English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1252-1262 DOI: 10.7536/PC211211 前一篇   后一篇

• 综述与评论 •

超分子组装体激发态手性的响应性

韩冬雪1,2, 金雪2, 苗碗根3, 焦体峰1,*(), 段鹏飞2,*()   

  1. 1 燕山大学 环境与化学工程学院 秦皇岛 066004
    2 国家纳米科学中心 中国科学院纳米系统与多级次制造重点实验室 中国科学院纳米科学卓越创新中心 北京 100190
    3 岭南师范大学 化学化工学院 物理化学所 湛江 524048
  • 收稿日期:2021-12-08 修回日期:2022-01-18 出版日期:2022-03-25 发布日期:2022-03-25
  • 通讯作者: 焦体峰, 段鹏飞
  • 基金资助:
    国家自然科学基金项目(21773103); 国家自然科学基金项目(22172041); 国家自然科学基金项目(52173159)

Responsiveness of Excited State Chirality Based on Supramolecular Assembly

Dongxue Han1,2, Xue Jin2, Wangen Miao3, Tifeng Jiao1(), Pengfei Duan2()   

  1. 1 School of Environmental and Chemical Engineering, Yanshan University,Qinhuangdao 066004, China
    2 Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST),Beijing 100190, China
    3 School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Lingnan Normal University,Zhanjiang 524048, China
  • Received:2021-12-08 Revised:2022-01-18 Online:2022-03-25 Published:2022-03-25
  • Contact: Tifeng Jiao, Pengfei Duan
  • Supported by:
    National Natural Science Foundation of China(21773103); National Natural Science Foundation of China(22172041); National Natural Science Foundation of China(52173159)

圆偏振发光主要是指手性发光体系激发态的性质。由于其在信息加密、高分辨3D显示和智能传感器等领域的潜在应用而备受关注。圆偏振光除了可以通过物理方法获得,即使用线偏振片和四分之一波片的组合,还可以直接从具有光致发光或电致发光性质的手性材料中获得。目前研究者们已经开发了多种圆偏振发光材料,主要包括手性有机分子、手性金属配合物等小分子发光体系以及手性超分子组装体等复合体系。通过将手性组分与响应性功能基团结合而构筑的响应性自组装发光体系对实现智能圆偏振发光材料的发展起着重要作用。在这篇文章里,我们对手性超分子自组装发光体系对各种外界刺激的响应性能进行了总结和归纳,如光照、pH值、溶剂、温度、金属离子等。本综述通过对各种外部刺激对手性组装体激发态性能影响的总结和讨论,旨在进一步推动智能圆偏振发光材料在多学科领域的应用。

Circularly polarized luminescence (CPL) as one of the optical properties of chiral materials, referring to the excited state properties of the chiral systems, has attracted much attention due to their potential applications in information encryption, high-resolution 3D displays and smart sensors. Besides the optical methods by applying a liner polarizer and a quarter waveplates, circularly polarized light could also be directly generated from chiral luminescent systems under excitation with photoluminescence or electroluminescence. Thus, a variety of CPL-active materials have been developed, including small molecular luminescence systems such as chiral organic molecules and coordination complexes, and chiral supramolecular assemblies. Self-assembly offers a powerful solution to obtaining the CPL-active materials with high quantum yields and dissymmetry factors. Responsive chiral assembled luminescent materials constructed by combining the chiral and responsive components play an important role in the development of intelligent CPL materials, reducing the tedious long synthesis process. Here, we summarize the responsive supramolecular chiroptical systems toward various stimuli, such as light irradiation, pH, solvent, temperature, mental ions, etc. This review is aimed to stimulate further academic and applied research and boost the practical applications of CPL materials in multidisciplinary fields.

Contents

1 Introduction

2 Basic concepts of CD and CPL

3 Research progress of excited state chirality based on supramolecular assembly under different stimulus responses

3.1 Photo-irradiation

3.2 Temperature

3.3 Solvent

3.4 pH

3.5 Metal ions

3.6 Others

4 Conclusion and outlook

()
图1 (a) 手性体系的圆二色测试示意图。(b) 手性体系圆偏振发光测试原理示意图
Fig. 1 (a) Illustration of circular dichroism for chiral systems. (b) Illustration of circularly polarized luminescence test for chiral systems
图2 (a) 含有螺吡喃的对映体谷氨酸衍生物的分子结构和自组装凝胶具有光致变色的性质。(b) 紫外光照射后SP-LG和SP-DG的CD光谱。(c) 在紫外光和可见光的交替照射下,对映体凝胶在662 nm处gCD值的可逆转换。(d) SP-LG和SP-DG凝胶在紫外光照射后的CPL光谱。(e) 在紫外光和可见光的交替照射下,对映体凝胶glum值在675 nm处的可逆转换[52]
Fig. 2 (a) Molecular structure of the enantiomeric glutamate derivatives containing spiropyran and the photochromic property of gels self-assembled. (b) CD spectra of SP-LG and SP-DG gels after UV irradiation. (c) Reversible switching of the gCD value of enantiomeric gels at 662 nm on stimulating with alternating UV and visible light. (d) CPL spectra of SP-LG and SP-DG gels after UV irradiation. (e) Reversible switching of the CPL of enantiomeric gels at 675 nm on stimulating with alternating UV and visible light irradiation[52]
图3 CSC和尼罗红的分子结构示意图以及它们通过自组装形成具有光响应性的手性囊泡[53]
Fig. 3 Schematic representation of the molecular structure of CSC and Nile Red (NR) as well as their self-assemblies into chiroptical vesicles with light responsiveness[53]
图4 (a) 含有苯基异口恶唑的DTG骨架以及延伸区组装体,其产生的CPL信号与成核区的相反。(b) 组装体在甲基环己烷溶液中,温度依赖的荧光(左),CPL光谱(右)[54]
Fig. 4 (a) Skeleton of DTG possessing phenylisoxazoles and the CPL signals of the assembly in the elongation regime were inverted with respect to those in the nucleation regime. (b) Temperature-dependent emission (left) and CPL spectra (right) of gel from the methylcyclohexane solution[54]
图5 g-PA的组装状态依赖于温度的示意图[55]
Fig. 5 Schematic demonstration about the assembly states of g-PA dependence on its surrounding environment such as temperature[55]
图6 (a) 通过调节溶剂将手性分子自组装成具有不同CPL性质的不同纳米结构[56]。(b) 通过调节溶剂来控制非手性分子的尺寸[57]
Fig. 6 (a) Self-assembly of chiral molecules into different nanostructures with different CPL property by adjusting the solvent[56]. (b) Dimensionality control of monomeric achiral molecules by adjusting the solvent[57]
图7 非手性 PBI与LBG/DBG的共组装和正交组装的形成示意图,CPL发射可以通过交替暴露在酸性和碱性环境中来切换[59]
Fig. 7 Illustration of the formation of coassembly and orthogonal assembly of achiral PBI with LBG/DBG. CPL emission could be switched by alternating acid-base exposure[59]
图8 LG和HPTS的分子结构示意图以及LG和HPTS 共组装成发光的纳米管结构,该纳米管表现出溶剂和pH依赖的CPL发射[60]
Fig. 8 The schematic illustration of the molecular structures of LG and HPTS. LG and HPTS co-assemble into emissive nanotubular structures. The formed nanotubes exhibit solvent and pH adjustable CPL emission[60]
图9 Zn2+对手性凝胶剂芘-组氨酸(PyHis)的组装行为和CPL影响的示意图[61]
Fig. 9 Schematic illustration about assembly changes and CPL changes of the chiral gelator PyHis toward Zn2+[61]
图10 CPL行为依赖于香豆素衍生物的吡啶基-N位置以及金属离子Ni2+和Ag+的示意图[62]
Fig. 10 Schematic illustration of CPL behaviors dependent on pyridyl-N location of coumarin derivatives, and further Ni2+ andAg+[62]
图11 基于天然人类端粒G-四链体(Tel G4)和ThT染料的可逆CPL调节的示意图[63]
Fig. 11 Illustration of invertible CPL regulation based on natural human telomeric G-quadruplex (Tel G4) and ThT dye[63]
图12 顺时针(CW,红色)和逆时针(CCW,蓝色)搅拌和不搅拌(黑色)制备的水凝胶的CPL和glum值[65]
Fig. 12 CPL and glum value of the hydrogels prepared with clockwise (CW, red) and counterclockwise (CCW, blue) stirring, and no stirring (black)[65]
图13 室温下在350 nm处激发的手性EuIII配合物的磁场依赖下glum值的变化[67]
Fig. 13 Magnetic field dependent glum value of chiral EuIII complexes excited at 350 nm at room temperature[67]
[1]
Song F Y, Xu Z, Zhang Q S, Zhao Z, Zhang H K, Zhao W J, Qiu Z J, Qi C X, Zhang H, Sung H H Y, Williams I D, Lam J W Y, Zhao Z J, Qin A J, Ma D G, Tang B Z. Adv. Funct. Mater., 2018, 28(17): 1800051.

doi: 10.1002/adfm.201800051     URL    
[2]
Zhang D W, Li M, Chen C F. Chem. Soc. Rev., 2020, 49(5): 1331.

doi: 10.1039/C9CS00680J     URL    
[3]
Qian G W, Yang X F, Wang X B, Herod J D, Bruce D W, Wang S Y, Zhu W G, Duan P F, Wang Y F. Adv. Optical Mater., 2020, 8(20): 2000775.

doi: 10.1002/adom.202000775     URL    
[4]
Heffern M C, Matosziuk L M, Meade T J. Chem. Rev., 2014, 114(8): 4496.

doi: 10.1021/cr400477t     pmid: 24328202
[5]
Carr R, Evans N H, Parker D. Chem. Soc. Rev., 2012, 41(23): 7673.

doi: 10.1039/c2cs35242g     URL    
[6]
Schadt M. Annu. Rev. Mater. Sci., 1997, 27: 305.

doi: 10.1146/annurev.matsci.27.1.305     URL    
[7]
Zinna F, Giovanella U, Bari L D. Adv. Mater., 2015, 27(10): 1791.

doi: 10.1002/adma.201404891    
[8]
Kim Y, Yeom B, Arteaga O, Jo Yoo S, Lee S G, Kim J G, Kotov N A. Nat. Mater., 2016, 15(4): 461.

doi: 10.1038/nmat4525     URL    
[9]
Yang Y, da Costa R C, Fuchter M J, Campbell A J. Nat. Photonics, 2013, 7(8): 634.

doi: 10.1038/nphoton.2013.176     URL    
[10]
Han D X, Yang X F, Han J L, Zhou J, Jiao T F, Duan P F. Nat. Commun., 2020, 11: 5659.

doi: 10.1038/s41467-020-19479-1     URL    
[11]
Bozoklu G, Gateau C, Imbert D, Pécaut J, Robeyns K, Filinchuk Y, Memon F, Muller G, Mazzanti M. J. Am. Chem. Soc., 2012, 134(20): 8372.

doi: 10.1021/ja3020814     pmid: 22548280
[12]
Kitchen J A, Barry D E, Mercs L, Albrecht M, Peacock R D, Gunnlaugsson T. Angew. Chem. Int. Ed., 2012, 51(3): 704.

doi: 10.1002/anie.201106863     URL    
[13]
Yeung C T, Yim K H, Wong H Y, Pal R, Lo W S, Yan S C, Yee-Man Wong M, Yufit D, Smiles D E, McCormick L J, Teat S J, Shuh D K, Wong W T, Law G L. Nat. Commun., 2017, 8: 1128.

doi: 10.1038/s41467-017-01025-1     URL    
[14]
Chen Y T, Xu C, Xu B J, Mao Z, Li J A, Yang Z, Peethani N R, Liu C, Shi G, Gu F L, Zhang Y, Chi Z G. Mater. Chem. Front., 2019, 3(9): 1800.

doi: 10.1039/C9QM00312F     URL    
[15]
Maeda C, Nagahata K, Shirakawa T, Ema T. Angew. Chem. Int. Ed., 2020, 59(20): 7813.

doi: 10.1002/anie.202001186     URL    
[16]
Xie F M, Zhou J X, Zeng X Y, An Z D, Li Y Q, Han D X, Duan P F, Wu Z G, Zheng Y X, Tang J X. Adv. Optical Mater., 2021, 9(9): 2100017.

doi: 10.1002/adom.202100017     URL    
[17]
Zheng S Y, Han J L, Jin X, Ye Q, Zhou J, Duan P F, Liu M H. Angew. Chem. Int. Ed., 2021, 60(42): 22711.

doi: 10.1002/anie.202108661     URL    
[18]
Han J L, Yang D, Jin X, Jiang Y Q, Liu M H, Duan P F. Angew. Chem. Int. Ed., 2019, 58(21): 7013.

doi: 10.1002/anie.201902090     URL    
[19]
Wu Y, You L H, Yu Z Q, Wang J H, Meng Z G, Liu Y, Li X S, Fu K, Ren X K, Tang B Z. ACS Mater. Lett., 2020, 2(5): 505.
[20]
Sang Y T, Han J L, Zhao T H, Duan P F, Liu M H. Adv. Mater., 2020, 32(41): 1900110.

doi: 10.1002/adma.201900110     URL    
[21]
Han J L, You J, Li X G, Duan P F, Liu M H. Adv. Mater., 2017, 29(19): 1606503.

doi: 10.1002/adma.201606503     URL    
[22]
Zhao J J, Liu Y Q, Hao A Y, Xing P Y. ACS Nano, 2020, 14(2): 2522.

doi: 10.1021/acsnano.0c00352     URL    
[23]
Li W J, Gu Q Y, Wang X Q, Zhang D Y, Wang Y T, He X, Wang W, Yang H B. Angew. Chem. Int. Ed., 2021, 60(17): 9507.

doi: 10.1002/anie.202100934     URL    
[24]
Han B. Acta Phys. Chim. Sin., 2019, 35: 1177.

doi: 10.3866/PKU.WHXB201904088     URL    
[25]
Zhao T H, Han J L, Shi Y H, Zhou J, Duan P F. Adv. Mater., 2021, 33(33): 2101797.

doi: 10.1002/adma.202101797     URL    
[26]
Zhang H W, Han J L, Jin X, Duan P F. Angew. Chem. Int. Ed., 2021, 60(9): 4575.

doi: 10.1002/anie.202014891     URL    
[27]
Zhou M H, Sang Y T, Jin X, Chen S X, Guo J C, Duan P F, Liu M H. ACS Nano, 2021, 15(2): 2753.

doi: 10.1021/acsnano.0c08539     URL    
[28]
Yang D, Duan P F, Zhang L, Liu M H. Nat. Commun., 2017, 8: 15727.

doi: 10.1038/ncomms15727     URL    
[29]
Fu K, Jin X, Zhou M H, Ma K, Duan P F, Yu Z Q. Nanoscale, 2020, 12(38): 19760.

doi: 10.1039/D0NR04510A     URL    
[30]
Wu Y, Yan C X, Li X S, You L H, Yu Z Q, Wu X F, Zheng Z G, Liu G F, Guo Z Q, Tian H, Zhu W H. Angew. Chem. Int. Ed., 2021, 60(46): 24549.

doi: 10.1002/anie.202109054     URL    
[31]
Liu Y H, Liu Y. Prog. Chem., 2019, 31(11): 1528.
( 刘耀华, 刘育. 化学进展, 2019, 31(11): 1528.)

doi: 10.7536/PC190708    
[32]
赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 化学进展, 2014, 26(9): 1445.
( Zhao J, Huang R L, Qi W, Wang Y F, Su R X, He Z M. Prog. Chem., 2014, 26(9): 1445.)
[33]
Hayasaka H, Miyashita T, Tamura K, Akagi K. Adv. Funct. Mater., 2010, 20(8): 1243.

doi: 10.1002/adfm.200902059     URL    
[34]
Hashimoto Y, Nakashima T, Shimizu D, Kawai T. Chem. Commun., 2016, 52(29): 5171.

doi: 10.1039/C6CC01277A     URL    
[35]
Shigeno M, Kushida Y, Yamaguchi M. J. Am. Chem. Soc., 2014, 136(22): 7972.

doi: 10.1021/ja502009f     URL    
[36]
Saito N, Kobayashi H, Yamaguchi M. Chem. Sci., 2016, 7(6): 3574.

doi: 10.1039/C5SC04959H     URL    
[37]
Sun Z B, Liu J K, Yuan D F, Zhao Z H, Zhu X Z, Liu D H, Peng Q, Zhao C H. Angew. Chem. Int. Ed., 2019, 58(15): 4840.

doi: 10.1002/anie.201813320     URL    
[38]
Takaishi K, Iwachido K, Ema T. J. Am. Chem. Soc., 2020, 142(4): 1774.

doi: 10.1021/jacs.9b13184     pmid: 31909994
[39]
Uchida T A, Nozaki K, Iwamura M. Chem. Asian J., 2016, 11(17): 2415.

doi: 10.1002/asia.201600798     URL    
[40]
Pascal S, Besnard C, Zinna F, di Bari L, Le Guennic B, Jacquemin D, Lacour J. Org. Biomol. Chem., 2016, 14(20): 4590.

doi: 10.1039/c6ob00752j     pmid: 27139039
[41]
Ji L K, He Q W, Niu D, Tan J J, Ouyang G H, Liu M H. Chem. Commun., 2019, 55(78): 11747.

doi: 10.1039/C9CC06305F     URL    
[42]
Ito H, Sakai H, Okayasu Y, Yuasa J, Mori T, Hasobe T. Chem. Eur. J., 2018, 24(63): 16889.

doi: 10.1002/chem.201804171     URL    
[43]
Zhang L, Wang H X, Li S, Liu M H. Chem. Soc. Rev., 2020, 49(24): 9095.

doi: 10.1039/d0cs00191k     pmid: 33118560
[44]
Gao Y, Ren C, Lin X D, He T C. Front. Chem., 2020, 8: 458.

doi: 10.3389/fchem.2020.00458     URL    
[45]
Canary J W. Chem. Soc. Rev., 2009, 38(3): 747.

doi: 10.1039/b800412a     pmid: 19322467
[46]
Wong H Y, Lo W S, Yim K H, Law G L. Chem, 2019, 5(12): 3058.

doi: 10.1016/j.chempr.2019.08.006     URL    
[47]
Richardson F S, Riehl J P. Chem. Rev., 1977, 77(6): 773.

doi: 10.1021/cr60310a001     URL    
[48]
Li Z L, Zeman C J IV, Valandro S R, Bantang J P O, Schanze K S. J. Am. Chem. Soc., 2019, 141(32): 12610.

doi: 10.1021/jacs.9b04133     URL    
[49]
Liu C X, Yang D, Jin Q X, Zhang L, Liu M H. Adv. Mater., 2016, 28(8): 1644.

doi: 10.1002/adma.201504883     URL    
[50]
Wu Z, Pan K, Lü B, Ma L, Yang W T, Yin M Z. Chem. Asian J., 2016, 11(21): 3102.

doi: 10.1002/asia.201601114     URL    
[51]
Ciardelli F, Fabbri D, Pieroni O, Fissi A. J. Am. Chem. Soc., 1989, 111(9): 3470.

doi: 10.1021/ja00191a076     URL    
[52]
Miao W G, Wang S, Liu M H. Adv. Funct. Mater., 2017, 27(29): 1701368.

doi: 10.1002/adfm.201701368     URL    
[53]
Cao Z Z, Hao A Y, Xing P Y. Nanoscale, 2021, 13(2): 700.

doi: 10.1039/D0NR06835G     URL    
[54]
Hirano K, Ikeda T, Fujii N, Hirao T, Nakamura M, Adachi Y, Ohshita J, Haino T. Chem. Commun., 2019, 55(71): 10607.

doi: 10.1039/C9CC05253D     URL    
[55]
Jintoku H, Kao M T, del Guerzo A, Yoshigashima Y, Masunaga T, Takafuji M, Ihara H. J. Mater. Chem. C, 2015, 3(23): 5970.

doi: 10.1039/C5TC00878F     URL    
[56]
Ma K, Chen W J, Jiao T F, Jin X, Sang Y T, Yang D, Zhou J, Liu M H, Duan P F. Chem. Sci., 2019, 10(28): 6821.

doi: 10.1039/C9SC01577A     URL    
[57]
Sang Y T, Duan P F, Liu M H. Chem. Commun., 2018, 54(32): 4025.

doi: 10.1039/C8CC02130A     URL    
[58]
Zhang S J, Yang Y, Sun X Q, Yin F H, Qiang J L, Wang L Y. Prog. Chem., 2016, 28(2/3): 244.
( 张双进, 杨扬, 孙小强, 尹芳华, 强琚莉, 王乐勇. 化学进展, 2016, 28(2/3)
[59]
Han D X, Han J L, Huo S W, Qu Z M, Jiao T F, Liu M H, Duan P F. Chem. Commun., 2018, 54(44): 5630.

doi: 10.1039/C8CC02777C     URL    
[60]
Fan H H, Jiang H J, Zhu X F, Guo Z X, Zhang L, Liu M H. Nanoscale, 2019, 11(21): 10504.

doi: 10.1039/C9NR01959F     URL    
[61]
Niu D, Jiang Y Q, Ji L K, Ouyang G H, Liu M H. Angew. Chem. Int. Ed., 2019, 58(18): 5946.

doi: 10.1002/anie.201900607     URL    
[62]
Wang F, Ji W, Yang P, Feng C L. ACS Nano, 2019, 13(6): 7281.

doi: 10.1021/acsnano.9b03255     URL    
[63]
Chen J Q, Chen Y Y, Zhao L J, Feng L Y, Xing F F, Zhao C Q, Hu L Z, Ren J S, Qu X G. J. Mater. Chem. C, 2019, 7(44): 13947.

doi: 10.1039/C9TC04508B     URL    
[64]
David A H G, Casares R, Cuerva J M, Campaña A G, Blanco V. J. Am. Chem. Soc., 2019, 141(45): 18064.

doi: 10.1021/jacs.9b07143     URL    
[65]
Okano K, Taguchi M, Fujiki M, Yamashita T. Angew. Chem. Int. Ed., 2011, 50(52): 12474.

doi: 10.1002/anie.201104708     URL    
[66]
Zhang X P, Mei J F, Lai J C, Li C H, You X Z. J. Mater. Chem. C, 2015, 3(10): 2350.

doi: 10.1039/C4TC02800G     URL    
[67]
Zhang J H, Dai L X, Webster A M, Chan W T K, MacKenzie L E, Pal R, Cobb S L, Law G L. Angew. Chem. Int. Ed., 2021, 60(2): 1004.

doi: 10.1002/anie.202012133     URL    
[68]
Yeom J, Santos U S, Chekini M, Cha M, de Moura A F, Kotov N A. Science, 2018, 359(6373): 309.

doi: 10.1126/science.aao7172     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[7] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[8] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[9] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[10] 周明浩, 姜爽, 张天永, 史永宏, 金雪, 段鹏飞. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展, 2020, 32(4): 361-370.
[11] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[12] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[13] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[14] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.