English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1614-1626 DOI: 10.7536/PC200821 前一篇   后一篇

• 综述 •

表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用

胡泽浩1,2, 陈婷1,2,*(), 徐彦乔2, 江伟辉2, 谢志翔1   

  1. 1 苏州科技大学材料与器件研究院 苏州 215009
    2 景德镇陶瓷大学材料科学与工程学院 景德镇 333001
  • 收稿日期:2020-08-10 修回日期:2020-11-23 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 陈婷
  • 基金资助:
    国家自然科学基金项目(52062019); 江苏省高校青蓝工程和景德镇科技局项目(20192GYZD008-15); 江苏省高校青蓝工程和景德镇科技局项目(20192GYZD008-18)

Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals

Zehao Hu1,2, Ting Chen1,2(), Yanqiao Xu2, Weihui Jiang2, Zhixiang Xie1   

  1. 1 Institute of Materials Science & Devices, Suzhou University of Science and Technology,Suzhou 215009, China
    2 School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
  • Received:2020-08-10 Revised:2020-11-23 Online:2021-09-20 Published:2020-12-28
  • Contact: Ting Chen
  • Supported by:
    National Natural Science Foundation of China(52062019); Qinglan Praject of Jiangsu Province, and the Project of Jingdezhen Science and Technology Bureau(20192GYZD008-15); Qinglan Praject of Jiangsu Province, and the Project of Jingdezhen Science and Technology Bureau(20192GYZD008-18)

全无机铯铅卤钙钛矿纳米晶具有荧光量子产率高、色纯度高、色域广等优异的光电性质,在发光二极管、太阳能电池和生物标记等领域具有广阔的应用前景。但由于其离子特性所导致该纳米晶的稳定性较差,严重阻碍了进一步推广应用。尽管已发展出许多提高稳定性的策略,如离子掺杂、表面钝化和表面包覆,但暴露于空气、水和极性溶剂等情况下如何保持钙钛矿纳米晶的稳定性仍然是目前亟待解决的重要问题。此外,钙钛矿纳米晶中的阴离子交换现象也限制了其在多色发光显示领域的应用。通过表面包覆可以有效提高钙钛矿纳米晶的稳定性,同时限制了纳米晶中的阴离子交换,因此近年来成为了科研工作者研究的热点。本文总结了造成钙钛矿纳米晶不稳定的原因,详细介绍了铅卤钙钛矿包覆工艺的研究进展及其在照明显示领域的应用,最后分析了全无机铯铅卤钙钛矿纳米晶发展过程中面临的挑战,并对未来的研究方向进行展望。

All-inorganic lead halide perovskite nanocrystals have extremely broad application prospects in light emitting diode, solar cell and biomarker fields due to their excellent optoelectronic properties, i.e. high fluorescence quantum yield, high color purity and wide color gamut. However, the unsatisfactory stability caused by the ionic characteristics has seriously hindered their further application. Although many strategies, i.e. metal ions doping, surface passivation and coating, have been developed to improve stability, how to maintain stability when exposed to air, water, and polar solvents is still an urgent issue. In addition, anion exchange in perovskite may limit its application in multicolor luminescence display field. It is an ideal and effective strategy to improve the stability of perovskite nanocrystals by surface coating to maintain the high fluorescence quantum efficiency and avoid anion exchange, which has been receiving considerable attention of researchers. In this review, we summarize the root of instability for lead halide perovskite nanocrystals, and introduce the current research progress of surface coating strategy for all-inorganic lead halide perovskite in detail, as well as its applications in the lighting and display field. Finally, the challenges concerning the development of the lead halide perovskite nanocrystals are outlined and the main future research directions are concluded.

Contents

1 Introduction

2 Properties of all-inorganic cesium lead halide perovskite nanocrystals

2.1 Crystal structure

2.2 Optical property

2.3 Stability

3 Surface coating strategy

3.1 Organic matrix coating

3.2 Inorganic oxide coating

3.3 Inorganic non-oxide coating

4 Applications of all-inorganic cesium lead halide perovskite in WLED

5 Conclusion and outlook

()
图1 钙钛矿ABX3结构图[19]
Fig.1 Structure of perovskite ABX3[19]. Copyright 2009, ACS
图2 (a) CsPbX3纳米晶中典型的缺陷,(b) 传统纳米晶和CsPbX3纳米晶的能级结构,(c) Pb-Br结构局部变形示意图[32]
Fig.2 (a) Typical point defects in CsPbX3 NCs, (b) schematic representation of electronic band structure of typical defect-intolerant semiconductors and CsPbX3 NCs, and (c) schematic representation of local structural deformation of the Pb-Br framework[32]. Copyright 2020, Wiley online library
图3 合成CsPbBr3@PVP纳米晶(a)和CsPbBr3@PS(b)的流程图[61,64]
Fig.3 Schematic illustration of the preparation process of CsPbBr3@PS (a) and CsPbBr3@PVP (b)[61,64]. Copyright 2017, ACS
图4 CsPbBr3@SHFW纳米晶的(a)PLQY,(b)分散在水中3和6个月的照片,(c)日光和紫外光下的粉体和水滴在复合膜上的照片,(d)PL图谱[63]
Fig.4 (a) PLQY of CsPbBr3@SHFW NCs, (b) photographs of CsPbBr3@SHFW composite powders immersed in water for 3 months and 6 months, respectively, (c) photographs of CsPbX3@SHFW composite powders, and water drops on the composite films under white light and 365 nm UV light, respectively, (d) PL spectra[64]. Copyright 2019, ACS
图5 (a)介孔ZJU-28合成流程图,(b)CsPbX3@ZJU-28合成机理示意图[65]
Fig.5 Schematic illustration of the synthetic strategy of the mesoporous ZJU-28 (a) and CsPbX3@ZJU-28 (b)[65]. Copyright 2020, Elsevier
图6 (a)直接混合法制备CsPbBr3@SiO2纳米晶,分别利用(b)介孔SiO2和(c)APTES为硅源制备CsPbBr3@SiO2纳米晶的工艺流程图[70,73]
Fig.6 (a) Preparation of CsPbBr3@SiO2 NCs by direct mixing method, preparation of CsPbBr3@SiO2 NCs using (b) mesoporous silica and (c) APTES as silicon source[70,73]. Copyright 2016, Willey Online Library; 2016, ACS; 2020, Elsevier
图7 CsPbBr3@TiO2核壳结构纳米晶的(a)环境稳定性和(b)光稳定性[76]
Fig.7 (a) the environmental stability, (b) the photostability of CsPbBr3@TiO2 core/shell NCs[76]. Copyright 2017, Willey Online Library
图8 (a)ALD技术合成mSiO2-ABX3@AlOx示意图,(b)不同AlOx壳层厚度的mSiO2-CsPbBr3时间变化光谱[80]
Fig.8 (a) Synthetic procedure of the mSiO2-ABX3@AlOx shells coated via ALD method, (b) time resolved relative PL intensity of mSiO2-CsPbBr3 with different AlOx shell thickness[80]. Copyright 2020, Elsevier
图9 (a)CsPbBr3嵌入KX盐,(b)CsPbBr3@NH4Br和(c)RDP@Pb(OH)Br纳米晶合成过程示意图[82⇓~84]
Fig.9 Synthesis process schematic of (a) CsPbBr3 embedded in KX salt, (b) CsPbBr3@NH4Br and (c) RDP@Pb(OH)Br NCs[82⇓~84]. Copyright 2016, 2020, ACS; 2017, Royal Society of Chemistry
图10 (a)CsPbBr3@Cs4PbBr6复合纳米晶合成示意图,(b)纯CsPbBr3、纯Cs4PbBr6以及CsPbBr3@Cs4PbBr6在365 nm紫外光下的照片[88]
Fig.10 (a) Schematic illustration of the preparation of CsPbBr3@Cs4PbBr6 NCs, (b) photographs of Cs4PbBr6, CsPbBr3 and CsPbBr3@Cs4PbBr6 powders under ambient and 365 nm UV light[88]. Copyright 2018, Royal Society of Chemistry
表1 不同的核壳材料对全无机铯铅卤钙钛矿纳米晶稳定性的影响
Table 1 Influence of different core-shell materials on stability of all-inorganic lead halide perovskite nanocrystals
表2 核壳结构全无机铯铅卤钙钛矿纳米晶制备而成的QLED性能
Table 2 Performance of core-shell all-inorganic lead halide perovskite nanocrystals based QLED
图11 WLED两种主要结构示意图:(a)蓝光芯片与黄色荧光粉组合,(b)紫外芯片与红绿蓝荧光粉组合[102]
Fig.11 Schematics of the two principal white-lighting strategies of pc-WLED devices: (a) a blue chip with a yellow down converting phosphor, (b) a UV chip with red, green and blue (RGB) phosphors[102]. Copyright 2015, Royal Society of Chemistry
图12 (a,b)CsPbBr3@SiO2和(c,d)CsPbBr3纳米晶制备而成WLED的时间变化光谱和CIE坐标[90]
Fig.12 Time-dependent PL spectra and CIE color coordinates of WLED based on: (a,b) CsPbBr3@SiO2 and (c,d) CsPbBr3 NCs[90]. Copyright 2017, ACS
表3 基于核壳结构全无机铯铅卤钙钛矿纳米晶WLED的光电性能
Table 3 Optoelectronic performances of WLEDs based on core/shell structure all-inorganic cesium lead halide perovskite nanocrystals
[1]
Peña M A, Fierro J L G. Chem. Rev., 2001, 101(7): 1981.

pmid: 11710238
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2(1): 1.
[3]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338(6107): 643.

doi: 10.1126/science.1228604     URL    
[4]
Stranks S D, Snaith H J. Nat. Nanotechnol., 2015, 10(5): 391.

doi: 10.1038/nnano.2015.90     pmid: 25947963
[5]
Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink H J, Galian R E, Pérez-Prieto J. J. Am. Chem. Soc., 2014, 136(3): 850.

doi: 10.1021/ja4109209     URL    
[6]
Dave K, Bao Z, Nakahara S, Ohara K, Masada S, Tahara H, Kanemitsu Y, Liu R S. Nanoscale, 2020, 12(6): 3820.

doi: 10.1039/C9NR09056H     URL    
[7]
Xu Y, Lou S Q, Xia C, Xuan T T, Li H L. J. Lumin., 2020, 222: 117132.

doi: 10.1016/j.jlumin.2020.117132     URL    
[8]
Li Q, Wang H B, Yue X F, Du J X. Talanta, 2020, 211: 120705.

doi: 10.1016/j.talanta.2019.120705     URL    
[9]
Zhang H L, Yuan L, Chen Y, Zhang Y Q, Yu Y X, Liang X J, Xiang W D, Wang T. Chem. Commun., 2020, 56(19): 2853.

doi: 10.1039/C9CC07676J     URL    
[10]
Liu X Y, Liu Z Y, Li J J, Tan X H, Sun B, Fang H, Xi S, Shi T L, Tang Z R, Liao G L. J. Mater. Chem. C, 2020, 8(10): 3337.

doi: 10.1039/C9TC06630F     URL    
[11]
Zhu W D, Deng M Y, Chen D D, Chen D Z, Xi H, Chang J J, Zhang J C, Zhang C F, Hao Y. J. Mater. Chem. C, 2020, 8(1): 209.

doi: 10.1039/C9TC05403K     URL    
[12]
Chen Y X, Xu Y F, Wang X D, Chen H Y, Kuang D B. Sustain. Energy Fuels, 2020, 4(5): 2249.
[13]
Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L. ACS Energy Lett., 2017, 2(9): 2071.

doi: 10.1021/acsenergylett.7b00547     pmid: 28920080
[14]
Zou S H, Liu Y S, Li J H, Liu C P, Feng R, Jiang F L, Li Y X, Song J Z, Zeng H B, Hong M C, Chen X Y. J. Am. Chem. Soc., 2017, 139(33): 11443.

doi: 10.1021/jacs.7b04000     URL    
[15]
Krieg F, Ochsenbein S T, Yakunin S ten Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V. ACS Energy Lett., 2018, 3(3): 641.

doi: 10.1021/acsenergylett.8b00035     URL    
[16]
Bodnarchuk M I, Boehme S C, ten Brinck S, Bernasconi C, Shynkarenko Y, Krieg F, Widmer R, Aeschlimann B, Günther D, Kovalenko M V, Infante I. ACS Energy Lett., 2019, 4(1): 63.

doi: 10.1021/acsenergylett.8b01669     pmid: 30662955
[17]
Ding N, Zhou D L, Sun X K, Xu W, Xu H W, Pan G C, Li D Y, Zhang S, Dong B, Song H W. Nanotechnology, 2018, 29(34): 345703.

doi: 10.1088/1361-6528/aac84d     pmid: 29808823
[18]
Ma T Q, Wang S W, Zhang Y W, Zhang K X, Yi L X. J. Mater. Sci., 2020, 55(2): 464.

doi: 10.1007/s10853-019-03974-y     URL    
[19]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r     URL    
[20]
Stoumpos C C, Kanatzidis M G. Acc. Chem. Res., 2015, 48(10): 2791.

doi: 10.1021/acs.accounts.5b00229     URL    
[21]
Knop O, Wasylishen R E, White M A, Cameron T S, Oort M J M V. Can. J. Chem., 1990, 68(3): 412.

doi: 10.1139/v90-063     URL    
[22]
Evarestov R A, Kotomin E A, Senocrate A, Kremer R K, Maier J. Phys. Chem. Chem. Phys., 2020, 22(7): 3914.

doi: 10.1039/c9cp06322f     pmid: 32016248
[23]
Burwig T, Fränzel W, Pistor P. J. Phys. Chem. Lett., 2018, 9(16): 4808.

doi: 10.1021/acs.jpclett.8b02059     URL    
[24]
Yi C Y, Luo J S, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin S M, Röthlisberger U, Grätzel M. Energy Environ. Sci., 2016, 9(2): 656.

doi: 10.1039/C5EE03255E     URL    
[25]
Møller C K. Nature, 1958, 182(4647): 1436.
[26]
Brivio F, Walker A B, Walsh A. APL Mater., 2013, 1(4): 042111.

doi: 10.1063/1.4824147     URL    
[27]
Kovalenko M V, Protesescu L, Bodnarchuk M I. Science, 2017, 358(6364): 745.

doi: 10.1126/science.aam7093     pmid: 29123061
[28]
Brandt R E, Stevanović V, Ginley D S, Buonassisi T. MRS Commun., 2015, 5(2): 265.

doi: 10.1557/mrc.2015.26     URL    
[29]
Kang J, Wang L W. J. Phys. Chem. Lett., 2017, 8(2): 489.

doi: 10.1021/acs.jpclett.6b02800     pmid: 28071911
[30]
Palazon F, Akkerman Q A, Prato M, Manna L. ACS Nano, 2016, 10(1): 1224.

doi: 10.1021/acsnano.5b06536     URL    
[31]
Palazon F di Stasio F, Akkerman Q A, Krahne R, Prato M, Manna L. Chem. Mater., 2016, 28(9): 2902.

doi: 10.1021/acs.chemmater.6b00954     URL    
[32]
Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N, Fu F. Small Methods, 2020, 4(10): 2000395.

doi: 10.1002/smtd.v4.10     URL    
[33]
Zhu H, Miyata K, Fu Y, Wang J, Joshi P P, Niesner D, Williams K W, Jin S, Zhu X Y. Science, 2016, 353(6306): 1409.

doi: 10.1126/science.aaf9570     URL    
[34]
Bakulin A A, Selig O, Bakker H J, Rezus Y L A, Müller C, Glaser T, Lovrincic R, Sun Z H, Chen Z Y, Walsh A, Frost J M, Jansen T L C. J. Phys. Chem. Lett., 2015, 6(18): 3663.

doi: 10.1021/acs.jpclett.5b01555     pmid: 26722739
[35]
Huang S Q, Li Z C, Wang B, Zhu N W, Zhang C Y, Kong L, Zhang Q, Shan A D, Li L. ACS Appl. Mater. Interfaces, 2017, 9(8): 7249.

doi: 10.1021/acsami.6b14423     URL    
[36]
Dai J F, Xi J, Zu Y Q, Li L, Xu J, Shi Y F, Liu X Y, Fan Q H, Zhang J J, Wang S P, Yuan F, Dong H, Jiao B, Hou X, Wu Z X. Nano Energy, 2020, 70: 104467.

doi: 10.1016/j.nanoen.2020.104467     URL    
[37]
Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X W, Kanjanaboos P, Nogueira A F, Sargent E H. ACS Appl. Mater. Interfaces, 2015, 7(45): 25007.

doi: 10.1021/acsami.5b09084     URL    
[38]
de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z. ACS Nano, 2016, 10(2): 2071.

doi: 10.1021/acsnano.5b06295     URL    
[39]
Creutz S E, Crites E N, de Siena M C, Gamelin D R. Nano Lett., 2018, 18(2): 1118.

doi: 10.1021/acs.nanolett.7b04659     URL    
[40]
Roesch R, Faber T, von Hauff E, Brown T M, Lira-Cantu M, Hoppe H. Adv. Energy Mater., 2015, 5(20): 1501407.

doi: 10.1002/aenm.201501407     URL    
[41]
Ren J J, Dong X, Zhang G Y, Li T R, Wang Y H. New J. Chem., 2017, 41(22): 13961.

doi: 10.1039/C7NJ03017G     URL    
[42]
Diroll B T, Nedelcu G, Kovalenko M V, Schaller R D. Adv. Funct. Mater., 2017, 27(21): 1606750.

doi: 10.1002/adfm.v27.21     URL    
[43]
Amgar D, Binyamin T, Uvarov V, Etgar L. Nanoscale, 2018, 10(13): 6060.

doi: 10.1039/C7NR09607K     URL    
[44]
Rao L S, Tang Y, Yan C M, Li J S, Zhong G S, Tang K R, Yu B H, Li Z T, Zhang J Z. J. Mater. Chem. C, 2018, 6(20): 5375.

doi: 10.1039/C8TC00582F     URL    
[45]
Shi J D, Ge W Y, Zhu J F, Saruyama M, Teranishi T. ACS Appl. Nano Mater., 2020, 3(8): 7563.

doi: 10.1021/acsanm.0c01204     URL    
[46]
Huang S Q, Wang B, Zhang Q, Li Z C, Shan A D, Li L. Adv. Opt. Mater., 2018, 6(6): 1701106.

doi: 10.1002/adom.v6.6     URL    
[47]
Li S, Shi Z F, Zhang F, Wang L T, Ma Z Z, Yang D W, Yao Z Q, Wu D, Xu T T, Tian Y T, Zhang Y T, Shan C X, Li X J. Chem. Mater., 2019, 31(11): 3917.

doi: 10.1021/acs.chemmater.8b05362     URL    
[48]
Lv W, Li L, Xu M C, Hong J X, Tang X X, Xu L G, Wu Y H, Zhu R, Chen R F, Huang W. Adv. Mater., 2019, 31(28): 1900682.

doi: 10.1002/adma.v31.28     URL    
[49]
Wu L Z, Zhong Q X, Yang D, Chen M, Hu H C, Pan Q, Liu H Y, Cao M H, Xu Y, Sun B Q, Zhang Q. Langmuir, 2017, 33(44): 12689.

doi: 10.1021/acs.langmuir.7b02963     URL    
[50]
Pan L, Zhang L, Qi Y F, Conkle K, Han F X, Zhu X C, Box D, Shahbazyan T V, Dai Q L. ACS Appl. Nano Mater., 2020, 3(9): 9260.

doi: 10.1021/acsanm.0c01887     URL    
[51]
Chen T, Xu Y Q, Xie Z X, Jiang W H, Wang L J, Jiang W. Nanoscale, 2020, 12(17): 9569.

doi: 10.1039/D0NR00579G     URL    
[52]
Henglein A. Chem. Rev., 1989, 89(8): 1861.

doi: 10.1021/cr00098a010     URL    
[53]
Zhou H S, Sasahara H, Honma I, Komiyama H, Haus J W. Chem. Mater., 1994, 6(9): 1534.

doi: 10.1021/cm00045a010     URL    
[54]
Brokmann X, Messin G, Desbiolles P, Giacobino E, Dahan M, Hermier J P. New J. Phys., 2004, 6: 99.

doi: 10.1088/1367-2630/6/1/099     URL    
[55]
Marchuk K, Guo Y J, Sun W, Vela J, Fang N. J. Am. Chem. Soc., 2012, 134(14): 6108.

doi: 10.1021/ja301332t     pmid: 22458433
[56]
Jiang D H, Tsai Y H, Veeramuthu L, Liang F C, Chen L C, Lin C C, Satoh T, Tung S H, Kuo C C. APL Mater., 2019, 7(11): 111105.

doi: 10.1063/1.5124880     URL    
[57]
Zhong Q X, Cao M H, Hu H C, Yang D, Chen M, Li P L, Wu L Z, Zhang Q. ACS Nano, 2018, 12(8): 8579.

doi: 10.1021/acsnano.8b04209     URL    
[58]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6): 3692.

doi: 10.1021/nl5048779     pmid: 25633588
[59]
Hormats E I, Unterleitner F C. J. Phys. Chem., 1965, 69(11): 3677.

doi: 10.1021/j100895a002     URL    
[60]
Müller M, Kaiser M, Stachowski G M, Resch-Genger U, Gaponik N, Eychmüller A. Chem. Mater., 2014, 26(10): 3231.

doi: 10.1021/cm5009043     URL    
[61]
Zhang H H, Wang X, Liao Q, Xu Z Z, Li H Y, Zheng L M, Fu H B. Adv. Funct. Mater., 2017, 27(7): 1604382.

doi: 10.1002/adfm.v27.7     URL    
[62]
Huang H, Chen B K, Wang Z G, Hung T F, Susha A S, Zhong H Z, Rogach A L. Chem. Sci., 2016, 7(9): 5699.

doi: 10.1039/c6sc01758d     pmid: 30034709
[63]
Xuan T T, Huang J J, Liu H, Lou S Q, Cao L Y, Gan W J, Liu R S, Wang J. Chem. Mater., 2019, 31(3): 1042.

doi: 10.1021/acs.chemmater.8b04596     URL    
[64]
Wei Y, Deng X R, Xie Z X, Cai X C, Liang S S, Ma P A, Hou Z Y, Cheng Z Y, Lin J. Adv. Funct. Mater., 2017, 27(39): 1703535.

doi: 10.1002/adfm.v27.39     URL    
[65]
Ren J J, Zhou X P, Wang Y H. Chem. Eng. J., 2020, 391: 123622.

doi: 10.1016/j.cej.2019.123622     URL    
[66]
Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444     URL    
[67]
James S L. Chem. Soc. Rev., 2003, 32(5): 276.

doi: 10.1039/b200393g     URL    
[68]
Li Z X, Yu C C, Wen Y Y, Wei Z T, Chu J M, Xing X F, Zhang X, Hu M L, He M. Nanomaterials, 2019, 9(8): 1147.

doi: 10.3390/nano9081147     URL    
[69]
Li Z C, Kong L, Huang S Q, Li L. Angew. Chem. Int. Ed., 2017, 56(28): 8134.

doi: 10.1002/anie.v56.28     URL    
[70]
Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Angew. Chem. Int. Ed., 2016, 55(28): 7924.

doi: 10.1002/anie.201603698     URL    
[71]
Dirin D N, Protesescu L, Trummer D, Kochetygov I V, Yakunin S, Krumeich F, Stadie N P, Kovalenko M V. Nano Lett., 2016, 16(9): 5866.

doi: 10.1021/acs.nanolett.6b02688     URL    
[72]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Adv. Mater., 2016, 28(45): 10088.

doi: 10.1002/adma.201603081     URL    
[73]
Guan H L, Zhao S Y, Wang H X, Yan D D, Wang M, Zang Z G. Nano Energy, 2020, 67: 104279.

doi: 10.1016/j.nanoen.2019.104279     URL    
[74]
Hu Z P, Liu Z Z, Bian Y, Li S Q, Tang X S, Du J, Zang Z G, Zhou M, Hu W, Tian Y X, Leng Y X. Adv. Opt. Mater., 2018, 6(3): 1700997.

doi: 10.1002/adom.v6.3     URL    
[75]
Park D H, Han J S, Kim W, Jang H S. Dyes Pigments, 2018, 149: 246.

doi: 10.1016/j.dyepig.2017.10.003     URL    
[76]
Li Z J, Hofman E, Li J, Davis A H, Tung C H, Wu L Z, Zheng W W. Adv. Funct. Mater., 2018, 28(1): 1704288.

doi: 10.1002/adfm.v28.1     URL    
[77]
Yuan S, Chen D Q, Li X Y, Zhong J S, Xu X H. ACS Appl. Mater. Interfaces, 2018, 10(22): 18918.

doi: 10.1021/acsami.8b05155     URL    
[78]
Li G R, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S C, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Adv. Mater., 2016, 28(18): 3528.

doi: 10.1002/adma.201600064     URL    
[79]
Loiudice A, Saris S, Oveisi E, Alexander D T L, Buonsanti R. Angew. Chem. Int. Ed., 2017, 56(36): 10696.

doi: 10.1002/anie.201703703     URL    
[80]
You C Y, Li F M, Lin L H, Lin J S, Chen Q Q, Radjenovic P M, Tian Z Q, Li J F. Nano Energy, 2020, 71: 104554.

doi: 10.1016/j.nanoen.2020.104554     URL    
[81]
Dameron A A, Davidson S D, Burton B B, Carcia P F, McLean R S, George S M. J. Phys. Chem. C, 2008, 112(12): 4573.

doi: 10.1021/jp076866+     URL    
[82]
Guhrenz C, Benad A, Ziegler C, Haubold D, Gaponik N, Eychmüller A. Chem. Mater., 2016, 28(24): 9033.

doi: 10.1021/acs.chemmater.6b03980     URL    
[83]
Lou S Q, Xuan T T, Yu C Y, Cao M M, Xia C, Wang J, Li H L. J. Mater. Chem. C, 2017, 5(30): 7431.

doi: 10.1039/C7TC01174A     URL    
[84]
Yu Y C, Hou J H, Zhang L H, Sun Q S, Attique S, Wang W J, Xu X X, Xu F, Ci Z P, Cao B Q, Qiao X, Xiao X H, Yang S K. Nano Lett., 2020, 20(4): 2316.

doi: 10.1021/acs.nanolett.9b04730     URL    
[85]
García-Santamaría F, Brovelli S, Viswanatha R, Hollingsworth J A, Htoon H, Crooker S A, Klimov V I. Nano Lett., 2011, 11(2): 687.

doi: 10.1021/nl103801e     pmid: 21207930
[86]
Tang X S, Yang J, Li S Q, Chen W W, Hu Z P, Qiu J. Front. Chem., 2019, 7: 499.

doi: 10.3389/fchem.2019.00499     URL    
[87]
Quan L N, Quintero-Bermudez R, Voznyy O, Walters G, Jain A, Fan J Z, Zheng X L, Yang Z Y, Sargent E H. Adv. Mater., 2017, 29(21): 1605945.

doi: 10.1002/adma.201605945     URL    
[88]
Xuan T T, Lou S Q, Huang J J, Cao L Y, Yang X F, Li H L, Wang J. Nanoscale, 2018, 10(21): 9840.

doi: 10.1039/C8NR01266K     URL    
[89]
Zhang D W, Zhao J, Liu Q L, Xia Z G. Inorg. Chem., 2019, 58(2): 1690.

doi: 10.1021/acs.inorgchem.8b03295     URL    
[90]
Hu H C, Wu L Z, Tan Y S, Zhong Q X, Chen M, Qiu Y H, Yang D, Sun B Q, Zhang Q, Yin Y D. J. Am. Chem. Soc., 2018, 140(1): 406.

doi: 10.1021/jacs.7b11003     URL    
[91]
Zhou Y J, Pan A Z, Shi C Y, Ma X Q, Jia M J, Huang H, Ren D Z, He L. Appl. Surf. Sci., 2020, 515: 146004.

doi: 10.1016/j.apsusc.2020.146004     URL    
[92]
Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T. J. Phys. D: Appl. Phys., 2010, 43(35): 354002.

doi: 10.1088/0022-3727/43/35/354002     URL    
[93]
Mishra K C, Zachau M, Levin R E. Phys. Rev. Lett., 2009, 103(26): 269401.

doi: 10.1103/PhysRevLett.103.269401     URL    
[94]
Narendran N, Gu Y. J. Display Technol., 2005, 1(1): 167.

doi: 10.1109/JDT.2005.852510     URL    
[95]
Maier-Flaig F, Rinck J, Stephan M, Bocksrocker T, Bruns M, Kübel C, Powell A K, Ozin G A, Lemmer U. Nano Lett., 2013, 13(2): 475.

doi: 10.1021/nl3038689     pmid: 23320768
[96]
Jiang G C, Guhrenz C, Kirch A, Sonntag L, Bauer C, Fan X L, Wang J, Reineke S, Gaponik N, Eychmüller A. ACS Nano, 2019, 13(9): 10386.

doi: 10.1021/acsnano.9b04179     URL    
[97]
Hao W, Xinmin Z, Chongfeng G, Jian X, Mingmei W, Qiang S. IEEE Photonics Technol. Lett., 2005, 17(6): 1160.

doi: 10.1109/LPT.2005.846504     URL    
[98]
Shirasaki Y, Supran G J, Bawendi M G, Bulović V. Nat. Photonics, 2013, 7(1): 13.

doi: 10.1038/nphoton.2012.328     URL    
[99]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15): 2435.

doi: 10.1002/adfm.v26.15     URL    
[100]
Filippetti A, Mattoni A. Phys. Rev. B, 2014, 89(12): 125203.

doi: 10.1103/PhysRevB.89.125203     URL    
[101]
Di X X, Shen L D, Jiang J T, He M L, Cheng Y Z, Zhou L, Liang X J, Xiang W D. J. Alloys Compd., 2017, 729: 526.

doi: 10.1016/j.jallcom.2017.09.213     URL    
[102]
Li G G, Tian Y, Zhao Y, Lin J. Chem. Soc. Rev., 2015, 44(23): 8688.

doi: 10.1039/C4CS00446A     URL    
[1] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[2] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[3] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[4] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[5] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[6] 周明浩, 姜爽, 张天永, 史永宏, 金雪, 段鹏飞. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展, 2020, 32(4): 361-370.
[7] 徐彦乔, 陈婷, 王连军, 江伟辉, 江莞, 谢志翔. Ⅰ-Ⅲ-Ⅵ 族量子点的制备及其在照明显示领域的应用[J]. 化学进展, 2019, 31(9): 1238-1250.
[8] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[9] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[10] 严武渭, 柳永宁, 崇少坤, 周亚萍, 刘建国, 邹志刚. 高能量密度锂离子电池用富锂正极材料[J]. 化学进展, 2017, 29(2/3): 198-209.
[11] 李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 锂离子电池富锂材料中离子掺杂、表面包覆、表面氧空位修饰的作用机理及其联合机制[J]. 化学进展, 2017, 29(12): 1526-1536.
[12] 杜远超, 华政, 梁风, 李永梅, 戴永年, 姚耀春. 液相法合成磷酸铁锂正极材料[J]. 化学进展, 2017, 29(1): 137-148.
[13] 石颖, 闻雷, 吴敏杰, 李峰. 碳材料在钛酸锂负极材料中的应用[J]. 化学进展, 2017, 29(1): 149-161.
[14] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
[15] 代林林, 李伟, 曹军, 李坚, 刘守新. 纳米晶纤维素手性向列型液晶相结构的形成、调控及应用[J]. 化学进展, 2015, 27(7): 861-869.