English
新闻公告
More
化学进展 2013, Vol. 25 Issue (04): 642-649 DOI: 10.7536/PC121129 前一篇   后一篇

• 生物矿化 •

草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系

欧阳健明*, 张广娜, 王凤新, 李君君   

  1. 暨南大学生物矿化与结石病防治研究所 广州 510632
  • 收稿日期:2012-11-01 修回日期:2013-01-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 欧阳健明 E-mail:toyjm@jnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 81170649, 30672103)资助

Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation

Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun   

  1. Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
  • Received:2012-11-01 Revised:2013-01-01 Online:2013-04-24 Published:2013-04-09

肾结石的主要组分是草酸钙(CaOxa)等晶体。目前肾结石只能在形成以后才能被诊断,这给患者带来了极大的痛苦。肾结石的形成与尿液中的纳米微晶性质密切相关,如果能在结石形成之前或形成初期早期检测,则可以有效地预防肾结石发生发展。本文结合本课题组的工作,从微晶尺寸、微晶的聚集程度、形貌、化学组分、Zeta电位和稳定性等方面综述了肾结石患者尿液中纳米微晶的性质差异及其与肾结石形成的关系,并与健康对照者进行了比较;讨论了CaOxa结石患者在服用防石药物柠檬酸钾后尿微晶的性质变化。研究结果表明尿液中的纳米微晶的聚集是导致微晶快速增大和结石形成的关键因素,说明通过调控纳米微晶的物理、化学性质,有可能抑制肾结石的形成和复发。

The main constituents of kidney stones are inorganic crystals such as calcium oxalate (CaOxa). At present kidney stones can be diagnosed only after formation, which brings great suffering to patients. The formation of kidney stones related closely to the properties of urinary nanocrystallites. If kidney stone can be detected prior to its formation, it might be effectively prevented. In this paper, an review is given about the differences of urinary nanocrystallites between the patients of kidney stone and healthy controls, as well as the relationship with the formation of kidney stones. These differences comprise size and distribution, agglomeration, morphology, chemical composition, Zeta potential and stability of the microcrystals. The changes in these properties in CaOxa stone patients before and after taking potassium citrate are discussed. It is concluded that agglomeration of urinary nanocrystallites is a key factor leading to rapid growth of the crystallites and formation of urinary stones. Through the regulation of physical and chemical properties of nanocrystallites, the formation and recurrence of kidney stones are possibly inhibited.

Contents
1 Introduction
2 Differences of urine crystallites of kidney stone patients and controls
2.1 Size
2.2 Aggregation
2.3 Morphology
2.4 Chemical composition
2.5 Zeta potential
2.6 Stability
3 Agglomeration of urinary nanocrystallites promotes stone formation
4 Properties changes in urinary nanocrystallites in calcium oxalate stone patients before and after potassium citrate administration
5 Conclusions and outlook

中图分类号: 

()

[1] Lee T, Lin Y C. Cryst. Growth Des., 2011, 11(7): 2973-2992
[2] An Z, Lee S, Oppenheimer H, Wesson J A, Ward M D. J. Am. Chem. Soc., 2010, 132(38): 13188-13190
[3] Knauf F, Preisig P A. Kidney Int., 2011, 80(4): 327-329
[4] Peng H, Ouyang J M, Yao X Q, Yang R E. Int. J. Nanomed., 2012, 7(8): 4727-4737
[5] He J Y, Deng S P, Ouyang J M. IEEE Trans. Nanobiosci., 2010, 9(2): 156-163
[6] Verdesca S, Fogazzi G B, Garigali G, Messa P, Daudon M. Clin. Chem. Lab. Med., 2011, 49(3): 515-520
[7] Robertson W G, Peacock M, Marshall R W, Marshall D H, Nordin B E. New Engl. J. Med., 1976, 294(5): 249-252
[8] Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P. Kidney Int., 2005, 67: 1934-1943
[9] Daudon M, Jungers P. Nephron Physiol., 2004, 98: 31-36
[10] Robert M, Boularan A M, Delbos O, Monnier L, Grasset D. Eur. Urol., 1996, 29(4): 456-461
[11] Robert M, Boularan A M, Delbos O, Guiter J, Descomps B. Urol. Int., 1998, 60: 41-46
[12] Elliot J S, Rabinowitz I N. J. Urol., 1980, 123(3): 324-327
[13] Werness P G, Bergert J H, Smith L H. J. Cryst Growth, 1981, 53: 166-181
[14] Herrmann U, Schwille P O. Urol. Res., 1992, 20(2): 157-64
[15] Gui B S, Huang Z J, Xu X J, Li M R, He J Y, Ouyang J M. J. Nanosci. Nanotechnol., 2010, 10(8): 5232-5241
[16] Deng F, Ouyang J M. Mat. Sci. Eng. C-Bio. S, 2006, 26(4): 688-691
[17] He J Y, Ouyang J M, Yang Y E. Mater. Sci. Eng. C-Bio S, 2010, 30: 878-885
[18] Li J J, Hou S H, Xia Z Y, Ouyang J M. Spectrosc. Spect. Anal., 2011, 31(8): 2263-2267
[19] Mullin J W. Crystallization, 3rd ed. London: Butterworth Heinemann, 2000. 102-288
[20] Michelacci Y M, Glashan R Q, Schor N. Kidney Int., 1989, 36: 1022-1028
[21] Schwille P O, Schmiedl A, Herrmann U, Fan J, Gottlieb D, Manoharan M, Wipplinger J. Urol. Res., 1999, 27: 117-126
[22] Qiu S R, Wierzbicki A, Salter E A, Zepeda S, Orme C A, Hoyer J R, Nancollas G H, Cody A M, de Yoreo J J. J. Am. Chem. Soc., 2005, 127: 9036-9044
[23] Saw N K, Rao P N, Kavanagh J P. Urol. Res., 2008, 36: 11-15
[24] Baumann J M, Affolter B, Meyer R. Urol. Res., 2010, 38(1): 21-27
[25] Vervaet B A, Verhulst A, Dauwe S E, de Broe M E, D'Haese P C. Kidney Int., 2009, 75(1): 41-51
[26] Daudon M, Cohen-Solal F, Barbey F, Gagnadoux M, Knebelmann B, Jungers P. Urol. Res., 2003, 31: 207-211
[27] Wesson A J, Worcester M E, Wiessner J H, Mandel N S. Kidney Int., 1998, 53: 952-957
[28] Mandel N. J. Am. Soc. Nephrol. 1994, 5 (Suppl. 1): S37-S45
[29] Murphy D L, Beretvas S N, Pituch K A. Structural Equation Modeing: A Multidisciplinary Journal, 2011, 18(3): 430-448
[30] Frisken B. Appl. Opt., 2001, 40(24): 4087-4091
[31] Fuselier H A, Ward D M. Urology, 1995, 45: 942-946
[32] 李君君 (Li J J), 侯善华 (Hou S H), 夏志月 (Xia Z Y), 欧阳健明 (Ouyang J M). 无机化学学报 (J. Inorg. Chem.), 2012, 28(2): 245-250
[33] 晋勇 (Jin Y), 孙小松 (Sun X S), 薛屺 (Xue J). X-射线衍射分析技术 (X-ray Diffraction Analysis Techniques). 北京: 国防工业出版社 (Beijing: National Defence Industrial Press), 2008. 173-174, 193
[34] Ding Y M, Xia Z Y, Zhang G N, Ouyang J M. Adv. Mater. Res., 2012, 554/556: 47-50
[35] Duan C Y, Zhang G N, Ding Y M, Gui B S, Xue J F, Ouyang J M. Int. J. Nanomed., 2013, 8: 909-918

[1] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[2] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[3] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[4] 潘宇, 历娜, 周润宏, 赵敏. 趋磁细菌纳米磁小体的研究与应用[J]. 化学进展, 2013, 25(10): 1781-1794.
[5] 王本, 唐睿康*. 生物矿化:无机化学和生物医学间的桥梁之一[J]. 化学进展, 2013, 25(04): 633-641.
[6] 刘闯, 王元贵, 耿家青, 姜忠义, 杨冬. 无机纳米粒子的生物合成[J]. 化学进展, 2011, 23(12): 2510-2521.
[7] 吴聪孟, 王小强, 赵康, 曹美文, 徐海, 吕建仁. 原子力显微镜法研究方解石(104)面的生长及溶解[J]. 化学进展, 2011, 23(01): 107-124.
[8] 欧阳健明 杨如娥 谈金. 肾上皮细胞损伤对草酸钙形成和黏附的影响*[J]. 化学进展, 2010, 22(08): 1665-1671.
[9] 蔡国斌,郭晓辉,俞书宏. 聚合物控制模拟生物矿化*[J]. 化学进展, 2008, 20(0708): 1001-1014.
[10] 徐旭荣,蔡安华,刘睿,潘海华,唐睿康. 生物矿化中的无定形碳酸钙*[J]. 化学进展, 2008, 20(01): 54-59.
[11] 袁欢欣 欧阳健明 . 酒石酸及其盐抑制泌尿系结石的化学基础[J]. 化学进展, 2006, 18(05): 573-578.
[12] 欧阳健明. 单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配*[J]. 化学进展, 2005, 17(05): 931-937.
[13] 欧阳健明. 生物矿物及其矿化过程*[J]. 化学进展, 2005, 17(04): 749-756.
[14] 欧阳健明,陈德志. 自组装膜调控下生物矿物晶体的生长*[J]. 化学进展, 2005, 17(03): 563-572.
[15] 王荔军,郭中满,李铁津,李敏. 生物矿化纳米结构材料与植物硅营养[J]. 化学进展, 1999, 11(02): 119-.