English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 361-370 DOI: 10.7536/PC200106   后一篇

• •

手性钙钛矿纳米材料的构筑及光电性能

周明浩1,2, 姜爽1, 张天永1,**(), 史永宏2, 金雪2, 段鹏飞2,3,**()   

  1. 1. 天津大学化工学院 天津 300072
    2. 国家纳米科学中心 中国科学院纳米系统与多级次制造重点实验室 中国科学院纳米科学卓越创新中心 北京 100190
    3. 中国科学院大学 北京 100049
  • 收稿日期:2020-01-09 修回日期:2020-02-05 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 张天永, 段鹏飞
  • 作者简介:
    ** 通信作者 Corresponding author e-mail: (Tianyong Zhang); (Pengfei Duan)
  • 基金资助:
    国家自然科学基金项目(21802027, 91856115, 51673050)

Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials

Minghao Zhou1,2, Shuang Jiang1, Tianyong Zhang1,**(), Yonghong Shi2, Xue Jin2, Pengfei Duan2,3,**()   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2. Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
  • Received:2020-01-09 Revised:2020-02-05 Online:2020-04-05 Published:2020-03-30
  • Contact: Tianyong Zhang, Pengfei Duan
  • Supported by:
    the National Natural Science Foundation of China(21802027, 91856115, 51673050)

金属卤化物钙钛矿纳米材料因其丰富的化学结构和优异的光电性能,已成为一种极具应用前景的半导体材料。在钙钛矿无机框架中引入有机手性分子后,能够比较容易地得到手性钙钛矿纳米材料,从而可以极大地推动智能光电材料和自旋电子器件的快速发展。本文将综述手性钙钛矿纳米材料的构筑与手性产生机理的最新研究进展,包括一维手性钙钛矿纳米线、二维及准二维手性有机-无机杂化钙钛矿纳米片、三维手性钙钛矿纳米晶、超分子组装体系中诱导的手性钙钛矿纳米晶等。值得注意的是,不同种类的手性钙钛矿纳米材料在圆二色性、圆偏振发光、铁电性、自旋电子学等方面展现出优异的光电性能及巨大的应用前景。但是,有关手性钙钛矿纳米材料的研究目前还处于初级阶段,其中很多机理还存在争议,许多基础性和应用型的工作也有待开展。

Metal halide perovskite has become a promising semiconductor material due to its diverse chemical structure and excellent optoelectronic properties. After introducing organic chiral molecule into the perovskite framework, chiral perovskite nanomaterials can be obtained, which has greatly promoted the rapid development of smart optoelectronic materials and spin electronic devices. This paper reviews the latest research progress in the construction of chiral perovskite nanomaterials, including one-dimensional chiral perovskite nanowires, two-dimensional and quasi-two-dimensional chiral organic-inorganic hybrid perovskite nanosheets, three-dimensional chiral perovskite nanocrystals, chiral perovskite nanocrystals induced in supramolecular assembly system and the mechanism for the formation of chirality. It is worth noting that different types of chiral perovskite nanomaterials show excellent optoelectronic properties and huge application prospects in terms of circular dichroism, circularly polarized luminescence, ferroelectricity and spintronics. However, the research on chiral perovskite nanomaterials is still in its infancy, and many of its mechanisms are still controversial, and many basic and applied work needs to be carried out.

Contents

1 Introduction

2 Construction strategy of chiral perovskite

3 Research progresses of the chiral perovskites in different dimensions

3.1 1D chiral perovskite nanowires

3.2 2D chiral perovskite film

3.3 Quasi-2D chiral perovskite film

3.4 3D chiral perovskite nanocrystals

3.5 Co-assembly of supramolecular gel and achiral perovskite nanocrystals

4 Conclusion and outlook

()
图1 (a) 不同维数手性钙钛矿结构示意图;(b) 手性胺阳离子参与钙钛矿的结晶;(c) 手性配体表面诱导的钙钛矿纳米晶;(d) 超分子组装体系中诱导的手性钙钛矿纳米晶
Fig. 1 (a) Schematic diagram of chiral perovskite structure with different dimensions; (b) Chiral amine cations participate in crystallization of perovskite; (c) Surface chiral ligand-induced perovskite nanocrystals; (d) Chiral perovskite nanocrystals induced in supramolecular assembly system
图2 [(S)-苯乙胺][PbBr3]形成的一维手性钙钛矿单晶 (a) 沿b轴观察;(b) 沿a轴观察[16];(c) 一维手性钙钛矿C5H14N2PbCl4·H2O中扭曲的八面体PbCl6具有不均一的Pb—Cl键长;(d) 扭曲的八面体PbCl6形成无限双链;(e) C5H14N2PbCl4·H2O的堆叠架构;(f) C5H14N2PbCl4·H2O的光致发光照片和相应的色度坐标,激发波长分别在330 nm、344 nm和360 nm[27]
Fig. 2 [(S)-Phenethylammonium][PbBr3] 1D chiral perovskite single crystal (a) viewed along the b axis; (b) viewed along the a axis[16]; (c) Distorted PbCl6 octahedron with inhomogeneous Pb—Cl bond lengths in 1D chiral perovskite C5H14N2PbCl4·H2O; (d) Infinite double-chain formed by distorted PbCl6 octahedra; (e) Packing framework of C5H14N2PbCl4·H2O; (f) Photoluminescence photographs and corresponding chromaticity coordinates of C5H14N2PbCl4·H2O excited at 330 nm, 344 nm, and 360 nm[27]
图3 (a) 上图:R-MBA和S-MBA的分子结构,下图:(R-MBA)2PbI4和(S-MBA)2PbI4的晶体结构;(b) (R-MBA)2PbI4、(S-MBA)2PbI4和(rac-MBA)2PbI4薄膜的CD光谱(上)和归一化吸收光谱(下)[30]
Fig. 3 (a) Molecular structures of R-MBA and S-MBA (up), crystalline structures of (R-MBA)2PbI4 and (S-MBA)2PbI4 (down); (b) Transmission CD spectra (up), and normalized extinction spectra (down) of (R-MBA)2PbI4, (S-MBA)2PbI4 and (rac-MBA)2PbI4 [30]
图4 (a) 上图:R-LIPF和S-LIPF晶体结构的堆积视图,显示镜像关系,下图:有机阳离子与无机层之间的氢键作用和卤素-卤素相互作用[33];2D手性钙钛矿(R-/S-MBA)2PbI4中的圆偏振光致发光:(b) 圆偏振发光偏振度 | P | 的统计直方图,激发波长:473 nm,温度:77 K;(c) 偏振度随温度的变化图[34]
Fig. 4 (a) Up: Packing views of the crystal structures of R-LIPF and S-LIPF, showing a mirror-image relationship, down: Hydrogen-bonding and halogen-halogen interactions between the organic cations and inorganic layers[33]; Circularly polarized photoluminescence in 2D chiral perovskites (R- and S-MBA)2PbI4: (b) Statistical histogram of the degree of circularly polarized PL |P| for (R- and S-MBA)2PbI4 excited by a 473 nm laser at 77 K; (c) Degree of circularly polarized PL (P) as a function of temperature of two microplates for each type of chiral 2D perovskites[34]
图5 (a) 具有不同无机层(<n>)的RDCP的结构示意图。 手性强度随<n>层的增加而降低;(b) rac-RDCP、R-RDCP和S-RDCP在磁场下从-7 T到7 T的光致发光偏振度[42]
Fig. 5 (a) Schematic illustration of the structures of RDCPs with different inorganic layers (<n>). Chirality decreases with increasing <n> layers; (b) Degree of photoluminescence polarization for rac-RDCP, R-RDCP, and S-RDCP with magnetic field varied from -7 T to 7 T[42]
图6 (a) 钙钛矿纳米晶单光子或双光子圆偏振发光;(b) PMMA膜中手性钙钛矿纳米晶的双光子上转换圆偏振发光(TP-UCPL)光谱;(c) 手性CsPbBr3钙钛矿中手性来源的机理解释[47];(d) 使用DACH对映体在油胺封端的钙钛矿纳米晶上进行配体交换:正己烷中油胺封端的钙钛矿纳米晶(左)和正己烷中S-DACH封端的钙钛矿纳米晶(右)[24]
Fig. 6 (a) Single-photon or two-photon circularly polarized emission of perovskite nanocrystals; (b)Two-photon upconverted circularly polarized luminescence (TP-UCPL) spectra of chiral perovskite nanocrystals in PMMA film; (c) Schematic illustration of the origin of chirality in chiral CsPbBr3 perovskite[47]; (d) Ligand exchange on an OA-capped perovskite NC using pure enantiomers of DACH: OA-capped perovskite NC in n-hexane (left) and S-DACH-capped perovskite NC in n-hexane obtained by ligand exchange (right)[24]
图7 (a) 钙钛矿纳米晶在手性凝胶中可能的共组装诱导手性示意图;(b)共组装体系的镜像CPL光谱,λex=310 nm[25]
Fig. 7 (a) Illustration of the possible co-assembly-induced chirality of perovskite NCs in chiral gels; (b) Mirror-image CPL spectra of the corresponding coassembly samples, λex=310 nm[25]
[1]
Mitzi D B , Feild C A , Harrison W T A , Guloy A M Nature, 1994,369:467.

doi: 10.1038/369467a0     URL    
[2]
Mitzi D B , Wang S , Feild C A , Chess C A , Guloy A M . Science, 1995,267:1473.
[3]
Stranks S D , Eperon G E , Grancini G , Menelaou C , Alcocer M J P , Leijtens T , Herz L M , Petrozza A , Snaith H J . Science, 2013,342:341. dbbaf605-4077-441c-9cb4-4be4cf785581

doi: 10.1126/science.1243982     URL    
[4]
Juarez-Perez E J , Sanchez R S , Badia L , Garcia-Belmonte G , Kang Y S , Mora-Sero I , Bisquert J . J Phys. Chem. Lett., 2014,5:2390. 2c3b219e-d68e-44b8-886b-74009800f03f http://dx.doi.org/10.1021/jz5011169

doi: 10.1021/jz5011169     URL    
[5]
Shi D , Adinolfi V , Comin R , Yuan M , Alarousu E , Buin A , Chen Y , Hoogland S , Rothenberger A , Katsiev K , Losovyj Y , Zhang X , Dowben P A , Mohammed O F , Sargent E H , Bakr O M . Science, 2015,347:519. https://www.sciencemag.org/lookup/doi/10.1126/science.aaa2725

doi: 10.1126/science.aaa2725     URL    
[6]
Zhu H , Fu Y , Meng F , Wu X , Gong Z , Ding Q , Gustafsson M V , Trinh M T , Jin S , Zhu X Y . Nature Materials, 2015,14:636.
[7]
Eperon G E , Leijtens T , Bush K A , Prasanna R , Green T , Wang J T W , McMeekin D P , Volonakis G , Milot R L , May R , Palmstrom A , Slotcavage D J , Belisle R A , Patel J B , Parrott E S , Sutton R J , Ma W , Moghadam F , Conings B , Babayigit A , Boyen H G , Bent S , Giustino F , Herz L M , Johnston M B , McGehee M D , Snaith H J . Science, 2016,354:861. https://www.sciencemag.org/lookup/doi/10.1126/science.aaf9717

doi: 10.1126/science.aaf9717     URL    
[8]
Tsai H , Nie W , Blancon J C , Stoumpos C C , Asadpour R , Harutyunyan B , Neukirch A J , Verduzco R , Crochet J J , Tretiak S , Pedesseau L , Even J , Alam M A , Gupta G , Lou J , Ajayan P M , Bedzyk M J , Kanatzidis M G , Mohite A D . Nature, 2016,536:312. https://doi.org/10.1038/nature18306

doi: 10.1038/nature18306     URL    
[9]
Bi D , Yi C , Luo J , Décoppet J D , Zhang F , Zakeeruddin Shaik M , Li X , Hagfeldt A , Grätzel M . Nature Energy, 2016,1:16142. https://doi.org/10.1038/nenergy.2016.142

doi: 10.1038/nenergy.2016.142     URL    
[10]
琚成功(Ju C G), 张宝(Zhang B), 冯亚青(Feng Y Q) . 化学进展(Prog. Chem.), 2016,28: 219. 2654eb94-56de-4922-9b02-98c2367cd1d2 http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC150311

doi: 10.7536/PC150311     URL    
[11]
闫业玲(Yan Y L), 曹俊媚(Cao J M), 孟凡宁(Meng F N), 王宁(Wang N), 高立国(Gao L G), 马廷丽(Ma T L) . 化学进展(Prog. Chem.), 2019,31:1031. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC181202

doi: 10.7536/PC181202     URL    
[12]
Yuan M , Quan L N , Comin R , Walters G , Sabatini R , Voznyy O , Hoogland S , Zhao Y , Beauregard E M , Kanjanaboos P , Lu Z , Kim D H , Sargent E H . Nature Nanotechnology, 2016,11:872. https://doi.org/10.1038/nnano.2016.110

doi: 10.1038/nnano.2016.110     URL    
[13]
Wang N , Cheng L , Ge R , Zhang S , Miao Y , Zou W , Yi C , Sun Y , Cao Y , Yang R , Wei Y , Guo Q , Ke Y , Yu M , Jin Y , Liu Y , Ding Q , Di D , Yang L , Xing G , Tian H , Jin C , Gao F , Friend R H , Wang J , Huang W . Nat. Photonics., 2016,10:699. https://doi.org/10.1038/nphoton.2016.185

doi: 10.1038/nphoton.2016.185     URL    
[14]
Lin Q , Armin A , Burn P L , Meredith P . Nat. Photonics., 2015,9:687. https://doi.org/10.1038/nphoton.2015.175

doi: 10.1038/nphoton.2015.175     URL    
[15]
Wei H , Fang Y , Mulligan P , Chuirazzi W , Fang H H , Wang C , Ecker B R , Gao Y , Loi M A , Cao L , Huang J . Nat. Photonics., 2016,10:333. https://doi.org/10.1038/nphoton.2016.41

doi: 10.1038/nphoton.2016.41     URL    
[16]
Billing D G , Lemmerer A . Acta Crystallographica Section E, 2003,59:m381. http://scripts.iucr.org/cgi-bin/paper?S1600536803010985

doi: 10.1107/S1600536803010985     URL    
[17]
Billing D G , Lemmerer A . CrystEngComm, 2006,8:686. http://xlink.rsc.org/?DOI=B606987H

doi: 10.1039/B606987H     URL    
[18]
Ben-Moshe A , Govorov A O , Markovich G. Angew. Chem. Int. Ed., 2013,52:1275. http://doi.wiley.com/10.1002/anie.201207489

doi: 10.1002/anie.201207489     URL    
[19]
Ben-Moshe A , Wolf S G , Sadan M B , Houben L , Fan Z , Govorov A O , Markovich G . Nat. Commun., 2014,5:4302. https://doi.org/10.1038/ncomms5302

doi: 10.1038/ncomms5302     URL    
[20]
Elliott S D , Moloney M P , Gun’ko Y K. Nano Lett., 2008,8:2452. https://pubs.acs.org/doi/10.1021/nl801453g

doi: 10.1021/nl801453g     URL    
[21]
Zhou Y , Yang M , Sun K , Tang Z , Kotov N A .J Am. Chem. Soc., 2010,132:6006. https://pubs.acs.org/doi/10.1021/ja906894r

doi: 10.1021/ja906894r     URL    
[22]
Mukhina M V , Maslov V G , Baranov A V , Fedorov A V , Orlova A O , Purcell-Milton F , Govan J , Gun’ko Y K. Nano Lett., 2015,15:2844. https://pubs.acs.org/doi/10.1021/nl504439w

doi: 10.1021/nl504439w     URL    
[23]
Tohgha U , Deol K K , Porter A G , Bartko S G , Choi J K , Leonard B M , Varga K , Kubelka J , Muller G , Balaz M . ACS Nano, 2013,7:11094. https://pubs.acs.org/doi/10.1021/nn404832f

doi: 10.1021/nn404832f     URL    
[24]
He T , Li J , Li X , Ren C , Luo Y , Zhao F , Chen R , Lin X , Zhang J. Appl. Phys. Lett., 2017,111:151102. http://aip.scitation.org/doi/10.1063/1.5001151

doi: 10.1063/1.5001151     URL    
[25]
Shi Y , Duan P , Huo S , Li Y , Liu M . Adv. Mater., 2018,30:1705011. http://doi.wiley.com/10.1002/adma.v30.12

doi: 10.1002/adma.v30.12     URL    
[26]
Hu T , Smith M D , Dohner E R , Sher M J , Wu X , Trinh M T , Fisher A , Corbett J , Zhu X Y , Karunadasa H I , Lindenberg A M .J Phys. Chem. Lett., 2016,7:2258. https://pubs.acs.org/doi/10.1021/acs.jpclett.6b00793

doi: 10.1021/acs.jpclett.6b00793     URL    
[27]
Peng Y , Yao Y , Li L , Wu Z , Wang S , Luo J . J. Phys. Chem. C, 2018,6:6033.
[28]
王宏磊(Wang H L), 吕文珍(Lu W Z), 唐星星(Tang X X), 陈铃峰(Chen L F), 陈润锋(Chen R F), 黄维(Huang W) . 化学进展(Prog. Chem.), 2017,29:859. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC170512
[29]
Yang Y , da Costa R C , Fuchter M J , Campbell A J . Nat. Photonics., 2013,7:634. https://doi.org/10.1038/nphoton.2013.176

doi: 10.1038/nphoton.2013.176     URL    
[30]
Ahn J , Lee E , Tan J , Yang W , Kim B , Moon J . Mater. Horizons, 2017,4:851.
[31]
Yuan C , Li X , Semin S , Feng Y , Rasing T , Xu J . Nano Lett., 2018,18:5411. https://pubs.acs.org/doi/10.1021/acs.nanolett.8b01616

doi: 10.1021/acs.nanolett.8b01616     URL    
[32]
Georgieva Z N , Bloom B P , Ghosh S , Waldeck D H. Adv. Mater., 2018,30:1800097. http://doi.wiley.com/10.1002/adma.201800097

doi: 10.1002/adma.201800097     URL    
[33]
Yang C K , Chen W N , Ding Y T , Wang J , Rao Y , Liao W Q , Tang Y Y , Li P F , Wang Z X , Xiong R G. Adv. Mater., 2019,31:1808088. https://onlinelibrary.wiley.com/toc/15214095/31/16

doi: 10.1002/adma.v31.16     URL    
[34]
Ma J , Fang C , Chen C , Jin L , Wang J , Wang S , Tang J , Li D . ACS Nano, 2019,13:3659. https://pubs.acs.org/doi/10.1021/acsnano.9b00302

doi: 10.1021/acsnano.9b00302     URL    
[35]
Xing G , Wu B , Wu X , Li M , Du B , Wei Q , Guo J , Yeow E K L , Sum T C , Huang W Nat. Commun., 2017,8:14558. https://doi.org/10.1038/ncomms14558

doi: 10.1038/ncomms14558     URL    
[36]
&#x017D;uti&#x0117; I , Fabian J , Das Sarma S . Reviews of Modern Physics, 2004,76:323. https://link.aps.org/doi/10.1103/RevModPhys.76.323

doi: 10.1103/RevModPhys.76.323     URL    
[37]
Naaman R , Waldeck D H .J Phys. Chem. Lett., 2012,3:2178. e42acfcd-6e2f-42e9-9929-a8ef4a7a9a05 http://dx.doi.org/10.1021/jz300793y

doi: 10.1021/jz300793y     URL    
[38]
Canneson D , Shornikova E V , Yakovlev D R , Rogge T , Mitioglu A A , Ballottin M V , Christianen P C M , Lhuillier E , Bayer M , Biadala L Nano Lett., 2017,17:6177. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b02827

doi: 10.1021/acs.nanolett.7b02827     URL    
[39]
Odenthal P , Talmadge W , Gundlach N , Wang R , Zhang C , Sun D , Yu Z G , Valy Vardeny Z , Li Y S . Nature Physics, 2017,13:894. http://www.nature.com/articles/nphys4145

doi: 10.1038/nphys4145     URL    
[40]
Bode M , Heide M , von Bergmann K , Ferriani P , Heinze S , Bihlmayer G , Kubetzka A , Pietzsch O , Blügel S , Wiesendanger R Nature, 2007,447:190. https://doi.org/10.1038/nature05802

doi: 10.1038/nature05802     URL    
[41]
Emori S , Bauer U , Ahn S M , Martinez E , Beach G S D Nature Materials, 2013,12:611. https://doi.org/10.1038/nmat3675

doi: 10.1038/nmat3675     URL    
[42]
Long G , Jiang C , Sabatini R , Yang Z , Wei M , Quan L N , Liang Q , Rasmita A , Askerka M , Walters G , Gong X , Xing J , Wen X , Quintero-Bermudez R , Yuan H , Xing G , Wang X R , Song D , Voznyy O , Zhang M , Hoogland S , Gao W , Xiong Q , Sargent E H. , Nat. Photonics., 2018,12:528. https://doi.org/10.1038/s41566-018-0220-6

doi: 10.1038/s41566-018-0220-6     URL    
[43]
Michaeli K , Kantor-Uriel N , Naaman R , Waldeck D H. Chem. Soc. Rev., 2016,45:6478. http://xlink.rsc.org/?DOI=C6CS00369A

doi: 10.1039/C6CS00369A     URL    
[44]
Becker M , Klüner T , Wark M . Dalton T., 2017,46:3500.
[45]
Xing G , Mathews N , Sun S , Lim S S , Lam Y M , Grätzel M , Mhaisalkar S , Sum T C . Science, 2013,342:344. d592c998-f16f-4dc4-b208-4ae0b71f548e http://dx.doi.org/10.1126/science.1243167

doi: 10.1126/science.1243167     URL    
[46]
Long G , Zhou Y , Zhang M , Sabatini R , Rasmita A , Huang L , Lakhwani G , Gao W . Adv. Mater., 2019,31:1807628. https://onlinelibrary.wiley.com/toc/15214095/31/17

doi: 10.1002/adma.v31.17     URL    
[47]
Chen W , Zhang S , Zhou M , Zhao T , Qin X , Liu X , Liu M , Duan P . J Phys. Chem. Lett., 2019,10:3290. https://pubs.acs.org/doi/10.1021/acs.jpclett.9b01224

doi: 10.1021/acs.jpclett.9b01224     URL    
[48]
Naito M , Iwahori K , Miura A , Yamane M , Yamashita I. Angew. Chem. Int. Ed., 2010,49:7006. http://doi.wiley.com/10.1002/anie.201002552

doi: 10.1002/anie.201002552     URL    
[49]
Han B . Acta Physico-Chimica Sinica, 2019,35:1177. lt;![CDATA[http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB201904088]]>

doi: 10.3866/PKU.WHXB201904088     URL    
[50]
Huo S , Duan P , Jiao T , Peng Q , Liu M. Angew. Chem. Int. Ed., 2017,56:12174. http://doi.wiley.com/10.1002/anie.201706308

doi: 10.1002/anie.201706308     URL    
[51]
Jin X , Sang Y , Shi Y , Li Y , Zhu X , Duan P , Liu M . ACS Nano, 2019,13:2804. https://pubs.acs.org/doi/10.1021/acsnano.8b08273

doi: 10.1021/acsnano.8b08273     URL    
[52]
Han B . Acta Physico-Chimica Sinica, 2017,33:2325.
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[6] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[7] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[8] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[9] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[10] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[11] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[12] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[13] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[14] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[15] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.