English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1172-1183 DOI: 10.7536/PC200434 前一篇   后一篇

• 综述 •

缺陷与催化

谢超1, 周波1, 周灵1, 吴雨洁1, 王双印1,**()   

  1. 1. 湖南大学化学生物传感与计量学国家重点实验室 湖南省石墨烯材料与器件重点实验室 湖南大学化学化工学院 长沙 410082
  • 收稿日期:2020-03-12 修回日期:2020-04-03 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 王双印
  • 基金资助:
    国家自然科学基金项目(51402100); 国家自然科学基金项目(21573066); 国家自然科学基金项目(U19A2017); 国家自然科学基金项目(21825201); 湖南省自然科学基金项目(2016JJ1006); 湖南省自然科学基金项目(2016TP1009)

Defect with Catalysis

Chao Xie1, Bo Zhou1, Ling Zhou1, Yujie Wu1, Shuangyin Wang1,**()   

  1. 1. State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory for Graphene Materials and Devices, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
  • Received:2020-03-12 Revised:2020-04-03 Online:2020-08-24 Published:2020-04-23
  • Contact: Shuangyin Wang
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(51402100); the National Natural Science Foundation of China(21573066); the National Natural Science Foundation of China(U19A2017); the National Natural Science Foundation of China(21825201); Provincial Natural Science Foundation of Hunan(2016JJ1006); Provincial Natural Science Foundation of Hunan(2016TP1009)

催化技术在现代工业生产和日常生活中发挥着举足轻重的作用,开发高效的催化剂是催化领域重要的研究方向。近些年来,许多研究发现催化剂的缺陷对其催化活性有着重要的影响,同时各种各样的缺陷催化剂也被开发出来。尽管如此,缺陷与催化活性之间的关系仍有待厘清。本文围绕这一主题,分别介绍了固体缺陷化学的基础、催化剂中缺陷的类型、表征、可控构筑以及在催化中的作用和动态变化,最后进行总结和展望。希望通过本文阐明催化剂缺陷化学研究的起源与发展,强调缺陷对催化的重要性,为今后高效催化剂的进一步开发与机理研究提供指导。

Catalysis plays a significant role in modern industrial production and daily life and the exploration of efficient catalysts is an important issue of catalysis research. In recent decades, many researchers found the important effect of catalyst defects for their catalytic activity and various defective catalysts are prepared. Nevertheless, the relationship between defect and catalysis still needs clarification. In this review, we mainly introduce solid defect chemistry fundamental, defect types in catalysts, characterization and controllable construction of defects, the roles and the dynamic evolution of defects in catalysis. Finally, the summary and outlook for “defect with catalysis” are demonstrated. We hope this review can reveal the origin and development of catalyst defect chemistry, emphasize the importance of defect for catalysis and provide some guidance for exploration and mechanism researches of defect catalysts.

Contents

1 Introduction

2 Solid defect chemistry fundamental

2.1 Classification of solid defects

2.2 Symbols and chemical reaction of solid defect

3 Types, characterization and synthesis of defects in catalysts

3.1 Defect types in catalysts

3.2 Characterization of catalyst defects

3.3 Controllable synthesis of catalyst defects

4 Relationship between defects and activity of catalysts

5 Conclusion and outlook

()
表1 晶体缺陷的Kröger-Vink符号标记法[20]
Table 1 Kröger-Vink symbolic notation of crystal defects[20]
图1 (a) 不同缺陷程度的TiO2/b-Si的EPR谱图[40];(b) 体相CoSe2 和CoSe2超薄纳米片的正电子寿命谱图[42];(c) Mono-NTi-MMO及对照样品的XANES Ni K-edge 的R空间谱图[30]; (d) CoFe LDHs的XANES Fe K-edge 的R空间谱图[43]
Fig.1 (a) EPR spectra of TiO2/b-Si samples with different defects[40]; (b) Positron lifetime spectrum of the two CoSe2 samples[42]; (c) R space data of the Ni K-edge XANES spectra for the Mono-NTi-MMO and control samples[30]; (d) R space data of the Fe K-edge XANES spectra for CoFe LDHs[43]
图2 (a) 含有缺陷的CeO2的STM图像[46];(b) CO吸附在TiO2(111)上的STM图像[47];(c) 缺陷石墨烯的STEM图[49]; (d) 含有硫空位的WS2的STEM图像[51]
Fig.2 (a) STM image of CeO2 with defects[46]; (b) STM image of TiO2(111) with CO adsorption[47]; (c) STEM image of defective graphene[49]; (d) STEM image of WS2 with sulfur vacancies[51]
图3 (a) O空位在CO氧化过程中的作用的示意图[86];(b) 表面电荷与电催化活性的火山型关系图[96]
Fig.3 (a) Schematic diagram of the role of oxygen vacancy in catalyzing CO oxidation[86]; (b) Volcano relationships of surface charge and catalytic activities[96]
图4 (a) Au-SA/Def-TiO2及对比样的催化CO氧化的性能;(b) Au-SA/Def-TiO2 的活性中心结构示意图及其催化反应的稳定性[107]
Fig.4 (a) Catalytic performance of Au-SA/Def-TiO2 and control for CO oxidation; (b) Schematic diagram of active site structure and the catalytic stability of Au-SA/Def-TiO2[107]
图5 Pd nanoparticles/black TiO2/b-Si水还原光电阴极的示意图,梯度缺陷提升了b-TiO2的电子空穴对分离效率[40]
Fig.5 Schematic of Pd nanoparticles/black TiO2/b-Si photocathode for water reduction, graded oxygen defects of b-TiO2 improve the separation efficiency of electron-hole pair[40]
[1]
Xu R. Natl. Sci. Rev., 2018,5:1.
[2]
Rastei M V, Pierron Bohnes V, Toulemon D, Bouillet C, Kákay A, Hertel R, Tetsi E, Begin Colin S, Pichon B P. Adv. Funct. Mater., 2019,29:1903927.
[3]
Feng Y, Wu J G, Chi Q G, Li W L, Yu Y, Fei W D. Chem. Rev., 2020,120(3):1710. https://www.ncbi.nlm.nih.gov/pubmed/31899631

doi: 10.1021/acs.chemrev.9b00507     URL     pmid: 31899631
[4]
Huq T N, Lee L C, Eyre L, Li W, Jagt R A, Kim C, Fearn S, Pecunia V, Deschler F, MacManus-Driscoll J L, Hoye R L Z. Adv. Funct. Mater., 2020,1909983.
[5]
Wang H, Qiu Z, Xia W, Ming C, Han Y, Cao L, Lu J, Zhang P, Zhang S, Xu H, Sun Y Y. Phys. Chem. Lett., 2019,10:6996.
[6]
Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S. Adv. Mater., 2020,32:1905923.
[7]
Gai Boyes P L. Catal. Rev., 1992,34:1.
[8]
Koketsu T, Ma J, Morgan B J, Body M, Legein C, Goddard P, Borkiewicz O J, Strasser P, Dambournet D. Energy Stor. Mater., 2020,25:154.
[9]
Squires A G, Scanlon D O, Morgan B J. Chem. Mater., 2020,32(5):1876.
[10]
Xu X, Huang Y, Xie L, Wu D, Ge Z, He J. Chem. Mater., 2020,32:1693.
[11]
Chen J, Han Y, Kong X, Deng X, Park H J, Guo Y, Jin S, Qi Z, Lee Z, Qiao Z, Ruoff R S, Ji H. Angew. Chem. Int. Ed., 2016,55:13822.
[12]
Merkle R, Maier J. Top. Catal., 2006,38:141. http://link.springer.com/10.1007/s11244-006-0079-5

doi: 10.1007/s11244-006-0079-5     URL    
[13]
Gao P, Chen Z, Gong Y, Zhang R, Liu H, Tang P, Chen X, Passerini S, Liu J. Adv. Energy Mater., 2020, DOI: 10.1002/aenm.201903780. https://www.ncbi.nlm.nih.gov/pubmed/26225131

doi: 10.1002/aenm.201301544     URL     pmid: 26225131
[14]
Schlögl R. Angew. Chem. Int. Ed., 2015,54:3465.
[15]
Xu W, Thapa K B, Ju Q, Fang Z, Huang W. Coord. Chem. Rev., 2018,373:199.
[16]
Xu R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2018,6:191.
[17]
Maier J. Angew. Chem. Int. Ed., 1993,32(2):313.
[18]
Maier J. Angew. Chem. Int. Ed., 1993,32(4):528.
[19]
Kroger F. Annu. Rev. Mater. Sci., 1977,7:449.
[20]
Tilley R J D. Defects in Solids, John Wiley & Sons, 2008, DOI: 10.1002/9780470380758.
[21]
Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano, 2011,5:26. https://www.ncbi.nlm.nih.gov/pubmed/21090760

doi: 10.1021/nn102598m     URL     pmid: 21090760
[22]
Zhu W, Zhang L, Yang P, Hu C, Dong H, Zhao Z J, Mu, R, Gong J. ACS Energy Lett., 2018,3(9):2144.
[23]
Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang H H, Yu N F, Sun S G. Angew. Chem. Int. Ed., 2014,53:12522.
[24]
Bao D, Zhang Q, Meng F L, Zhong F L, Shi M M, Zhang Y, Yan J M, Jiang Q, Zhang X B. Adv. Mater., 2017, DOI: 10.1002/adma.201604799. https://www.ncbi.nlm.nih.gov/pubmed/32875631

URL     pmid: 32875631
[25]
Dong W, Liu Y, Zeng G, Zhang S, Cai T, Yuan J, Chen H, Gao J, Liu C. Colloid Interface Sci., 2018,518:156.
[26]
Li Z, Fu J Y, Feng Y, Dong C K, Liu H, Du X W. Nat. Catal., 2019,2:1107.
[27]
Yan Y C, Li X, Tang M, Zhong H, Huang J B, Bian T, Jiang Y, Han Y, Zhang H, Yang D R. Adv. Sci., 2018,5(8):1800430.
[28]
Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Angew. Chem. Int. Ed., 2018,57:6054.
[29]
Nolan M, Fearon J E, Watson G W. Solid State Ionics, 2006,177:3069.
[30]
Zhao Y, Jia X, Chen G, Shang L, Waterhouse G I, Wu L Z, Tung C H, O’Hare D, Zhang T. J. Am. Chem. Soc., 2016,138:6517.
[31]
Xu L, Tetreault A R, Pope M A. Chem. Mater., 2020,32:148.
[32]
Yang W, Zhang L, Xie J, Zhang X, Liu Q, Yao T, Wei S, Zhang Q, Xie Y. Angew. Chem. Int. Ed., 2016,55:6716.
[33]
Fang Z, Bueken B, De Vos D E, Fischer R A. Angew. Chem. Int. Ed., 2015,54:7234.
[34]
Canivet J, Vandichel M. Farrusseng D. Dalton. Trans., 2016,45:4090. https://www.ncbi.nlm.nih.gov/pubmed/26584043

doi: 10.1039/c5dt03522h     URL     pmid: 26584043
[35]
Yu Z, Gao L, Yuan S, Wu Y. Chem. Soc. Faraday Trans., 1992,88:3245.
[36]
Guzman J, Carrettin S, Corma A. Am. Chem. Soc., 2005,127:3286.
[37]
Lee Y, He G, Akey A J, Si R, Flytzani Stephanopoulos M, Herman I P. Am. Chem. Soc., 2011,133:12952. https://pubs.acs.org/doi/10.1021/ja204479j

doi: 10.1021/ja204479j     URL    
[38]
Silva I d C, Sigoli F A, Mazali I O. J. Phys. Chem. C, 2017,121:12928.
[39]
Wu Z, Li M, Howe J, Meyer H M, Overbury S H. Langmuir, 2010,26:16595. https://www.ncbi.nlm.nih.gov/pubmed/20617854

doi: 10.1021/la101723w     URL     pmid: 20617854
[40]
Zheng JY, Lyu Y H, Wang R L, Xie C, Zhou H J, Jiang S P, Wang S Y. Nat. Commun., 2018,9:3572. https://www.ncbi.nlm.nih.gov/pubmed/30177720

doi: 10.1038/s41467-018-05580-z     URL     pmid: 30177720
[41]
Zheng J, Lyu Y, Xie C, Wang R, Tao L, Wu H, Zhou H, Jiang S, Wang S. Adv. Mater., 2018,30:1801773. http://doi.wiley.com/10.1002/adma.v30.31

doi: 10.1002/adma.v30.31     URL    
[42]
Liu Y, Cheng H, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S. Am. Chem. Soc., 2014,136:15670. https://pubs.acs.org/doi/10.1021/ja5085157

doi: 10.1021/ja5085157     URL    
[43]
Zhou P, Wang Y, Xie C, Chen C, Liu H, Chen R, Huo J, Wang S. Chem. Commun., 2017,53:11778.
[44]
Wolf M J, Castleton C W M, Hermansson K, Kullgren J. Front. Chem., 2019,7:212. https://www.ncbi.nlm.nih.gov/pubmed/31245350

doi: 10.3389/fchem.2019.00212     URL     pmid: 31245350
[45]
Nazriq N K M, Krüger P, Yamada T K. Phys. Chem. Lett., 2020,11:1753.
[46]
Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R. Science, 2005,309:752. https://www.ncbi.nlm.nih.gov/pubmed/16051791

doi: 10.1126/science.1111568     URL     pmid: 16051791
[47]
Zhao Y, Wang Z, Cui X, Huang T, Wang B, Luo Y, Yang J, Hou J. Am. Chem. Soc., 2009,131:7958.
[48]
Song D, Zhang X, Lian C, Liu H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L, Yu R, Cheng Z, Song C, Ma X, Duan W, Xue Q, Zhu J. Adv. Funct. Mater., 2019,29:1903843.
[49]
Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. Adv. Mater., 2016,28:9532. https://www.ncbi.nlm.nih.gov/pubmed/27622869

doi: 10.1002/adma.201602912     URL     pmid: 27622869
[50]
Jeong H Y, Jin Y, Yun S J, Zhao J, Baik J, Keum D H, Lee H S, Lee Y H. Adv. Mater., 2017,29:1605043.
[51]
Liu H, Wang C, Zuo Z, Liu D, Luo J. Adv. Mater., 2020,32:1906540.
[52]
Huang T X, Cong X, Wu S S, Lin K Q, Yao X, He Y H, Wu J B, Bao Y F, Huang S C, Wang X, Tan P H, Ren B. Nat. Commun., 2019,10:5544. https://www.ncbi.nlm.nih.gov/pubmed/31804496

doi: 10.1038/s41467-019-13486-7     URL     pmid: 31804496
[53]
Pfisterer J H K, Baghernejad M, Giuzio G, Domke K F. Nat. Commun., 2019,10:5702. https://www.ncbi.nlm.nih.gov/pubmed/31836705

doi: 10.1038/s41467-019-13692-3     URL     pmid: 31836705
[54]
Lin Y, Gao T, Pan X, Kamenetska M, Thon S M. Adv. Mater., 2020, DOI: 10.1002/adma.201906602. https://www.ncbi.nlm.nih.gov/pubmed/32875631

doi: 10.1002/adma.202004555     URL     pmid: 32875631
[55]
Ponti A, Raza M H, Pantò F, Ferretti A M, Triolo C, Patanè S, Pinna N, Santangelo S. Langmuir, 2020,36:1305. https://www.ncbi.nlm.nih.gov/pubmed/31958957

doi: 10.1021/acs.langmuir.9b03587     URL     pmid: 31958957
[56]
Plodinec M, Nerl H C, Girgsdies F, Schlögl R, Lunkenbein T. ACS Catal., 2020,10:3183.
[57]
Klein J, Chesnyak V, Löw M, Schilling M, Engstfeld A K, Behm R J. Am. Chem. Soc., 2020,142:1278.
[58]
Deng G H, Qian Y, Wei Q, Zhang T, Rao Y. Phys. Chem. Lett., 2020,11:1738.
[59]
Liu Y, Wu Z, Naschitzki M, Gewinner S, Schöllkopf W, Li X, Paier J, Sauer J, Kuhlenbeck H, Freund H J. Am. Chem. Soc., 2020,142:2665.
[60]
Rong H, Mao J, Xin P, He D, Chen Y, Wang D, Niu Z, Wu Y, Li Y. Adv. Mater. 2016,28:2540. https://www.ncbi.nlm.nih.gov/pubmed/26836038

doi: 10.1002/adma.201504831     URL     pmid: 26836038
[61]
Xie S, Xu Q, Huang X. ChemCatChem, 2016,8:480.
[62]
He Y, Tang P, Hu Z, He Q, Zhu C, Wang L, Zeng Q, Golani P, Gao G, Fu W, Huang Z, Gao C, Xia J, Wang X, Wang X, Zhu C, Ramasse Q M, Zhang A, An B, Zhang Y, Martí Sánchez S, Morante J R, Wang L, Tay B K, Yakobson B I, Trampert A, Zhang H, Wu M, Wang Q J, Arbiol J, Liu Z. Nat. Commun., 2020,11:57. https://www.ncbi.nlm.nih.gov/pubmed/31896753

doi: 10.1038/s41467-019-13631-2     URL     pmid: 31896753
[63]
Wang Y, Qiao M, Li Y, Wang S. Small, 2018,14:1800136.
[64]
Wang X, Zhang Y, Si H, Zhang Q, Wu J, Gao L, Wei X, Sun Y, Liao Q, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Am. Chem. Soc., 2020,142:4298.
[65]
Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X Q. Adv. Energy Mater., 2018,8:1701694.
[66]
Zhuang L, Jia Y, He T, Du A, Yan X, Ge L, Zhu Z, Yao X. Nano Res., 2018,11:3509.
[67]
Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv. Mater., 2017,29:1606459.
[68]
Xie C, Yan D, Chen W, Zou Y, Chen R, Zang S, Wang Y, Yao X, Wang S. Mater. Today, 2019,31:47. https://linkinghub.elsevier.com/retrieve/pii/S1369702119304456

doi: 10.1016/j.mattod.2019.05.021     URL    
[69]
Chen J, Ryu G H, Zhang Q, Wen Y, Tai K L, Lu Y, Warner J H. ACS Nano, 2019,13:14486. https://www.ncbi.nlm.nih.gov/pubmed/31794193

doi: 10.1021/acsnano.9b08220     URL     pmid: 31794193
[70]
Yu M, Waag F, Chan C K, Weidenthaler C, Barcikowski S, Tüysüz H. ChemSusChem, 2020,13:520. https://www.ncbi.nlm.nih.gov/pubmed/31756030

doi: 10.1002/cssc.201903186     URL     pmid: 31756030
[71]
Yan C, Fang Z, Lv C, Zhou X, Chen G, Yu G. ACS Nano, 2018,12:8670. https://www.ncbi.nlm.nih.gov/pubmed/30020773

doi: 10.1021/acsnano.8b04614     URL     pmid: 30020773
[72]
Brazdil J F, Glaeser L C, Grasselli R K. Catal., 1983,81(1):142.
[73]
Wentrcek P R, Wise H. Catal., 1976,45:349.
[74]
Voorhoeve R J H, Remeika J P, Trimble L E. Ann N Y. Acad. Sci., 1976,272(1):3.
[75]
Beyerlein R A, Choi Feng C, Hall J B, Huggins B J, Ray G J. Top. Catal., 1997,4:27.
[76]
Sadykov V A, Tikhov S F, Tsybulya S V, Kryukova G N, Veniaminov S A, Kolomiichuk V N, Bulgakov N N, Paukshtis E A, Ivanov V P, Koshcheev S V, Zaikovskii V I, Isupova L A, Burgina L B. J. Mol. Catal. A: Chem., 2000,158:361.
[77]
Iwaoka H, Arita M, Horita Z. Acta Mater., 2016,107:168.
[78]
Lebedeva N P, Koper M T M, Feliu J M, Santen R A V. J. Phys. Chem. B, 2002,106:12938.
[79]
Nowotny J, Bak T, Nowotny M K, Sheppard L R. Int. J. Hydrog. Energy, 2007,32:2630.
[80]
Chen D, Guan Z, Zhang D, Trotochaud L, Crumlin E, Nemsak S, Bluhm H, Tuller H L, Chueh W C. Nat. Catal., 2020,3:116.
[81]
Jia Y, Jiang K, Wang H, Yao X. Chemistry, 2019,5:1371.
[82]
Yu K, L. L. Lou, Liu S, Zhou W. Adv. Sci., 2020,7(2):1901970.
[83]
Sun L, Huang X, Wang L, Janotti A. Phys. Rev. B, 2017,95:245101.
[84]
Zhang Z, Wang Y, Lu J, Zhang J, Li M, Liu X, Wang F. ACS Catal., 2018,8:2635.
[85]
Zhang G, Ji Q, Zhang K, Chen Y, Li Z, Liu H, Li J, Qu J. Nano Energy, 2019,59:10.
[86]
Pu Z Y, Liu X S, Jia A P, Xie Y L, Lu J Q, Luo M F. J. Phys. Chem. C, 2008,112:15045.
[87]
Yang J, Hu S, Fang Y, Hoang S, Li L, Yang W, Liang Z, Wu J, Hu J, Xiao W, Pan C, Luo Z, Ding J, Zhang L, Guo Y. ACS Catal., 2019,9:9751. https://pubs.acs.org/doi/10.1021/acscatal.9b02408

doi: 10.1021/acscatal.9b02408     URL    
[88]
Li Y, Wei Z, Gao F, Kovarik L, Baylon R A L, Peden C H F, Wang Y. ACS Catal., 2015,5(5):3006. https://pubs.acs.org/doi/10.1021/cs502084g

doi: 10.1021/cs502084g     URL    
[89]
Jia J, Qian C, Dong Y, Li Y F, Wang H, Ghoussoub M, Butler K T, Walsh A, Ozin G A. Chem. Soc. Rev., 2017,46:4631. https://www.ncbi.nlm.nih.gov/pubmed/28635998

doi: 10.1039/c7cs00026j     URL     pmid: 28635998
[90]
Wang M, Shen M, Jin X, Tian J, Li M, Zhou Y, Zhang L, Li Y, Shi J. ACS Catal., 2019,9:4573.
[91]
Liu B, Li C, Zhang G, Yao X, Chuang S S C, Li Z. ACS Catal., 2018,8(11):10446.
[92]
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Am. Chem. Soc., 2017,139:10929.
[93]
Ji P, Drake T, Murakami A, Oliveres P, Skone J H, Lin W. Am. Chem. Soc., 2018,140:10553.
[94]
Chen X, Lyu Y, Wang Z, Qiao X, Gates B C, Yang D. ACS Catal., 2020,10:2906.
[95]
Shen A, Zou Y, Wang Q, Dryfe R, Huang X, Dou S, Dai L, Wang S. Angew. Chem., 2014,53(40):10804. http://doi.wiley.com/10.1002/anie.201406695

doi: 10.1002/anie.201406695     URL    
[96]
Tao L, Qiao M, Jin R, Li Y, Xiao Z, Wang Y, Zhang N, Xie C, He Q, Jiang D. Angew. Chem. Int. Ed., 2019,1314:1031.
[97]
Wu C Y, Wolf W J, Levartovsky Y, Bechtel H A, Martin M C, Toste F D, Gross E. Nature, 2017,541:511. https://www.ncbi.nlm.nih.gov/pubmed/28068671

doi: 10.1038/nature20795     URL     pmid: 28068671
[98]
Fichtner J, Watzele S, Garlyyev B, Kluge R M, Haimerl F, El-Sayed H A, Li W J, Maillard F M, Dubau L, Chattot R, Michalička J, Macak J M, Wang W, Wang D, Gigl T, Hugenschmidt C, Bandarenka A S. ACS Catal., 2020,10:3131. https://pubs.acs.org/doi/10.1021/acscatal.9b04974

doi: 10.1021/acscatal.9b04974     URL    
[99]
Shi R, Zhao Y, Waterhouse G I N, Zhang S, Zhang T. ACS Catal., 2019,9:9739.
[100]
Yan D, Li H, Chen C, Zou Y, Wang S. Small Methods, 2018,1800331.
[101]
Gao D, Yang S, Xi L, Risch M, Song L, Lv Y, Li C, Li C, Chen G. Chem. Mater., 2020,32:1581.
[102]
Farias M J S, Cheuquepán W, Tanaka A A, Feliu J M. ACS Catal., 2020,10:543.
[103]
Lopez N, Illas F, Pacchioni G. Am. Chem. Soc., 1999,121:813.
[104]
Kwak J H, Hu J, Mei D, Yi C W, Kim D H, Peden C H F, Allard L F, Szanyi J. Science, 2009,325:1670. https://www.ncbi.nlm.nih.gov/pubmed/19779194

doi: 10.1126/science.1176745     URL     pmid: 19779194
[105]
Shi L, G. M. Deng, W. C. Li, Miao S, Q. N. Wang, W. P. Zhang, A. H. Lu. Angew. Chem. Int. Ed., 2015,54:13994.
[106]
Jones J, Xiong H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 2016,353:150. https://www.ncbi.nlm.nih.gov/pubmed/27387946

doi: 10.1126/science.aaf8800     URL     pmid: 27387946
[107]
Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Adv. Mater., 2018,30:1705369.
[108]
Klein B P, Harman S E, Ruppenthal L, Ruehl G M, Hall S J, Carey S J, Herritsch J, Schmid M, Maurer R J, Tonner R, Campbell C T, Gottfried J M. Chem. Mater., 2020,32:1041.
[109]
Zhang L, Yi J, Gao G, Yan X, Ning C, Chen J, Soo M T, Wood B, Yang D, Du A. Chem., 2018,4(2):285.
[110]
J. C. Li, Maurya S, Kim Y S, Li T, Wang L, Shi Q, Liu D, Feng S, Lin Y, Shao M. ACS Catal., 2020,10:2452.
[111]
Xie C, Chen W, Du S, Yan D, Zhang Y, Chen J, Liu B, Wang S. Nano Energy, 2020,71:104653.
[112]
Jiao X, Chen Z, Li X, Sun Y, Gao S, Yan W, Wang C, Zhang Q, Lin Y, Luo Y, Xie Y. Am. Chem. Soc., 2017,139:7586.
[113]
Chen F, Ma Z, Ye L, Ma T, Zhang T, Zhang Y, Huang H. Adv. Mater., 2020,32(11):1908350.
[114]
Fabbri E, Nachtegaal M, Binninger T, Cheng X, B. J. Kim, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Nat. Mater., 2017,16:925. https://www.ncbi.nlm.nih.gov/pubmed/28714982

doi: 10.1038/nmat4938     URL     pmid: 28714982
[115]
Bergmann A, Martinez Moreno E, Teschner D, Chernev P, Gliech M, de Araújo J F, Reier T, Dau H, Strasser P. Nat. Commun., 2015,6:8625. https://www.ncbi.nlm.nih.gov/pubmed/26456525

doi: 10.1038/ncomms9625     URL     pmid: 26456525
[116]
Fan K, Zou H, Duan L, Sun L. Adv. Energy Mater., 2020,10:1903571. https://onlinelibrary.wiley.com/toc/16146840/10/5

doi: 10.1002/aenm.v10.5     URL    
[117]
Wang Y, Ma Y, Li X B, Gao L, Gao X Y, Wei X Z, Zhang L P, Tung C H, Qiao L, Wu L Z. J. Am. Chem. Soc., 2020,142(10):4680. https://www.ncbi.nlm.nih.gov/pubmed/32066243

doi: 10.1021/jacs.9b11768     URL     pmid: 32066243
[118]
Chiang Y M, Lavik E B, Kosacki I, Tuller H L, Ying J Y. Appl. Phys. Lett., 1996,69:185. http://aip.scitation.org/doi/10.1063/1.117366

doi: 10.1063/1.117366     URL    
[119]
Campbell C T, Peden C H F. Science, 2005,309:713. https://www.ncbi.nlm.nih.gov/pubmed/16051777

doi: 10.1126/science.1113955     URL     pmid: 16051777
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
阅读次数
全文


摘要

缺陷与催化