English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2340-2350 DOI: 10.7536/PC220315 前一篇   后一篇

• 综述 •

手性无机纳米材料圆偏振发光的研究进展

李彬1,2, 于颖1,2, 幸国香1,2, 邢金峰1, 刘万兴3, 张天永1,2,*()   

  1. 1 天津大学化工学院 天津市应用催化科学与工程重点实验室 天津 300072
    2 化学与精细化工广东省实验室揭阳分中心 揭阳 522000
    3 聊城市非公有制企业服务中心 聊城 252000
  • 收稿日期:2022-03-12 修回日期:2022-04-18 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 张天永
  • 基金资助:
    国家自然科学基金项目(21908161)

Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials

Bin Li1,2, Ying Yu1,2, Guoxiang Xing1,2, Jinfeng Xing1, Wanxing Liu3, Tianyong Zhang1,2()   

  1. 1 Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072, China
    2 Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center,Jieyang 522000, China
    3 The Non-Public Enterprise Service Center of Liaocheng,Liaocheng 252000, China
  • Received:2022-03-12 Revised:2022-04-18 Online:2022-11-24 Published:2022-06-25
  • Contact: Tianyong Zhang
  • Supported by:
    National Natural Science Foundation of China(21908161)

手性无机纳米材料因为具有优异的光物理特性及广泛的应用价值而备受关注。通过采用手性配体对无机纳米材料的表面进行修饰或将无机纳米材料与手性模板进行组装获得的手性结构,可以与光子强烈作用引起偏振态的改变,产生圆偏振光(circularly polarized light, CPL)。从产生机理来讲,CPL主要包括圆偏振荧光和圆偏振散射,在一些情况下这两个机理是共存的。本文总结了硫族半导体纳米材料、金属纳米团簇、钙钛矿、镧系配合物及其他复合纳米材料中CPL的研究进展。此外,还讨论了不同的手性无机纳米材料中CPL的主要来源。本综述得出的结论有望在分子水平上实现对CPL活性材料的各向异性因子进行调控,促进其在量子计算、光学数据存储、信息加密、3D显示器和光学传感等多个领域的发展。

Chiral inorganic nanomaterials have attracted much attention due to their excellent photophysical properties and wide potential applications. The chiral structure obtained by modifying the surface of inorganic nanomaterials with chiral ligands or assembling inorganic nanomaterials with chiral templates can strongly interact with photons to change the polarization and generate circularly polarized light (CPL). In terms of generation mechanism, CPL mainly includes circularly polarized luminescence and circularly polarized scattering, and in some cases these two mechanisms coexist. This article summarizes the progress of CPL in semiconductor nanomaterials, metal nanoclusters, perovskites, lanthanide complexes and other composite nanomaterials. In addition, the main source of CPL in different chiral inorganic nanomaterials is also discussed. The conclusions drawn in this review are expected to realize regulating the anisotropy factor of CPL active materials at the molecular level and promote their development in various applications such as quantum computing, information encryption, 3D displays, and optical sensing.

Contents

1 Introduction

2 Chiral inorganic nanomaterials with CPL

2.1 CPL from chiral inorganic semiconductor nanoparticles

2.2 CPL from chiral metal nanoclusters

2.3 CPL from chiral perovskites

2.4 CPL from chiral Lanthanide complexes

2.5 CPL from chiral nanocomposites

3 Conclusion and outlook

()
图1 配体诱导的CdSe/CdS纳米结构形状变化的机制[35]
Fig.1 Mechanism of ligand-induced shape variations of CdSe/CdS nanostructures[35]
图2 (a, b) 分别是L/D-Au10(C13H17O5)10纳米团簇的透射电子显微镜(transmission electron microscope, TEM)图像和CPL光谱[39];(c, d) 分别是Au3[(R)-Tol-BINAP]3Cl纳米立方体在含70%正己烷的DCM中的扫描电子显微镜(scanning electron microscope, SEM)图像(插图是纳米立方体的侧面图)和CPL光谱[43];(e, f) 分别是右螺旋(上)和左螺旋(下)的纳米Ag9纤维的SEM图像以及由其制成的薄膜的CPL光谱和gCPL值分布[44]
Fig.2 (a) TEM image and (b) CPL spectra of L/D-Au10(C13H17O5)10 nanoclusters[39]. (c) SEM image and (d) CPL spectra of Au3[(R/S)-Tol-BINAP]3Cl nanocubes in DCM containing 70% n-hexane. The inset is a side view of the nanocube[43]. (e) SEM image of right- (top) and left- (bottom) helical Ag9 nanofibers. (f) CPL spectra and gCPL distribution of chiral Ag9 nanofibers films[44]
图3 (a) 手性(FMBA)2PbI4 薄膜的CPL光谱。R型(黑色)和S型(红色)[58]。(b) 手性(ClMBA)2PbI4薄膜的CPL光谱。R型(黑色)和S型(红色)[58]。(c) 手性(BrMBA)2PbI4薄膜的CPL光谱。R型(黑色)和S型(红色)[58]。(d) 手性(IMBA)2PbI4薄膜的CPL光谱。R型(黑色)和S型(红色)[58]。(e) (S)-和(R)-3-(氟吡咯烷)-MnBr3室温下的晶体结构[59]。(f) (S)-和(R)-3-(氟吡咯烷)-MnBr3室温下的CPL光谱[59]
Fig.3 CPL spectra of the chiral (a) (FMBA)2PbI4 film, (b) (ClMBA)2PbI4 film, (c) (BrMBA)2PbI4 film and (d) (IMBA)2PbI4 films[58]. R- (black line) and S- (red line). (e) Crystal structure of (S)- and (R)-3-(fluoropyrrolidinium)-MnBr3 at room temperature[59]. (f) CPL spectra of (S)- and (R)-3-(fluoropyrrolidinium)-MnBr3 at room temperature[59]
表1 手性钙钛矿薄膜的PLQY、磁跃迁偶极矩和发光各向异性因子|gCPL|值[58]
Table 1 The PLQY, magnetic transition dipole moments and |gCPL| of the chiral perovskite films[58]
图4 (a) 手性二维钙钛矿(R-MBA)2PbI4和(S-MBA)2PbI4的晶体结构[51];(b) 手性二维钙钛矿(R-MBA)2PbI4和(S-MBA)2PbI4的圆偏振程度DP与温度的函数关系[51];(c) 外消旋钙钛矿的圆偏振程度与磁场的函数关系[60];(d) R-钙钛矿的圆偏振程度与磁场的函数关系[60];(e) S-钙钛矿的圆偏振程度与磁场的函数关系[60]
Fig.4 (a) Crystal structures and (b) Temperature-dependent of circular polarized degree of chiral two-dimensional perovskites (R-MBA)2PbI4 and (S-MBA)2PbI4[51]; Magnetic field-dependent circular polarized degree of (c) rac-perovskite, (d) R-perovskite and (e) S-perovskite[60]
图5 (a, b) 分别为不同配体合成的Eu (Ⅲ)配合物的示意图和CPL光谱[65];(c) Eu3+掺杂的TbPO4·H2O棒状纳米晶的TEM图[66];(d) 用D/L/rac-酒石酸合成的Eu3+ 掺杂的TbPO4·H2O纳米晶的CPL光谱 (λex=365 nm)[66]
Fig.5 (a) Schematic diagrams and (b) CPL spectra of Eu(Ⅲ) complexes synthesized with different ligands[65]. (c) TEM image and (d) CPL spectra (λex=365 nm) of Eu3+-doped chiral TbPO4·H2O rod-like nanocrystals[66]
图6 金属增强CPL薄膜的制备[69]
Fig.6 Preparation of metal-enhanced CPL-active films[69]
图7 (a) 具有CPL活性的凝胶/FeS2螺旋纳米纤维的的组装过程示意图[73];(b, c) 分别是D-凝胶/FeS2(P-螺旋)(上)和L-凝胶/FeS2(M-螺旋)(下)纳米纤维的TEM图像和CPL光谱[73];(d, e) 分别是DGAm/CsPbX3 纳米颗粒共组装形成的复合结构的SEM图像和CPL光谱[75]
Fig.7 (a) Schematic diagram of the formation of gel/FeS2 helical nanofibers[73]. (b) TEM image and (c) CPL spectra of D-gel/FeS2 with P-helix and L-gel/FeS2 with M-helix nanofibers[73]. (d) SEM image and (e) CPL spectra of composite co-assembled by DGAm/CsPbX3 nanoparticles[75]
图8 (a) 在手性SiO2纳米纤维上合成Eu2O3和Tb2O3纳米颗粒过程示意图[76];(b) R-OPAn NPs和Ag纳米线形成的复合结构的SEM图像[78];(c) 单一的R/S-OPAn纳米颗粒以及R/S-OPAn 纳米颗粒和Ag纳米线形成的复合结构的CPL光谱[78]
Fig.8 (a) Schematic diagram of the synthesis process of Eu2O3 and Tb2O3 nanoparticles on chiral SiO2 nanofibers[76]. (b) SEM image of nanocomposite formed by R-OPAn nanoparticles and Ag nanowires[78]. (c) CPL spectra of single R/S-OPAn nanoparticles and nanocomposite formed by R/S-OPAn nanoparticles and Ag nanowires[78]
[1]
Wang Y, Xu J, Wang Y W, Chen H Y. Chem. Soc. Rev., 2013, 42: 2930.

doi: 10.1039/C2CS35332F     URL    
[2]
Sholl D S, Gellman A J. AIChE J., 2009, 55: 2484.

doi: 10.1002/aic.12036     URL    
[3]
Tanaka H, Inoue Y, Mori T. ChemPhotoChem, 2018, 2: 386.

doi: 10.1002/cptc.201800015     URL    
[4]
Kim Y H, Zhai Y X, Lu H P, Pan X, Xiao C X, Gaulding E A, Harvey S P, Berry J J, Vardeny Z V, Luther J M, Beard M C. Science, 2021, 371: 1129.

doi: 10.1126/science.abf5291     URL    
[5]
Xu M C, Ma C H, Zhou J, Liu Y S, Wu X Y, Luo S, Li W, Yu H P, Wang Y G, Chen Z J, Li J, Liu S X. J. Mater. Chem. C, 2019, 7: 13794.

doi: 10.1039/C9TC04144C     URL    
[6]
Schaaff T G, Knight G, Shafigullin M N, Borkman R F, Whetten R L. J. Phys. Chem. B, 1998, 102: 10643.

doi: 10.1021/jp9830528     URL    
[7]
Cheng J J, Ge F, Zhang C, Kuai Y, Hou P Y, Xiang Y F, Zhang D G, Qiu L Z, Zhang Q J, Zou G. J. Mater. Chem. C, 2020, 8: 9271.

doi: 10.1039/D0TC01704C     URL    
[8]
Chen P G, Lo T W, Fan Y L, Wang S B, Huang H T, Lei D Y. Adv. Opt. Mater., 2020, 8: 1901233.

doi: 10.1002/adom.201901233     URL    
[9]
Li Y W, Wang X B, Miao J, Li J G, Zhu X, Chen R, Tang Z K, Pan R K, He T C, Cheng J J. Adv. Mater., 2020, 32: 1905585.

doi: 10.1002/adma.201905585     URL    
[10]
Zhang M M, Li K, Zang S Q. Adv. Opt. Mater., 2020, 8: 1902152.

doi: 10.1002/adom.201902152     URL    
[11]
Ma S, Ahn J, Moon J. Adv. Mater., 2021, 33: 2005760.

doi: 10.1002/adma.202005760     URL    
[12]
Li D, Liu X T, Wu W T, Peng Y, Zhao S G, Li L N, Hong M C, Luo J H. Angew. Chem. Int. Ed., 2021, 60: 8415.

doi: 10.1002/anie.202013947     URL    
[13]
Moshe A B, Govorov A O, Markovich G. Angew. Chem., Int. Ed., 2013, 52: 1275.

doi: 10.1002/anie.201207489     URL    
[14]
Baimuratov A S, Rukhlenko I D, Gun’ko Y K, Baranov A V, Fedorov A V. Nano Lett., 2015, 15: 1710.

doi: 10.1021/nl504369x     pmid: 25651415
[15]
Nakashima T, Kobayashi Y, Kawai T. J. Am. Chem. Soc., 2009, 131: 10342.

doi: 10.1021/ja902800f     pmid: 19588974
[16]
Elliott S D, Moloney M P, Gun’ko Y K. Nano Lett., 2008, 8: 2452.

doi: 10.1021/nl801453g     pmid: 18611059
[17]
Zhou R, Wei K Y, Zhao J S, Jiang Y B. Chem. Commun., 2011, 47: 6362.

doi: 10.1039/c1cc11537e     URL    
[18]
Zhou Y L, Marson R L, Anders G, Zhu J, Ma G X, Ercius P, Sun K, Yeom B, Glotzer S C, Kotov N A. ACS Nano, 2016, 10: 3248.

doi: 10.1021/acsnano.5b05983     URL    
[19]
Zhu Z N, Guo J, Liu W J, Li Z T, Han B, Zhang W, Tang Z Y. Angew. Chem. Int. Ed., 2013, 125: 13816.

doi: 10.1002/ange.201305389     URL    
[20]
Hentschel M, Schaferling M, Duan X Y, Giessen H, Liu N. Sci. Adv., 2017, 3: e1602735.

doi: 10.1126/sciadv.1602735     URL    
[22]
Kim D Y. J. Korean Phys. Soc., 2006, 49: 505.
[23]
Kim Y, Yeom B, Arteaga O, Yoo S J, Lee S G, Kim J G, Kotov N A. Nat. Mater., 2016, 15: 461.

doi: 10.1038/nmat4525     URL    
[24]
Heffern M C, Matosziuk L M, Meade T J. Chem. Rev., 2014, 114: 4496.

doi: 10.1021/cr400477t     pmid: 24328202
[25]
Carr R, Evans N H, Parker D. Chem. Soc. Rev., 2012, 41: 7673.

doi: 10.1039/c2cs35242g     URL    
[26]
Sanchez-Carnerero E M, Agarrabeitia A R, Moreno F, Maroto B L, Muller G, Ortiz M J, Moya S. Chem. Eur. J., 2015, 21: 13488.

doi: 10.1002/chem.201501178     URL    
[27]
Kumar J, Nakashima T, Kawai T. J. Phys. Chem. Lett., 2015, 6: 3445.

doi: 10.1021/acs.jpclett.5b01452     URL    
[28]
Yang X F, Zhou M H, Wang Y F, Duan P F. Adv. Mater., 2020, 32: 2000820.

doi: 10.1002/adma.202000820     URL    
[29]
Guerrero-Martinez A, Auguie B, Alonso-Gomez J L, Dzolic Z, Gomez-Grana S, Zinic M, Cid M M, Liz-Marzan L M. Angew. Chem. Int. Ed., 2011, 50: 5499.

doi: 10.1002/anie.201007536     pmid: 21506211
[30]
Schneider J, Zhang W L, Srivastava A K, Chigrinov V G, Kwok H S, Rogach A L. Nano Lett., 2017, 17: 3133.

doi: 10.1021/acs.nanolett.7b00563     pmid: 28394620
[31]
Tohgha U, Varga K, Balaz M. Chem. Commun., 2013, 49: 1844.

doi: 10.1039/c3cc37987f     URL    
[32]
Li G M, Fei X N, Liu H F, Gao J, Nie J Y, Wang Y B, Tian Z D, He C C, Wang J L, Ji C, Oron D, Yang G L. ACS Nano, 2020, 14: 4196.

doi: 10.1021/acsnano.9b09101     URL    
[33]
Naito M, Iwahori K, Miura A, Yamane M, Yamashita I. Angew. Chem. Int. Ed., 2010, 49: 7006.

doi: 10.1002/anie.201002552     URL    
[34]
Tohgha U, Deol K K, Porter A G, Bartko S G, Choi J K, Leonard B M, Varga K, Kubelka J, Muller G, Balaz M. ACS Nano, 2013, 7: 11094.

doi: 10.1021/nn404832f     pmid: 24200288
[35]
Hao J J, Li Y W, Miao J, Liu R L, Li J G, Liu H C, Wang Q S, Liu H, Delville M H, He T C, Wang K, Zhu X, Cheng J J. ACS Nano, 2020, 14: 10346.

doi: 10.1021/acsnano.0c03909     URL    
[36]
Hao J J, Zhao F H, Wang Q S, Lin J Y, Chen P X, Li J Z, Zhang D X, Chen M J, Liu P Z, Delville M H, He T C, Cheng J J, Li Y W. Adv. Optical Mater., 2021, 9: 2101142.

doi: 10.1002/adom.202101142     URL    
[37]
Cheng J J, Hao J J, Liu H C, Li J G, Li J Z, Zhu X, Lin X D, Wang K, He T C. ACS Nano, 2018, 12: 5341.

doi: 10.1021/acsnano.8b00112     URL    
[38]
Kang X, Zhu M Z. Chem. Soc. Rev., 2019, 48: 2422.

doi: 10.1039/c8cs00800k     pmid: 30838373
[39]
Jia T T, Li B J, Yang G, Hua Y, Liu J Q, Ma W, Zang S Q, Chen X Y, Zhao X L. Nano Today, 2021, 39: 101222.

doi: 10.1016/j.nantod.2021.101222     URL    
[40]
Kumar J, Kawai T, Nakashima T. Chem. Commun., 2017, 53: 1269.

doi: 10.1039/C6CC09476G     URL    
[41]
Han Z, Dong X Y, Luo P, Li S, Wang Z Y, Zang S Q, Mak T C W. Sci. Adv., 2020, 6: eaay0107.

doi: 10.1126/sciadv.aay0107     URL    
[42]
Liu J B, Duchesne P N, Yu M X, Jiang X Y, Ning X H, Vinluan R D, Zhang P, Zheng J. Angew. Chem. Int. Ed., 2016, 55: 8894.

doi: 10.1002/anie.201602795     URL    
[43]
Shi L, Zhu L Y, Guo J, Zhang L J, Shi Y N, Zhang Y, Hou K, Zheng Y L, Zhu Y F, Lv J W, Liu S Q, Tang Z Y. Angew. Chem. Int. Ed., 2017, 56: 15397.

doi: 10.1002/anie.201709827     URL    
[44]
Wu H, He X, Yang B, Li C C, Zhao L. Angew. Chem. Int. Ed., 2021, 60: 1535.

doi: 10.1002/anie.202008765     URL    
[45]
Wang J J, Zhou H T, Yang J N, Feng L Z, Yao J S, Song K H, Zhou M M, Jin S, Zhang G Z, Yao H B. J. Am. Chem. Soc., 2021, 143: 10860.

doi: 10.1021/jacs.1c05476     URL    
[46]
Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A. Angew. Chem. Int. Ed., 2015, 54: 15424.

doi: 10.1002/anie.201508276     URL    
[47]
Tong Y, Fu M, Bladt E, Huang H, Richter A F, Wang K, Muller-Buschbaum P, Bals S, Tamarat P, Lounis B, Feldmann J, Polavarapu L. Angew. Chem. Int. Ed., 2018, 57: 16094.

doi: 10.1002/anie.201810110     pmid: 30311989
[48]
Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B. Adv. Mater., 2018, 30: 1805409.

doi: 10.1002/adma.201805409     URL    
[49]
Kim Y H, Zhai Y X, Gaulding E A, Habisreutinger S N, Moot T, Rosales B A, Lu H P, Hazarika A, Brunecky R, Wheeler L M, Berry J J, Beard M C, Luther J M. ACS Nano, 2020, 14: 8816.

doi: 10.1021/acsnano.0c03418     URL    
[50]
Chen W J, Zhang S, Zhou M H, Zhao T H, Liu X F, Liu M H, Duan P F. J. Phys. Chem. Lett., 2019, 10: 3290.

doi: 10.1021/acs.jpclett.9b01224     URL    
[51]
Ma J Q, Fang C, Chen C, Jin L, Wang J Q, Wang S, Tang J, Li D H. ACS Nano, 2019, 13: 3659.

doi: 10.1021/acsnano.9b00302     URL    
[52]
Wang J, Fang C, Ma J Q, Wang S, Jin L, Li W C, Li D H. ACS Nano, 2019, 13: 9473.

doi: 10.1021/acsnano.9b04437     pmid: 31373789
[53]
Xu J L, Li X Y, Xiong J B, Yuan C Q, Semin S, Rasing T, Bu X H. Adv. Mater., 2020, 32: 1806736.

doi: 10.1002/adma.201806736     URL    
[54]
Wang Y, Li X M, Zhao X, Xiao L, Zeng H B, Sun H D. Nano Lett., 2016, 16: 448.

doi: 10.1021/acs.nanolett.5b04110     pmid: 26652773
[55]
Zhao C Y, Tian W M, Liu J X, Sun Q, Luo J J, Yuan H, Gai B D, Tang J, Guo J W, Jin S Y. J. Phys. Chem. Lett., 2019, 10: 2357.

doi: 10.1021/acs.jpclett.9b00734     URL    
[56]
Jin X, Zhou M H, Han J L, Li B, Zhang T Y, Jiang S, Duan P F. Nano Res., 2021, 15: 1047.

doi: 10.1007/s12274-021-3594-6     URL    
[57]
Dang Y Y, Liu X L, Sun Y J, Song J W, Hu W P, Tao X T. J. Phys. Chem. Lett., 2020, 11: 1689.

doi: 10.1021/acs.jpclett.9b03718     URL    
[58]
Lin J T, Chen D G, Yang L S, Lin T C, Liu Y H, Chao Y C, Chou P T, Chiu C W. Angew. Chem. Int. Ed., 2021, 60: 21434.

doi: 10.1002/anie.202107239     URL    
[59]
Gao J X, Zhang W Y, Wu Z G, Zheng Y X, Fu D W. J. Am. Chem. Soc., 2020, 142: 4756.

doi: 10.1021/jacs.9b13291     URL    
[60]
Long G K, Jiang C Y, Sabatini R, Yang Z Y, Wei M Y, Quan L N, Liang Q M, Rasmita A, Askerka M, Walters G, Gong X W, Xing J, Wen X L, Quintero-Bermudez R, Yuan H F, Xing G C, Wang X R, Song D T, Voznyy O, Zhang M T, Hoogland S, Gao W B, Xiong Q H, Sargent E H. Nat. Photonics, 2018, 12: 528.

doi: 10.1038/s41566-018-0220-6    
[61]
Benzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048.

doi: 10.1039/b406082m     URL    
[62]
Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res., 2009, 42: 542.

doi: 10.1021/ar800211j     URL    
[63]
Harada T, Tsumatori H, Nishiyama K, Yuasa J, Hasegawa Y, Kawai T. Inorg. Chem., 2012, 51: 6476.

doi: 10.1021/ic202467f     URL    
[64]
Samuel A P S, Lunkley J L, Muller G, Raymond K N. Eur. J. Inorg. Chem., 2010, 3343.
[65]
Yeung C T, Yim K H, Wong H Y, Pal R, Lo W S, Yan S C, Wong M Y M, Yufit D, Smiles D E, McCormick L J, Teat S J, Shuh D S, Wong W T, Law G L. Nat. Commun., 2017, 8: 1128.

doi: 10.1038/s41467-017-01025-1     URL    
[66]
Hananel U, Ben-Moshe A, Diamant H, Markovich G. Proc. Natl. Acad. Sci., 2019, 116: 11159.

doi: 10.1073/pnas.1821923116     URL    
[67]
Zhao B, Yu H L, Pan K, Tan Z A, Deng J P. ACS Nano, 2020, 14: 3208.

doi: 10.1021/acsnano.9b08618     URL    
[68]
Furumi S. Chem. Rec., 2010, 10: 394.
[69]
Zhao S X, Yu Y Y, Zhang B Y, Feng P, Dang C C, Li M, Zhao L C, Gao L M. Adv. Opt. Mater., 2021, 9: 2100907.

doi: 10.1002/adom.202100907     URL    
[70]
Wang C T, Chen K Q, Xu P, Yeung F, Kwok H S, Li G J. Adv. Funct. Mater., 2019, 29: 1903155.

doi: 10.1002/adfm.201903155     URL    
[71]
Li W, Xu M C, Ma C H, Liu Y S, Zhou J, Chen Z J, Wang Y G, Yu H P, Li J, Liu S X. ACS Appl. Mater. Interfaces, 2019, 11: 23512.

doi: 10.1021/acsami.9b05941     URL    
[72]
Huo S W, Duan P F, Jiao T F, Peng Q M, Liu M H. Angew. Chem. Int. Ed., 2017, 56: 12174.

doi: 10.1002/anie.201706308     URL    
[73]
Hao C L, Gao Y F, Wu D, Li S, Xu L G, Wu X L, Guo J, Sun M Z, Li X, Xu C L, Kuang H. Adv. Mater., 2019, 31: 1903200.

doi: 10.1002/adma.201903200     URL    
[74]
Zhao B, Gao X B, Pan K, Deng J P. ACS Nano, 2021, 15: 7463.

doi: 10.1021/acsnano.1c00864     URL    
[75]
Shi Y H, Duan P F, Huo S W, Li Y G, Liu M H. Adv. Mater., 2018, 30: 1705011.

doi: 10.1002/adma.201705011     URL    
[76]
Sugimoto M, Liu X L, Tsunega S, Nakajima E, Abe S, Nakashima T, Kawai T, Jin R H. Chem. Eur. J., 2018, 24: 6519.

doi: 10.1002/chem.201705862     URL    
[77]
Jin X, Sang Y T, Shi Y H, Li Y G, Zhu X F, Duan P F, Liu M H. ACS Nano, 2019, 13: 2804.

doi: 10.1021/acsnano.8b08273     URL    
[78]
Fu K, Jin X, Zhou M H, Ma K, Duan P F, Yu Z Q. Nanoscale, 2020, 12: 19760.

doi: 10.1039/D0NR04510A     URL    
[79]
Fa S X, Tomita T, Wada K, Yasuhara K, Ohtani S, Kato K, Gon M, Tanaka K, Kakuta T, Yamagishib T, Ogoshi T. Chem. Sci., 2022. 10.1039/d2sc00952h.

doi: 10.1039/d2sc00952h    
[80]
Homberg A, Brun E, Zinna F, Pascal S, Gorecki M, Monnier L, Besnard C, Pescitelli G, Bari L D, Lacour J. Chem. Sci., 2018, 9: 7043.

doi: 10.1039/C8SC02935K     URL    
[81]
Zheng H Z, Li W R, Li W, Wang X J, Tang Z Y, Zhang S X A, Xu Y. Adv. Mater., 2018, 30: 1705948.

doi: 10.1002/adma.201705948     URL    
[82]
Xu M C, Wu X Y, Yang Y, Ma C H, Li W, Yu H P, Chen Z J, Li J, Zhang K, Liu S X. ACS Nano, 2020, 14: 11130.

doi: 10.1021/acsnano.0c02060     URL    
[83]
Yu H L, Zhao B, Guo J B, Pan K, Deng J P. J. Mater. Chem. C, 2020, 8: 1459.

doi: 10.1039/C9TC06105C     URL    
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[7] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[10] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[11] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[12] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[13] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[14] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.