English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 779-801 DOI: 10.7536/PC200640 前一篇   后一篇

• 研究论文 •

多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用

杨英1,2,3, 马书鹏1,2,3, 罗媛1,2,3, 林飞宇1,2,3, 朱刘4,5, 郭学益1,2,3,*()   

  1. 1 中南大学冶金与环境学院 长沙 410083
    2 有色金属资源循环利用湖南省重点实验室 长沙 410083
    3 有色金属资源循环利用国家地方联合工程研究中心 长沙 410083
    4 广东先导稀材股份有限公司 清远 511500
    5 广东省高性能薄膜太阳能材料企业重点实验室
  • 收稿日期:2020-06-12 修回日期:2020-07-17 出版日期:2021-05-20 发布日期:2020-08-28
  • 通讯作者: 郭学益
  • 作者简介:
    * Corresponding author E-mail:
  • 基金资助:
    国家自然科学基金项目(61774169); 清远市创新创业科研团队项目(2018001); 广东省科技计划项目(2018B030323010)

Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application

Ying Yang1,2,3, Shupeng Ma1,2,3, Yuan Luo1,2,3, Feiyu Lin1,2,3, Liu Zhu4,5, Xueyi Guo1,2,3,*()   

  1. 1 School of Metallurgy and Environment, Central South University,Changsha 410083, China
    2 Hunan Key Laboratory of Nonferrous Metal Resources Recycling,Changsha 410083, China
    3 National & Regional Joint Engineering Research Center of Nonferrous Metal Resources Recycling,Changsha 410083, China
    4 First Rare Materials Co., Ltd,Qingyuan 511500, China
    5 Guangdong Province Key Laboratory of High Performance Thin Film Solar Materials Enterprise
  • Received:2020-06-12 Revised:2020-07-17 Online:2021-05-20 Published:2020-08-28
  • Contact: Xueyi Guo
  • Supported by:
    National Natural Science Foundation of China(61774169); Qingyuan Innovation and Entrepreneurship Research Team Project(2018001); Science and Technology Program of Guangdong Province(2018B030323010)

近年来全无机CsPbX3(X=Cl、Br、I)型钙钛矿材料由于其高吸光系数、低激子束缚能、长的载流子扩散长度等优点使其在太阳能电池(PSC)器件应用方面备受关注。高效的合成方法和精准的形貌控制对无机钙钛矿的光学性质及其太阳能电池光电性能及稳定性至关重要。本文系统介绍了不同维度无机钙钛矿材料包括零维量子点、一维纳米线/棒、二维纳米片和三维纳米花的现有合成方法;比较了各种合成方法的优势;着重介绍了不同维度无机钙钛矿材料的形貌调控手段,光学性质及相应太阳能电池光电性能的优化策略;最后展望了全无机钙钛矿朝着无害化和高性能钙钛矿太阳能电池的应用前景。

In recent years, inorganic CsPbX3(X=Cl, Br, I) perovskite has attracted much attention in the application of perovskite solar cell(PSC) due to its advantages such as high absorption coefficient, low exciton binding energy and long carrier diffusion length. Efficient synthesis methods and accurate morphology control are crucial to the optical properties, the photoelectric performance and stability of solar cells. In this paper, the synthesis methods of inorganic perovskite materials with different dimensions including zero-dimensional quantum dots, one-dimensional nanowire/nanorod, two-dimensional nanoplate and three-dimensional nanoflower are systematically introduced. Among them, hot-injection, solvothermal and vapor deposition are widely used. The advantages of various synthesis methods are compared. The methods of controlling the morphologies and optical properties of inorganic perovskite, as well as the optimization strategies for the photoelectric performance of the corresponding solar cells are systematically emphasized. In particularly, temperature and reaction time and ligand are main factors that influence the morphology control. Finally, the application of inorganic perovskites with different dimensions towards harmless and high-performance solar cell is prospected.

Contents

1 Introduction

2 Zero dimensional CsPbX3 quantum dots

2.1 Synthesis method

2.2 Control of particle size

2.3 Optical properties

2.4 Applications in solar cells

3 One dimensional CsPbX3 nanowire/nanorods

3.1 Synthesis method

3.2 Morphology control

3.3 Optical properties

3.4 Applications in solar cells

4 Two dimensional CsPbX3 nanoplate

4.1 Synthesis method

4.2 Thickness control

4.3 Optical properties

4.4 Applications in solar cells

5 Three dimensional CsPbX3 perovsike

5.1 Synthesis method

5.2 Morphology control

5.3 Optical properties

5.4 Applications in solar cells

6 Conclusion and outlook

()
图1 (a)钙钛矿结构,(b)钙钛矿结构分类的示意图,红色球体:金属中心,绿色球体:卤化物原子[11] 1978年,Weber[1]首次引入甲胺,形成了具有三维结构的有机-无机杂化钙钛矿材料。2009年时CH3NH3PbI3被用于制作染料敏化太阳能电池[2],效率为3.8%。到2012年有机-无机杂化钙钛矿实现了10.9%[3]的光电转化效率。开始引起研究人员的广泛关注。该类钙钛矿具有高吸光系数、较低的激子束缚能、长的载流子扩散长度。随后几年中,有机-无机杂化钙钛矿太阳能电池得到了快速发展,目前单节钙钛矿太阳能电池的效率已达到25.2%[4]。
Fig.1 Schematic diagram of (a) perovskite structure,(b) perovskite structure classification. red spheres: metal centers; green spheres: halide atoms[11]
图2 (a)热注射法原理图和合成的CsPbBr3量子点TEM图,标尺100 nm[6],(b)溶剂热法原理图和合成的CsPbCl3 TEM图,标尺50 nm[21],(c) 微波法原理图和合成的CsPbBr3量子点TEM图,标尺50 nm[22],(d)离子交换原理图和合成的CsPbI3和CsPbCl3 TEM图,标尺50 nm[10]
Fig.2 Schematic diagram of(a) hot injection method and TEM image of synthesized CsPbBr3 quantum dots, scale bar 100 nm[6],(b) solvothermal method and TEM image of synthesized CsPbCl3, scale bar 50 nm[21],(c) microwave method and TEM image of synthesized CsPbBr3 quantum dots, scale bar 50 nm[22],(d) anion exchange and TEM image of synthesized CsPbI3 and CsPbCl3 quantum dots, scale bar 50 nm[10]
表1 不同条件下合成的CsPbX3量子点
Table 1 CsPbX3 quantum dots synthesized under different conditions
图3 (a) 不同油酸油胺配比及不同温度下合成的CsPbBr3粒径[24],(b)不同油酸:油胺比例下制备的CsPbBr3纳米晶[27],(c) 不同湿度下合成的CsPbX3 XRD图和相应的CsPbBr3 TEM图[32],(d) B位元素掺杂示意图[35],(e) Mn2+掺杂前后的CsPbCl3 XRD和TEM图[21],(f)使用YCl3前后的 CsPbCl3 XRD和TEM图[10]
Fig.3 (a) Sizes of CsPbBr3 nanocube synthesized using various concentrations of oleylamine(OlAm) and oleic acid(OA) and different reaction temperatures[24],(b) TEM images of CsPbBr3 obtained with different ratios of OA and OAm[27],(c) XRD patterns and TEM images of CsPbX3 synthesized under different humidity[32],(d) schematic diagram of doping[35],(e) XRD patterns and TEM images of CsPbCl3 before and after Mn2+ doping[21],(f) XRD patterns and TEM images of CsPbCl3 prepared with or without YCl3[10]
图4 (a)紫外灯(λ= 365 nm)下不同卤素成分CsPbX3在甲苯中的胶体溶液[6],(b)随着PbCl2或PbI2的增加,CsPbBr3的紫外光吸收(实线)和PL(虚线)光谱的变化[10],(c)阴离子交换各产物XRD图[10],(d)不同卤素时间分辨光致发光衰减曲线[43]
Fig.4 (a) Colloidal solutions in toluene under UV lamp(λ = 365 nm)[6],(b) evolution of the optical absorption(solid lines) and PL(dashed lines) spectra of CsPbBr3 NCs with increasing quantities of PbCl2 or Pb I 2 [ 10 ] ,(c) powder X-ray diffraction(XRD) patterns of the parent CsPbBr3 NCs and anion-exchanged samples[10],(d) time-resolved PL decay curves obtained for CsPbX3 NCs with halogen ions varying from Cl- to I - [ 43 ]
图5 (a)固态配体交换(Control QDs和 FAI QDs)示意图[46],(b)基于control QDs和FAI QDs的器件J-V曲线[46],(c)使用CsPbBr3@SiO2制备的具有外部涂层的器件结构图[50],(d)裸露和具有CsPbBr3@SiO2外部涂层的器件J-V曲线[50]
Fig.5 (a) schematic diagram of solid-state ligand exchange(control QDs and FAI QDs)[46],(b) J-V curves of the control and FAI QD cells[46],(c) device structure of the PSCs coated with CsPbBr3@Si O 2 [ 50 ] ,(d)J-V characteristics of the bare device and CsPbBr3@SiO2-coated device[50]
表2 不同无机钙钛矿材料制备的太阳能电池性能参数
Table 2 Performance parameters of solar cells made of different inorganic perovskite materials
图6 (a)两次注入前驱体的热注射法原理图和相应的CsPbI3 TEM图[55],(b)SDM合成CsPbX3原理图和相应CsPbBr3纳米棒的荧光显微图,标尺20 μm [57],(c)气相沉积合成纳米线原理图和相应的CsPbBr3 TEM图,标尺500 nm[61]
Fig.6 (a) Schematic diagram of hot injection method with two injections of precursor and corresponding TEM images of CsPbI3[55],(b) scheme of CsPbBr3 NRs-PM formation process through SDM(swelling-deswelling microencapsulation) and corresponding fluorescence microscopy images of CsPbBr3 nanorods, scale bar 20 μm [57],(c) schematic diagram of nanowire synthesis by vapor deposition and corresponding TEM images of CsPbBr3, scale bar 500 nm[61]
图7 (a)不同温度下制备的钙钛矿CsPbBr3纳米线SEM图,标尺20 μm [61],(b)不同搅拌速度制备的CsPbBr3纳米棒荧光显微图,标尺20 μm [57],(c)不同反应时间CsPbBr3形貌变化的TEM图,标尺100 nm[53]
Fig.7 (a) SEM images of CsPbBr3 perovskite prepared with the growing temperature decreasing gradually from left to right, scale bar 20 μm [61],(b) fluorescence micrographs of CsPbBr3 prepared at different stirring speeds, scale bar 20 μm [57],(c) TEM images of morphology changes of CsPbBr3 at different reaction times, scale bar 100 nm[53]
图8 (a) CsPbBr3的PL光谱和吸收光谱[57],(b) 超薄纳米线的紫外吸收光谱和PL光谱[19],(c) 不同卤化物的组成的PL峰[64]
Fig.8 (a) UV-Vis absorption and PL spectra of CsPbBr3 NRs-PS[57],(b) UV-vis absorption and PL spectra of the as-prepared CsPbX3 nanowires[19],(c) PL peaks of different halides composition[64]
表3 不同实验条件下合成的CsPbX3纳米线参数
Table 3 The parameters of CsPbX3 nanowire synthesized under different experimental conditions
图9 (a) 不同CuCl2:PbBr2比例下合成的钙钛矿,标尺100 nm[74],(b)80 ℃下微波法合成纳米片[75],(c)色氨酸合成CsPbBr3原理图[78],(d)CsPbX3的紫外吸收光谱和PL光谱[75],(e)不同厚度CsPbBr3纳米片、立方相纳米晶、薄膜的吸收光谱和PL光谱[71]
Fig.9 (a) TEM images of the perovskite nanocrystals synthesized at different CuCl2∶PbBr2 ratio, Scale bar 100 nm[74],(b) TEM images of CsPbBr3 nanoplate synthesized under 80 ℃, Scale bar 50 nm[75],(c) schematic illustration of the proposed growth mechanism for CsPbBr3 nanoplate[78],(d) UV-vis absorption(solid line) and PL emission spectra(dash line) of colloidal CsPbX3 nanoplate[75],(e) absorption and PL spectra of CsPbBr3 as a thin film, cube-shaped nanocrystals, and nanoplate of different thicknesses[71]
表4 不同条件下合成纳米片的参数
Table 4 The parameters of nanosheet synthesis under different conditions
图10 (a)一步法原理图,(b)面向下液浸法原理图[98],(c)不同液浸时间制备的CsPbBr3钙钛矿TEM图[98],(d)二价路易斯酸掺杂钙钛矿XRD图[112],(e)CsPbIxBr1-x钙钛矿紫外吸收光谱、PL谱[113],(f)基于CsPbIBr2的器件截面SEM图[117],(g)不同CsI/PbBr2比例器件J-V曲线[117]
Fig.10 (a) Schematic illustration of one-step method,(b) schematic illustration of the face-down dipping method[98],(c) TEM diagram of CsPbBr3 perovskite prepared by different dipping time[98],(d) XRD patterns for divalent cation doped perovskite[112],(e) UV-Vis absorption spectra and PL emission spectra of CsPbIxBr1-x[113],(f) cross-sectional SEM image of CsPbIBr2 PSC[117],(g) PCEs of CsPbIBr2 PSCs prepared with various CsI/PbBr2 stoichiometric ratios[117]
[1]
Weber D. Zeitschrift Für Naturforschung B, 1978, 33(8):862.

doi: 10.1515/znb-1978-0809     URL    
[2]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17):6050.

doi: 10.1021/ja809598r     URL    
[3]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338(6107):643.

doi: 10.1126/science.1228604     URL    
[4]
[2020-06-05]. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf.
[5]
Yang Y, Chen T, Pan D Q, Gao J, Zhu C T, Lin F Y, Zhou C H, Tai Q D, Xiao S, Yuan Y B, Dai Q L, Han Y B, Xie H P, Guo X Y. Nano Energy, 2020, 67:104246.

doi: 10.1016/j.nanoen.2019.104246     URL    
[6]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6):3692.

doi: 10.1021/nl5048779     URL    
[7]
Koscher B A, Swabeck J K, Bronstein N D, Alivisatos A P. J. Am. Chem. Soc., 2017, 139(19):6566.

doi: 10.1021/jacs.7b02817     URL    
[8]
Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q. ACS Nano, 2017, 11(10):10373.

doi: 10.1021/acsnano.7b05442     URL    
[9]
Zhang Y P, Liu J Y, Wang Z Y, Xue Y Z, Ou Q D, Polavarapu L, Zheng J L, Qi X, Bao Q L. Chem. Commun., 2016, 52(94):13637.

doi: 10.1039/C6CC06425F     URL    
[10]
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V. Nano Lett., 2015, 15(8):5635.

doi: 10.1021/acs.nanolett.5b02404     URL    
[11]
Lin H R, Zhou C K, Tian Y, Siegrist T, Ma B W. ACS Energy Lett., 2018, 3(1):54.

doi: 10.1021/acsenergylett.7b00926     URL    
[12]
Bian H, Bai D L, Jin Z W, Wang K, Liang L, Wang H R, Zhang J R, Wang Q, Liu S F. Joule, 2018, 2(8):1500.

doi: 10.1016/j.joule.2018.04.012     URL    
[13]
Liao J F, Li W G, Rao H S, Chen B X, Wang X D, Chen H Y, Kuang D B. Sci. China Mater., 2017, 60(4):285.

doi: 10.1007/s40843-017-9014-9     URL    
[14]
Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J. Nat. Photonics, 2018, 12(11):681.

doi: 10.1038/s41566-018-0260-y     URL    
[15]
Zhai W, Lin J, Li C, Hu S M, Huang Y, Yu C, Wen Z K, Liu Z Y, Fang Y, Tang C C. Nanoscale, 2018, 10(45):21451.

doi: 10.1039/c8nr05683h     pmid: 30427016
[16]
de Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z. ACS Nano, 2016, 10(2):2071.

doi: 10.1021/acsnano.5b06295     URL    
[17]
Suh Y H, Kim T, Choi J W, Lee C L, Park J. ACS Appl. Nano Mater., 2018, 1(2):488.

doi: 10.1021/acsanm.7b00212     URL    
[18]
Zhang X, Qian Y, Ling X, Wang Y, Zhang Y, Shi J, Shi Y, Yuan J, Ma W. ACS Appl. Mater. Interfaces., 2020, 12:27307.

doi: 10.1021/acsami.0c07667     URL    
[19]
Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q. Adv. Funct. Mater., 2017, 27(23):1701121.

doi: 10.1002/adfm.v27.23     URL    
[20]
Ye S, Yu M H, Zhao M J, Song J, Qu J L. J. Alloy. Compd., 2018, 730:62.

doi: 10.1016/j.jallcom.2017.09.284     URL    
[21]
Chen D Q, Fang G L, Chen X, Lei L, Zhong J S, Mao Q N, Zhou S, Li J N. J. Mater. Chem. C, 2018, 6(33):8990.

doi: 10.1039/C8TC03139H     URL    
[22]
Long Z, Ren H, Sun J H, Ouyang J, Na N. Chem. Commun., 2017, 53(71):9914.

doi: 10.1039/C7CC04862A     URL    
[23]
Li Y X, Huang H, Xiong Y, Kershaw S V, Rogach A L. Angew. Chem. Int. Ed., 2018, 57(20):5833.

doi: 10.1002/anie.201713332     URL    
[24]
Almeida G, Goldoni L, Akkerman Q, Dang Z Y, Khan A H, Marras S, Moreels I, Manna L. ACS Nano, 2018, 12(2):1704.

doi: 10.1021/acsnano.7b08357     URL    
[25]
Dong Y T, Qiao T, Kim D, Parobek D, Rossi D, Son D H. Nano Lett., 2018, 18(6):3716.

doi: 10.1021/acs.nanolett.8b00861     URL    
[26]
Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q. ACS Nano, 2017, 11(10):10373.

doi: 10.1021/acsnano.7b05442     URL    
[27]
Liu W N, Zheng J J, Cao S, Wang L, Gao F M, Chou K C, Hou X M, Yang W Y. Inorg. Chem., 2018, 57(3):1598.

doi: 10.1021/acs.inorgchem.7b02941     URL    
[28]
Liu F, Ding C, Zhang Y H, Kamisaka T, Zhao Q, Luther J M, Toyoda T, Hayase S, Minemoto T, Yoshino K, Zhang B, Dai S Y, Jiang J K, Tao S X, Shen Q. Chem. Mater., 2019, 31(3):798.

doi: 10.1021/acs.chemmater.8b03871     URL    
[29]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science, 2016, 354(6308):92.

doi: 10.1126/science.aag2700     URL    
[30]
di Girolamo D, Dar M I, Dini D, Gontrani L, Caminiti R, Mattoni A, Graetzel M, Meloni S. J. Mater. Chem. A, 2019, 7(19):12292.

doi: 10.1039/c9ta00715f    
[31]
Eperon G E, Habisreutinger S N, Leijtens T, Bruijnaers B J, van Franeker J J, de Quilettes D W, Pathak S, Sutton R J, Grancini G, Ginger D S, Janssen R A J, Petrozza A, Snaith H J. ACS Nano, 2015, 9(9):9380.

doi: 10.1021/acsnano.5b03626     pmid: 26247197
[32]
Mamgain S, Kunnathodi V, Yella A. Energy Technol., 2020, 8(4):1900890.

doi: 10.1002/ente.v8.4     URL    
[33]
Lin C C, Xu K Y, Wang D, Meijerink A. Sci. Rep., 2017, 7:45906.

doi: 10.1038/srep45906     URL    
[34]
van der Stam W, Geuchies J J, Altantzis T, van den Bos K H W, Meeldijk J D, van Aert S, Bals S, Vanmaekelbergh D, de Mello Donega C. J. Am. Chem. Soc., 2017, 139(11):4087.

doi: 10.1021/jacs.6b13079     URL    
[35]
Zou S H, Liu Y S, Li J H, Liu C P, Feng R, Jiang F L, Li Y X, Song J Z, Zeng H B, Hong M C, Chen X Y. J. Am. Chem. Soc., 2017, 139(33):11443.

doi: 10.1021/jacs.7b04000     URL    
[36]
Singh S B, Limaye M V, Date S K, Gokhale S, Kulkarni S K. Phys. Rev. B, 2009, 80(23):235421.

doi: 10.1103/PhysRevB.80.235421     URL    
[37]
Yang H F, Zhang J C, Zhang C F, Chang J J, Lin Z H, Chen D Z, Xi H, Hao Y. Materials, 2017, 10(7):837.

doi: 10.3390/ma10070837     URL    
[38]
Cheng X H, Jing L, Yuan Y, Du S J, Zhang J, Zhan X Y, Ding J X, Yu H, Shi G D. J. Phys. Chem. C, 2019, 123(3):1669.

doi: 10.1021/acs.jpcc.8b12428     URL    
[39]
Liu Y N, Pan G C, Wang R, Shao H, Wang H, Xu W, Cui H N, Song H W. Nanoscale, 2018, 10(29):14067.

doi: 10.1039/C8NR03581D     URL    
[40]
Hu Y, Zhang X Y, Yang C Q, Li J, Wang L. RSC Adv., 2019, 9(57):33017.

doi: 10.1039/C9RA07069A     URL    
[41]
Li Y X, Zhang X Y, Huang H, Kershaw S V, Rogach A L. Mater. Today, 2020, 32:204.

doi: 10.1016/j.mattod.2019.06.007     URL    
[42]
Ding L, Liu S N, Zhang Z L, Shao G Z, Xiang W D, Liang X J. Ceram. Int., 2019, 45(17):22699.

doi: 10.1016/j.ceramint.2019.07.307     URL    
[43]
Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J. Angew. Chem. Int. Ed., 2016, 55(44):13887.

doi: 10.1002/anie.201605909     URL    
[44]
Chen H T, Guo A Q, Gu X Y, Feng M. J. Alloy. Compd., 2019, 789:392.

doi: 10.1016/j.jallcom.2019.03.049     URL    
[45]
Song J Z, Li J H, Li X M, Xu L M, Dong Y H, Zeng H B. Adv. Mater., 2015, 27(44):7162.

doi: 10.1002/adma.201502567     URL    
[46]
Shivarudraiah S B, Ng M, Li C H A, Halpert J E. ACS Appl. Energy Mater., 2020, 3(6):5620.

doi: 10.1021/acsaem.0c00584     URL    
[47]
Akkerman Q A, Gandini M, di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L. Nat. Energy, 2017, 2(2):16194.

doi: 10.1038/nenergy.2016.194     URL    
[48]
Zhang X, Jin Z, Zhang J, Bai D, Bian H, Wang K, Sun J, Wang Q, Liu S F. Appl. Mater. Interfaces., 2018, 10:7145.

doi: 10.1021/acsami.7b18902     URL    
[49]
Duan J L, Zhao Y Y, He B L, Tang Q W. Small, 2018, 14(20):1704443.

doi: 10.1002/smll.v14.20     URL    
[50]
Chen C, Wu Y J, Liu L, Gao Y B, Chen X F, Bi W B, Chen X, Liu D L, Dai Q L, Song H W. Adv. Sci., 2019, 6(11):1802046.

doi: 10.1002/advs.v6.11     URL    
[51]
Jin J J, Li H, Bi W B, Chen C, Zhang B X, Xu L, Dong B, Song H W, Dai Q L. Sol. Energy, 2020, 198:187.

doi: 10.1016/j.solener.2020.01.048     URL    
[52]
Gao Y B, Wu Y J, Lu H B, Chen C, Liu Y, Bai X, Yang L L, Yu W W, Dai Q L, Zhang Y. Nano Energy, 2019, 59:517.

doi: 10.1016/j.nanoen.2019.02.070     URL    
[53]
Zhang D D, Eaton S W, Yu Y, Dou L T, Yang P D. J. Am. Chem. Soc., 2015, 137(29):9230.

doi: 10.1021/jacs.5b05404     URL    
[54]
Zhang D D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P D. J. Am. Chem. Soc., 2016, 138(40):13155.

doi: 10.1021/jacs.6b08373     URL    
[55]
Chen Z, Dong L, Tang H C, Yu Y, Ye L, Zang J F. Cryst. Eng. Comm., 2019, 21(9):1389.

doi: 10.1039/C8CE02111B     URL    
[56]
Fu Y P, Meng F, Rowley M B, Thompson B J, Shearer M J, Ma D W, Hamers R J, Wright J C, Jin S. J. Am. Chem. Soc., 2015, 137(17):5810.

doi: 10.1021/jacs.5b02651     URL    
[57]
He J, Towers A, Wang Y, Yuan P, Jiang Z, Chen J, Gesquiere A J, Wu S, Dong Y J. Name., 2013, 0:1.
[58]
Xing J, Liu X F, Zhang Q, Ha S T, Yuan Y W, Shen C, Sum T C, Xiong Q H. Nano Lett., 2015, 15(7):4571.

doi: 10.1021/acs.nanolett.5b01166     URL    
[59]
Guo P F, Zhuang X J, Xu J Y, Zhang Q L, Hu W, Zhu X L, Wang X X, Wan Q, He P B, Zhou H, Pan A L. Nano Lett., 2013, 13(3):1251.

doi: 10.1021/nl3047893     URL    
[60]
Park K, Lee J W, Kim J D, Han N S, Jang D M, Jeong S, Park J, Song J K. J. Phys. Chem. Lett., 2016, 7(18):3703.

doi: 10.1021/acs.jpclett.6b01821     URL    
[61]
Zhou H, Yuan S P, Wang X X, Xu T, Wang X, Li H L, Zheng W H, Fan P, Li Y Y, Sun L T, Pan A L. ACS Nano, 2017, 11(2):1189.

doi: 10.1021/acsnano.6b07374     URL    
[62]
Zhang Q, Su R, Liu X, Xing J, Sum T C, Xiong Q. Adv. Funct. Mater., 2016, 26:6238.

doi: 10.1002/adfm.v26.34     URL    
[63]
Meng Y, Lan C Y, Li F Z, Yip S, Wei R J, Kang X L, Bu X M, Dong R T, Zhang H, Ho J C. ACS Nano, 2019, 13(5):6060.

doi: 10.1021/acsnano.9b02379     pmid: 31067402
[64]
Wang Y, Yaser M, Luo Z, Zhou S, Yu Y, Li H, Yang R, Wang X, Pan A, Gan L, Zhai T. Small, 2018:1803010.
[65]
Peng Z A, Peng X G. J. Am. Chem. Soc., 2002, 124(13):3343.

doi: 10.1021/ja0173167     URL    
[66]
Waleed A, Tavakoli M M, Gu L L, Hussain S, Zhang D Q, Poddar S, Wang Z Y, Zhang R J, Fan Z Y. Nano Lett., 2017, 17(8):4951.

doi: 10.1021/acs.nanolett.7b02101     URL    
[67]
Im J H, Luo J S, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G. Nano Lett., 2015, 15(3):2120.

doi: 10.1021/acs.nanolett.5b00046     URL    
[68]
Zai H C, Zhu C, Xie H P, Zhao Y Z, Shi C B, Chen Z X, Ke X X, Sui M L, Chen C F, Hu J S, Zhang Q S, Gao Y L, Zhou H P, Li Y J, Chen Q. ACS Energy Lett., 2018, 3(1):30.

doi: 10.1021/acsenergylett.7b00925     URL    
[69]
Zhang Y, Yang H J, Chen M, Padture N P, Chen O, Zhou Y Y. Adv. Energy Mater., 2019, 9(22):1900243.

doi: 10.1002/aenm.v9.22     URL    
[70]
Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P. J. Am. Chem. Soc., 2015, 137(51):16008.

doi: 10.1021/jacs.5b11199     URL    
[71]
Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D’Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L, de Angelis F, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(3):1010.

doi: 10.1021/jacs.5b12124     URL    
[72]
Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink H J, Galian R E, Pérez-Prieto J. J. Am. Chem. Soc., 2014, 136(3):850.

doi: 10.1021/ja4109209     URL    
[73]
Mir W J, Jagadeeswararao M, Das S, Nag A. ACS Energy Lett., 2017, 2(3):537.

doi: 10.1021/acsenergylett.6b00741     URL    
[74]
Sheng X X, Chen G Y, Wang C, Wang W Q, Hui J F, Zhang Q, Yu K H, Wei W, Yi M D, Zhang M, Deng Y, Wang P, Xu X X, Dai Z H, Bao J C, Wang X. Adv. Funct. Mater., 2018, 28(19):1800283.

doi: 10.1002/adfm.v28.19     URL    
[75]
Pan Q, Hu H C, Zou Y T, Chen M, Wu L Z, Yang D, Yuan X L, Fan J, Sun B Q, Zhang Q. J. Mater. Chem. C, 2017, 5(42):10947.

doi: 10.1039/C7TC03774K     URL    
[76]
Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J. ACS Nano, 2016, 10(10):9720.

doi: 10.1021/acsnano.6b05775     URL    
[77]
Sichert J A, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska K Z, García Cortadella R, Nickel B, Cardenas-Daw C, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15(10):6521.

doi: 10.1021/acs.nanolett.5b02985     URL    
[78]
Zhao J Y, Cao S N, Li Z, Ma N. Chem. Mater., 2018, 30(19):6737.

doi: 10.1021/acs.chemmater.8b02396     URL    
[79]
Li Z J, Hofman E, Davis A H, Maye M M, Zheng W W. Chem. Mater., 2018, 30(11):3854.

doi: 10.1021/acs.chemmater.8b01283     URL    
[80]
Uddin M A, Glover J D, Park S M, Pham J T, Graham K R. Chem. Mater., 2020, 32(12):5217.

doi: 10.1021/acs.chemmater.0c01325     URL    
[81]
Yang D, Zou Y T, Li P L, Liu Q P, Wu L Z, Hu H C, Xu Y, Sun B Q, Zhang Q, Lee S T. Nano Energy, 2018, 47:235.

doi: 10.1016/j.nanoen.2018.03.019     URL    
[82]
Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y. ACS Nano, 2016, 10(8):7943.

doi: 10.1021/acsnano.6b03863     URL    
[83]
Yuan Z, Shu Y, Tian Y, Xin Y, Ma B W. Chem. Commun., 2015, 51(91):16385.

doi: 10.1039/C5CC06750B     URL    
[84]
Li Q Y, Lian T Q. J. Phys. Chem. Lett., 2019, 10(3):566.

doi: 10.1021/acs.jpclett.8b03610     URL    
[85]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15):2584.

doi: 10.1002/adfm.v26.15     URL    
[86]
Bi C H, Wang S X, Kershaw S V, Zheng K B, Pullerits T, Gaponenko S, Tian J J, Rogach A L. Adv. Sci., 2019, 6(13):1900462.

doi: 10.1002/advs.v6.13     URL    
[87]
Stranks S D, Snaith H J. Nat. Nanotechnol., 2015, 10(5):391.

doi: 10.1038/nnano.2015.90     pmid: 25947963
[88]
Lv L, Xu Y B, Fang H H, Luo W J, Xu F J, Liu L M, Wang B W, Zhang X F, Yang D, Hu W D, Dong A G. Nanoscale, 2016, 8(28):13589.

doi: 10.1039/C6NR03428D     URL    
[89]
Zhang C Y, Wan Q, Wang B, Zheng W L, Liu M M, Zhang Q G, Kong L, Li L. J. Phys. Chem. C, 2019, 123(43):26161.

doi: 10.1021/acs.jpcc.9b09034     URL    
[90]
Jiang Y Z, Yuan J, Ni Y X, Yang J E, Wang Y, Jiu T G, Yuan M J, Chen J. Joule, 2018, 2(7):1356.

doi: 10.1016/j.joule.2018.05.004     URL    
[91]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. J. Mater. Chem. A, 2015, 3(39):19688.

doi: 10.1039/C5TA06398A     URL    
[92]
Quan L N, Yuan M J, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H. J. Am. Chem. Soc., 2016, 138(8):2649.

doi: 10.1021/jacs.5b11740     URL    
[93]
Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Chem. Mater., 2016, 28(8):2852.

doi: 10.1021/acs.chemmater.6b00847     URL    
[94]
Hu X L, Zhou H, Jiang Z Y, Wang X, Yuan S P, Lan J Y, Fu Y P, Zhang X H, Zheng W H, Wang X X, Zhu X L, Liao L, Xu G Z, Jin S, Pan A L. ACS Nano, 2017, 11(10):9869.

doi: 10.1021/acsnano.7b03660     URL    
[95]
Zhang T Y, Wang Y, Wang X T, Wu M, Liu W H, Zhao Y X. Sci. Bull., 2019, 64(23):1773.

doi: 10.1016/j.scib.2019.09.022     URL    
[96]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X. Science, 2019, 365(6453):591.

doi: 10.1126/science.aav8680     URL    
[97]
Duan J L, Zhao Y Y, He B L, Tang Q W. Angew. Chem., 2018, 130(14):3849.

doi: 10.1002/ange.201800019     URL    
[98]
Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y, Yang Y, Yu T. ACS Appl. Mater. Interfaces, 2018, 10(11):9541.

doi: 10.1021/acsami.8b00358     URL    
[99]
Liu X Y, Tan X H, Liu Z Y, Ye H B, Sun B, Shi T L, Tang Z R, Liao G L. Nano Energy, 2019, 56:184.

doi: 10.1016/j.nanoen.2018.11.053     URL    
[100]
Lau C F J, Deng X F, Ma Q S, Zheng J H, Yun J S, Green M A, Huang S J, Ho-Baillie A W Y. ACS Energy Lett., 2016, 1(3):573.

doi: 10.1021/acsenergylett.6b00341     URL    
[101]
Zhou H W, Fan L, He G H, Yuan C, Wang Y Y, Shi S Z, Sui N, Chen B L, Zhang Y T, Yao Q X, Zhao J S, Zhang X X, Yin J. RSC Adv., 2018, 8(51):29089.

doi: 10.1039/C8RA04558E     URL    
[102]
Ma Q S, Huang S J, Wen X M, Green M A, Ho-Baillie A W Y. Adv. Energy Mater., 2016, 6(7):1502202.

doi: 10.1002/aenm.201502202     URL    
[103]
Chen M, Hu H C, Tan Y S, Yao N, Zhong Q X, Sun B Q, Cao M H, Zhang Q, Yin Y D. Nano Energy, 2018, 53:559.

doi: 10.1016/j.nanoen.2018.09.020     URL    
[104]
Ramadan A J, Rochford L A, Fearn S, Snaith H J. J. Phys. Chem. Lett., 2017, 8(17):4172.

doi: 10.1021/acs.jpclett.7b01677     URL    
[105]
Cao X B, Zhang G S, Jiang L, Cai Y F, Gao Y, Yang W J, He X, Zeng Q G, Xing G C, Jia Y, Wei J Q. ACS Appl. Mater. Interfaces, 2020, 12(5):5925.

doi: 10.1021/acsami.9b20376     URL    
[106]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. J. Mater. Chem. A, 2015, 3(39):19688.

doi: 10.1039/C5TA06398A     URL    
[107]
Li B, Zhang Y N, Fu L, Yu T, Zhou S J, Zhang L Y, Yin L W. Nat. Commun., 2018, 9:1076.

doi: 10.1038/s41467-018-03169-0     URL    
[108]
Zhao B Y, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q W, Ding J, Ge Q Q, Feng Y Q, Hu J S. J. Am. Chem. Soc., 2018, 140(37):11716.

doi: 10.1021/jacs.8b06050     URL    
[109]
Huang Y, Yin W J, He Y. J. Phys. Chem. C, 2018, 122(2):1345.

doi: 10.1021/acs.jpcc.7b10045     URL    
[110]
Li Y N, Duan J L, Yuan H W, Zhao Y Y, He B L, Tang Q W. Sol. RRL, 2018, 2(10):1800164.

doi: 10.1002/solr.v2.10     URL    
[111]
Duan J L, Zhao Y Y, Yang X Y, Wang Y D, He B L, Tang Q W. Adv. Energy Mater., 2018, 8(31):1802346.

doi: 10.1002/aenm.v8.31     URL    
[112]
Zhao Y Y, Wang Y D, Duan J L, Yang X Y, Tang Q W. J. Mater. Chem. A, 2019, 7(12):6877.

doi: 10.1039/C9TA00761J     URL    
[113]
Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J. Adv. Energy Mater., 2016, 6(8):1502458.

doi: 10.1002/aenm.201502458     URL    
[114]
Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M. Sci. Bull., 2019, 64(8):507.

doi: 10.1016/j.scib.2019.04.013     URL    
[115]
Fang Z M, Meng X Y, Zuo C T, Li D, Xiao Z, Yi C Y, Wang M K, Jin Z W, Yang S F, Ding L M. Sci. Bull., 2019, 64(23):1743.

doi: 10.1016/j.scib.2019.09.023     URL    
[116]
Gao Y X, Li D, Xiao Z, Qian X, Yang J L, Liu F Y, Yang S F, Ding L M. Mater. Chem. Front., 2019, 3(3):399.

doi: 10.1039/C8QM00604K     URL    
[117]
Zhang Z Y, He F Q, Zhu W D, Chen D D, Chai W M, Chen D Z, Xi H, Zhang J C, Zhang C F, Hao Y. Sustain. Energy Fuels, 2020, 4(9):4506.

doi: 10.1039/D0SE00774A     URL    
[1] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[2] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[3] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[4] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[5] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[6] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[7] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[8] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[9] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[10] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[11] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[12] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[13] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[14] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[15] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
阅读次数
全文


摘要