sci., 2010, 156:1.
[31] Sathishkumar S P A W G. Int. J. Appl. Pharm., 2016, 8:43.
[32] Shankar S S, Ahmad A, Pasricha R, Sastry M. J. Mater. Chem., 2003, 13:1822.
[33] Dhanasekar N N, Rahul G R, Narayanan K B, Raman G, Sakthivel N. J. Microbiol. Biotechnol., 2015, 25:1129.
[34] Kathiresan K, Manivannan S, Nabeel M A, Dhivya B. Colloids Surface B, 2009, 71:133.
[35] El-Batal A I, Elkenawy N M, Yassin A S, Amin M A. Biotechnol. Rep., 2015, 5:31.
[36] Volesky B, Holan Z R. Biotechnol. Prog., 2010, 11:235.
[37] Kowshik M, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Adv. Mater., 2010, 14:815.
[38] Jha A K, Prasad K, Prasad K. Biotechnol. J., 2009, 4:1582.
[39] Ma X M, Chen H F, Lin Y, Wang K, Guo Y M, Yuan L. Angew. Chem. Int. Ed., 2011, 50:7414.
[40] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M I, Ramani R, Parischa R, Ajayakumar P V, Alam M, Sastry M, Kumar R. Angew. Chem. Int. Ed., 2001, 40:3585.
[41] Ahmad A, Senapati S, Khan M I, Kumar R, Sastry M. J. Biomed. Nanotechnol., 2005, 1:47.
[42] Gericke M, Pinches A. Gold Bulletin, 2006, 39:22.
[43] Das S K, Liang J, Schmidt M, Laffir F, Marsili E. ACS Nano, 2012, 6:6165.
[44] 熊玲红(Xiong L H), 崔然(Cui R),刘茴茴(Liu H H), 李勇(Li Y), 谢志雄(Xie Z X), 张志凌(Zhang Z L), 胡斌(Hu B), 庞代文(Pang D W). 中国科学化学(Sci. Sin. Chem.), 2016, 46:163.
[45] Gericke M, Pinches A. Hydrometallurgy, 2006, 83:132.
[46] Agnihotri M, Joshi S, Kumar A R, Zinjarde S, Kulkarni S. Mater. Lett., 2009, 63:1231.
[47] Pimprikar P S, Joshi S S, Kumar A R, Zinjarde S S, Kulkarni S K. Colloids Surface B, 2009, 74:309.
[48] Dameron C T, Winge D R. J. Inorg. Biochem., 1989, 36:185.
[49] Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Biotechnol. Bioeng., 2002, 78:583.
[50] Kowshik M, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Adv. Mater., 2002, 14:815.
[51] Cui R, Liu H H, Xie H Y, Zhang Z L, Yang Y R, Pang D W, Xie Z X, Chen B B, Hu B, Shen P. Adv. Funct. Mater., 2009, 19:2359.
[52] Singh A K, Talat M, Singh D P, Srivastava O N. J. Nanopart. Res., 2010, 12:1667.
[53] Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M I. Chembiochem, 2002, 3:461.
[54] Wang B, Liu P, Jiang W G, Pan H H, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2008, 47:3560.
[55] Wang G C, Cao R Y, Chen R, Mo L J, Han J F, Wang X Y, Xu X R, Jiang T, Deng Y Q, Lyu K, Zhu S Y, Qin E D, Tang R K, Qin C. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:7619.
[56] Xiong W, Zhao X H, Zhu G X, Shao C Y, Li Y L, Ma W M, Xu X R, Tang R K. Angew. Chem. Int. Ed., 2015, 127:11961.
[57] Yang S H, Lee K B, Kong B. Angew. Chem. Int. Ed., 2009, 121:9324.
[58] Park J, Kim K, Lee J, Choi Y, Hong D, Yang S,Caruso F, Lee Y, Choi I. Angew. Chem. Int. Ed., 2014, 53:12420.
[59] Li W, Liu Z, Liu C Q, Guan Y J, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2017, 56:13661.
[60] Anshup A, Venkataraman J S, Subramaniam C, Kumar R R, Priya S, Kumar T R, Omkumar R V, John A, Pradeep T. Langmuir, 2005, 21:11562.
[61] Shamsaie A, Jonczyk M, Sturgis J, Robinson J P, Irudayaraj J. J. Biomed. Opt., 2007, 12:020502.
[62] El-Said W A, Cho H Y, Yea C H, Choi J W. Adv. Mater., 2014, 26:910.
[63] Tan L J, Wan A J, Li H L. ACS Appl. Mater. Inter., 2014, 6:18.
[64] Bao P, Chen Z, Tai R Z, Shen H M, Martin F L, Zhu Y G. J. Proteome Res., 2015, 14:1127.
[65] Ishida K, Cipriano T F, Rocha G M, Weissmüller G, Gomes F, Miranda K, Rozental S. Mem. Inst. Oswaldo Cruz, 2014, 109:220.
[66] Benavente-Valdés J R, Méndez-Zavala A, Morales-Oyervides L, Chisti Y, Montañez J. J. Chem. Technol. Biotechnol., 2017, 92(9):2453
[67] Lengke M F, And M E F, Southam G. Langmuir, 2006, 22:2780.
[68] Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2008, 10:507.
[69] Mahdavi M, Namvar F, Ahmad M B, Mohamad R. Mol., 2013, 18(5):5954.
[70] Khan A A, Fox E K, Górzny M L, Nikulina E, Brougham D F, Wege C, Bittner A M. Langmuir, 2013, 29:2094.
[71] Gopinath K, Karthika V, Gowri S, Senthilkumar V, Kumaresan S, Arumugam A. Journal of Nanostructure in Chemistry, 2014, 4:83.
[72] Castro L, Blázquez M L, Muñoz J A, González F, García-Balboa C, Ballester A. Process Biochem., 2011, 46:1076.
[73] Shaligram N S, Bule M, Bhambure R, Singhal R S, Singh S K, Szakacs G, Pandey A. Process Biochem., 2009, 44:939.
[74] Rajakumar G, Rahuman A A, Priyamvada B, Khanna V G, Kumar D K, Sujin P J. Mater. Lett., 2012, 68:115.
[75] Naika H R, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H. J. Taibah University for Science, 2015, 9:7.
[76] Arumugam A, Karthikeyan C, Haja Hameed A S, Gopinath K, Gowri S, Karthika V. Mater. Sci. Eng. C, 2015, 49:408.
[77] Elango G, Roopan S M. Spectrochim. Acta A, 2015, 139:367.
[78] Tian L J, Li W W, Zhu T T, Chen J J, Wang W K, An P F, Zhang L, Dong J C, Guan Y, Liu D F. J. Am. Chem. Soc., 2017, 139(35):12149.
[79] Bao H F, Hao N, Yang Y X, Zhao D Y. Nano Res., 2010, 3:481.
[80] Vido K, Spector D, Lagniel G, Lopez S, Toledano M B, Labarre J. J. Biol. Chem., 2001, 276:8469.
[81] Massardo D R, Pontieri P, Maddaluno L, Stefano M D, Alifano P, Giudice L D. BioMetals, 2009, 22:1089.
[82] Philip D. Spectrochim. Acta A, 2009, 73:374.
[83] Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Spectrochim. Acta A, 2011, 79:594.
[84] Ahmad N, Sharma S. Green & Sustainable Chemistry, 2012, 2:141.
[85] Dubey S P, Lahtinen M, Sillanpää M. Process Biochem., 2010, 45:1065.
[86] Klaus T, Joerger R, Olsson E. Proc. National Acad. Sci., 1999, 96:13611.
[87] Zhao R, Wang B, Yang X, Xiao Y, Wang X, Shao C, Tang R K. Angew. Chem. Int. Ed., 2016, 55:5225.
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[13] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[14] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[15] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.