English
新闻公告
More
化学进展 2019, Vol. 31 Issue (4): 613-630 DOI: 10.7536/PC180916 前一篇   

所属专题: 锂离子电池

• •

锂离子电池硅基负极及其相关材料

赵云1, 亢玉琼1, 金玉红2, 王莉1,**(), 田光宇3, 何向明1,3,**()   

  1. 1. 清华大学核能与新能源技术研究院 北京 100084
    2. 北京工业大学北京古月新材料研究院 北京 100124
    3. 清华大学汽车安全与节能国家重点实验室 北京 100084
  • 收稿日期:2018-09-19 出版日期:2019-01-15 发布日期:2019-01-14
  • 通讯作者: 王莉, 何向明
  • 基金资助:
    科技部国际合作项目(2016YFE0102200); 国家自然科学基金重点项目(U1564205); 北京市英才计划项目(YETP0157)

Silicon-Based and -Related Materials for Lithium-Ion Batteries

Yun Zhao1, Yuqiong Kang1, Yuhong Jin2, Li Wang1,**(), Guangyu Tian3, Xiangming He1,3,**()   

  1. 1. Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China
    3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received:2018-09-19 Online:2019-01-15 Published:2019-01-14
  • Contact: Li Wang, Xiangming He
  • About author:
    ** E-mail:(Li Wang)
    (Xiangming He)
  • Supported by:
    Ministry of Science and Technology of China(2016YFE0102200); National Natural Science Foundation of China(U1564205); Beijing Talents Project(YETP0157)

锂离子电池是目前电脑、通讯、消费电子品以及未来电动车动力系统的主要能源。硅基负极材料因其具有较高理论比容量(4200 mAh·g-1,为石墨10倍以上),被视为最理想的下一代锂离子电池负极材料。然而硅负极在充放电过程中巨大的体积膨胀造成极片材料的粉化脱落、SEI膜的持续增长、正极锂离子的不断消耗,以及现有商业化粘结剂与硅表面较弱的相互作用等诸多缺陷,造成电池容量快速的衰减,阻碍了硅基材料在锂离子电池中的商业化应用。本文对硅基负极材料及其相关电池材料,如硅材料结构、粘结剂、电解液及添加剂等,进行了系统全面的总结。最后对硅基材料目前研究进展和未来发展方向做出总结与评述,以期为下一代硅基电池体系发展提供参考。

Lithium ion batteries(LIBs) have been widely used as the energy storage system for the applications of the laptop, the communication equipment and the consumer electronics. And importantly, it will be largely used in the electrical vehicles in the near future. Silicon with a high theoretical capacity of 4200 mAh·g-1(more than 10 time of current graphite anode) is one of the most promising alternative anode material for the next generation of LIBs. However, the electrode pulverization, continuous growth of solid electrolyte interphase(SEI) and lithium consumption in silicon anode material based batteries usually happen during charge/discharge process due to its huge volume change. Moreover, the weak interaction between conventional binder and silicon anode material results in the continuous separation of silicon active material. These problems severely hinder the practical application of silicon anode material. This review systematically summarize the recent progress of silicon and its related materials for LIBs. The content includes the fabrication of silicon materials, the structure of silicon materials, binders, electrolytes and electrolyte additives. Finally, the future development direction of silicon-based materials is presented.

()
表1 不同原料制备硅材料的对比
Table 1 The comparison of the fabrication of silicon materials with different raw materials
图1 硅锂在常温和高温下的电化学合金化曲线。黑线为450 ℃条件下理论电压,红线和绿线分别对应着室温条件下晶体硅嵌锂和脱锂过程[24]
Fig. 1 Si electrochemical lithiation and delithiation curves at room temperature and 450 ℃. Black line: theoretical voltage curve at 450 ℃. Red and green line: lithiation and delithiation of crystalline Si at room temperature, respectively[24]
图2 三明治材料合成以及循环示意图[90]
Fig. 2 Scheme of fabrication of sandwich structure and its cycling performance[90]
图3 (a) 以SiO2包覆层为力学钳制层的硅纳米管再充放电过程中的体积变化。力学钳制层使得硅锂化后的体积膨胀主要朝向空心不会引起表面积的改变,从而使得材料表面的SEI在充放电过程中保持稳定;(b)循环曲线;(c)倍率曲线[92]
Fig. 3 (a) Scheme of volume changes of silicon nanotube with SiO2 layer as mechanical clamping layer. The mechanical clamping layer directed the volume expasion of lithiated silicon towards inner cavity, SEI then is stable as the surface of the nanotube keeps constant during charge/discharge;(b) cycling curve of silicon nanotube and(c) rate performance[92]
图4 (a) 硅/预锂化硅和硅负极首圈充放电曲线对比;(b) 石墨/预锂化硅和石墨负极循环对比;(c)硅纳米线电化学预锂化示意图,和其过程中内部电子和例子传输路径;(d) 硅颗粒化学预锂化示意图, 稳定的预锂化产物LixSi可混合于各种负极材料,作为一种锂补偿试剂;(e) 通过加热搅拌化学计量活性材料与金属锂预锂化的示意图[99, 100, 103, 104]
Fig. 4 (a) First-cycle voltage profiles of Si/LixSi composite and Si control cells. (b) Cycling performance of graphite/coated LixSi composite and graphite control cells. (c) Schematic diagrams of the electrochemical prelithiation of SiNWs, and the internal electron and Li+ pathways during the prelithiation. (d) Schematic diagrams of chemical prelithiation of Si particles. The stable LixSi can be mixed with various anode materials and serve as an prelithiation reagent. (e) Prelithiated materials are synthesized by heating a stoichiometric mixture of M nanoparticles and Li metal under mechanical stirring[99, 100, 103, 104]
图5 (a) 黏结剂交联示意图;(b) 黏结剂与活性材料共价键作用示意图;(c) 黏结剂包覆在活性材料表面,允许材料在内部膨胀 [110,111,112]
Fig. 5 Scheme of(a) cross-linked binders;(b) the interaction of binders and active materials by covalent bonding;(c) binders coated on the surface of active materials, keeping pulverized particles together without disintegration [110,111,112]
表2 不同黏结剂的对比
Table 2 The comparison of different binders
图6 不同黏结剂的结构式
Fig. 6 The structure of different binders
图7 (a) FEC作为电解液添加剂的可能反应机理;(b) 使用不同电解质对活性材料表面的影响机理示意图;(c) 不同电解液环境下纳米线循环30圈的循环曲线和第30圈时硅纳米线的SEM图:① EC-DMC/LiPF6; ② DMC-FEC/LiPF6; ③ EC-DMC-FEC/LiPF6;(d) 不同电解液条件下,硅电极循环10圈后的拉曼图: ① PC, ② PP1NEN-TFSA[157, 162, 165, 168]
Fig. 7 (a) Possible reaction schemes with FEC as electrolyte additive;(b) schematic comparison of the mechanisms occurring at Si surface using different salts;(c) the cycling curve of SiNW electrode using different electrolyte,and the SEM images of SiNW after 30 cycles: ① EC-DMC/LiPF6; ② DMC-FEC/LiPF6; ③ EC-DMC-FEC/LiPF6;(d) Raman images of the Si electrode surface after the 10th cycle in electrolytes ①PC, ②PP1NEN-TFSA[157, 162, 165, 168]
[1]
Lin D C, Liu Y Y, Cui Y . Nat. Nanotech 2017,12:194.
[2]
Wang F X, Wu X W, Li C Y, Zhu Y S, Fu L J, Wu Y P, Liu X. Energy Environ.Sci., 2016,9:3570.
[3]
Haregewoin A M, Wotango A S ,Hwang B J. Energy Environ. Sci., 2016,9:1955.
[4]
Su X, Wu Q L, Li J C, Xiao X C, Lott A, Lu W Q, Sheldon B W ,Wu J. Adv. Energy Mater, 2014,4:1300882.
[5]
李振杰(Li Z J), 钟杜(Zhong D), 张洁(Zhang J), 陈金伟(Chen J W), 王刚(Wang G), 王瑞林(Wang R L) . 化学进展(Progress in Chemistry), 2019,31:201.
[6]
Sun Y M, Liu N, Cui Y . Nature Energy, 2016,1:16071.
[7]
Zhu B, Jin Y, Tan Y L, Zong L Q, Hu Y, Chen L, Chen Y B, Zhang Q, Zhu J. Nano Lett., 2015,15:5750.
[8]
Jin Y, Zhang S, Zhu B, Tan Y L, Hu X Z, Zong L Q, Zhu J. Nano Lett ., 2015,15:7742.
[9]
Drouiche N, Cuellar P, Kerkar F, Medjahed S, Boutouchent-Guer N ,Hamou M O. Renew. Sust. Energy Rev., 2014,32:936.
[10]
Huang T Y, Selvaraj B, Lin H Y, Sheu H S, Song Y F, Wang C C, Hwang B J ,Wu N L. ACS Sustainable Chem. Eng., 2016,4:5769.
[11]
Nagamori M, Malinsky I, Claveau A. Metall.Trans. B, 1986,17:503.
[12]
Liu N, Huo K F, McDowell M T, Zhao J, Cui Y. Scientific Reports, 2013,3:1919.
[13]
Sun L Y ,Gong K C. Ind. Eng. Chem. Res., 2001,40:5861.
[14]
Wang L, Gao B, Peng C J, Peng X, Fu J J, Chu P K, Huo K F . Nanoscale, 2015,7:13840.
[15]
Favors Z, Wang W, Bay H H, Mutlu Z, Ahmed K, Liu C, Ozkan M, Ozkan C S . Scientific Reports, 2014,4:5623.
[16]
Yoo J K, Kim J, Jung Y S, Kang K . Adv. Mater 2012,24:5452.
[17]
Gao H, Xiao L S, Plümel I, Xu G L, Ren Y, Zuo X B, Liu Y Z, Schulz C, Wiggers H, Amine K ,Chen Z H. Nano Lett, 2017,17:1512.
[18]
Zhang Z L, Wang Y H, Ren W F, Zhong Z Y ,Su F B. RSC Adv, 2014,4:55010.
[19]
Chae S, Ko M, Park S, Kim N, Ma J, Cho J. Energy Environ. Sci., 2016,9:1251.
[20]
Hao Q, Zhao D Y, Duan H M, Zhou Q X, Xu C X . Nanoscale, 2015,7:5320.
[21]
Chen Y, Qian J F, Cao Y L, Yang H X ,Ai X P. ACS Appl. Mater. Interfaces, 2012,4:3753.
[22]
Zhao J S, Wang L, He X M, Wan C R, Jiang C Y . Electrochimica Acta, 2008,53:7048.
[23]
Zhao J S, He X M, Wang L, Wan C R, Jiang C Y . J. New Mat. Electrochem. Systems, 2008,11:187.
[24]
Wu H, Cui Y . Nano Today, 2012,7:414.
[25]
Wilson A M, Way B M, Dahn J R, Vanbuuren T . J. Appl. Phys., 1995,77:2363.
[26]
Zhou S, Liu X H ,Wang D W. Nano Lett, 2010,10:860.
[27]
Gowda S R, Pushparaj V, Herle S, Girishkumar G, Gordon G J, Gullapall H, Zhan X B, Ajayan P M, ,Reddy A L M. Nano Lett., 2012,12:6060.
[28]
Wolf H, Pajkic Z, Gerdes T, Willert-Porada M . J. Power Sources, 2009,190:157. https://linkinghub.elsevier.com/retrieve/pii/S0378775308013815

doi: 10.1016/j.jpowsour.2008.07.035     URL    
[29]
Xue L G, Xu G J, Li Y, Li S L, Fu K, Shi Q ,Zhang X W. ACS Appl. Mater. Interfaces, 2013,5:21.
[30]
Zhao C S, Li S W, Luo X, Li B, Pan W, Wu H . J. Mater. Chem. A, 2015,3:10114.
[31]
Wang K, He X M, Wang L, Ren J G, Jiang C Y, Wan C R . Solid State Ionics, 2007,178:115.
[32]
Cui Q W, Cao J, Fang M L J J, Lian F, He X M . J. New Mat. Electrochem. Systems, 2014,17:219.
[33]
Park H, Lee S, Yoo S, Shin M, Kim J, Chun M, Choi N S, Park S. ACSAppl. Mater. Interfaces, 2014,6:16360.
[34]
Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y . Nature Energy, 2016,1:15029.
[35]
Zhang L Y, Zhang L, Zhang J, Hao W W, Zheng H H . J. Mater. Chem. A, 2015,3:15432.
[36]
Zhu G B, Gu Y Y, Wang Y, Qu Q T, Zhen H H . J. Alloys Compd., 2019,787:928. https://linkinghub.elsevier.com/retrieve/pii/S0925838819306425

doi: 10.1016/j.jallcom.2019.02.186     URL    
[37]
Zhao J S, He X M, Wan C R, Jiang C Y . Rare Metal Materials and Engineering, 2007,36:1490.
[38]
Liu Y, Hudak N S, Huber D L, Limmer S J, Sullivan J P ,Huang J Y. Nano Lett, 2011,11:4188.
[39]
Karki K, Epstein E, Cho J H, Jia Z, Li T, Picraux S T, Wang C, Cumings J. Nano Lett., 2012 12:1392.
[40]
Li X L, Meduri P, Chen X L, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J . J. Mater. Chem., 2012,22:11014.
[41]
Li P, Zhao G Q, Zheng X B, Xu X, Yao C H, Sun W T, Dou S X . Energy Storage Materials, 2018, DOI: 10.1016/j.ensm.2018.07.014.
[42]
Sun Z, Song X F, Peng Zhang P, Gao L. RSC Adv ., 2014,4:20814.
[43]
Tian H, Tan X, Xin F, Wang C, Han W . Nano Energy, 2015,11:490.
[44]
He X M, Pu W H, Ren J G, Wang L, Jiang C Y, Wan C R . Ionics, 2007,13:51.
[45]
Fang S, Shen L, Xu G, Nie P, Wang J, Dou H ,Zhang X. ACS Appl. Mater. Inter, 2014,6:6497.
[46]
Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu H K, Dou S X, Zhao D . Adv. Mater 2017,29:1700523.
[47]
Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z N, Cui Y. Nat. Commun., 2013,4:1943.
[48]
Chew S, Guo Z, Wang J, Chen J, Munroe P, Ng S, Zhao L, Liu H . Electrochem. Commun 2007,9:941.
[49]
Luo W, Wang Y X, Chou S L, Xu Y F, Li W, Kong B, Dou S X, Liu H K, Yang J P . Nano Energy, 2016,27:255.
[50]
Yu B C, Hwa Y, Park C M, Kim J H ,Sohn H J. RSC Adv, 2013,3:9408.
[51]
He Y, Piper D M, Gu M, Travis J J, George S M, Lee S H, Genc A, Pullan L, Liu J, Mao S X, Zhang J G, Ban C L, Wang C M . ACS Nano, 2014,8:11816.
[52]
Gao Y, Yi R, Li Y G C, Song J C, Chen D, Huang Q Q, Mallouk T E, Wang D H . J. Am. Chem. Soc., 2017,139:17359. https://www.ncbi.nlm.nih.gov/pubmed/29083176

doi: 10.1021/jacs.7b07584     URL     pmid: 29083176
[53]
Li Y S ,Shi J L. Adv. Mater, 2014,26:3176.
[54]
Qi J, Lai X X, Wang J Y, Tang H J, Ren H, Yang Y, Jin Q, Zhang L J, Yu R B, Ma G H, Su Z G, Zhao H J ,Wang D. Chem. Soc. Rev, 2015,44:6749.
[55]
Lai X Y, Halpert J E, Wang D. EnergyEnviron. Sci., 2012,5:5604.
[56]
Wang Z Y, Zhou L ,Lou X W. Adv. Mater, 2012,24:1903.
[57]
Zhang Q, Wang W S, Goebl J, Yin Y D . Nano Today, 2009,4:494.
[58]
Hu J, Chen M, Fang X S ,Wu L W. Chem. Soc. Rev, 2011,40:5472.
[59]
Cheng F, Tao Z, Liang J, Chen J . Chem. Mater 2008,20:667.
[60]
Song M S, Chang G, Jung D W, Kwon M S, Li P, Ku J H, Choi J M, Zhang K, Yi G R, Cui Y ,Park J H. ACS Energy Lett, 2018,3:2252.
[61]
Joo J B, Dahl M, Li N, Zaera F ,Yin Y D. Energy Environ. Sci., 2013,6:2082.
[62]
Dubal D P, Ayyad O, Ruiz V ,Gomez-Romero P. Chem. Soc. Rev, 2015,44:1777.
[63]
Jiao Y, Zheng Y, Jaroniec M T ,Qiao S Z. Chem. Soc. Rev, 2015,44:2060.
[64]
Ma T Y, Dai S, Qiao S Z . Mater. Today, 2016,19:265.
[65]
Manthiram A, Fu Y Z, Chung S H, Zu C X ,Su Y S. Chem. Rev, 2014,114:11751.
[66]
Reddy M V, Rao G V S, Chowdari B V R . Chem. Rev., 2013,113:5364.
[67]
Simon P, Gogotsi Y . Nat. Mater 2008,7:845.
[68]
Xia X H, Wang Y, Ruditskiy A ,Xia Y N. Adv. Mater, 2013,25:6313.
[69]
Zhang Q F, Uchaker E, Candelaria S L ,Cao G Z. Chem. Soc. Rev, 2013,42:3127.
[70]
Yuan C Z, Wu H B, Xie Y ,Lou X W. Angew. Chem. Int. Ed., 2014,53:1488.
[71]
Liu C, Li F, Ma L P ,Cheng H M. Adv. Mater, 2010,22, E28.
[72]
Wang X J, Feng J, Bai Y C, Zhang Q ,Yin Y D. Chem. Rev, 2016,116:10983.
[73]
An K, Hyeon T . Nano Today, 2009,4:359.
[74]
You B, Yang J, Sun Q S ,Su Q D. Chem. Commun, 2011,47:12364.
[75]
Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Lett., 2012,12:3315.
[76]
赵云(Zhao Y), 金玉红(Jin Y H), 王莉(Wang L), 田光宁(Tian G Y), 何向明(He X M) . 化学进展(Progress in Chemistry), 2018,30:1761.
[77]
Zhang B, Yu Y, Huang Z, He Y B, Jang D, Yoon W S, Mai Y W, Kang F ,Kim J K. Energy Environ. Sci., 2012,5:9895.
[78]
Wang T, Zhu J, Chen Y, Yang H G, Qin Y, Li F, Cheng Q F, Yu X Z, Xu Z, Lu B A . J. Mater. Chem. A, 2017,5:4809.
[79]
Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2008,3:31.
[80]
Cho J H ,Picraux S T. Nano Lett, 2014,14:3088.
[81]
Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009,9:3370.
[82]
Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y . J. Power Sources, 2009,189:34.
[83]
Kim H, Cho J. NanoLett., 2009,9:3688.
[84]
Yao Y, Liu N ,McDowell M T, asta M, Cui Y Energy Environ. Sci., 2012,5:7927.
[85]
Han X, Chen H X, Li X, Lai S M, Xu Y H, Li C, Chen S Y, Yang Y. ACS Appl . Mater. Interfaces, 2016,8:673.
[86]
Xia F, Kwon S, Lee W W, Liu Z M, Kim S H, Song T, Choi K J, Paik U ,Park W I. Nano Lett, 2015,15:6658.
[87]
Jouybari Y H, Berkemeier F . Electrochimica Acta, 2016,217:171.
[88]
Kim C, Ko M, Yoo S, Chae S, Choi S, Lee E H, Ko S, Lee S Y, Cho J, Park S . Nanoscale, 2014,6:10604.
[89]
Liu J Y, Li N, Goodman M D, Zhang H G, Epstein E S, Huang B, Pan Z, Kim J, Choi J H, Huang X J, Liu J H, Hsia K J, Dillon S J, Braun P V . ACS Nano, 2015,9:1985.
[90]
Liu X H, Zhang J, Si W P, Xi L X, Eichler B, Yan C L, Schmidt O G . ACS Nano, 2015,9:1198.
[91]
Song T, Xia J L, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y G, Hwang K C, Rogers J A, Paik U . Nano Lett, 2010,10:1710.
[92]
Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y. Nature Nanotech., 2012,7:310.
[93]
任建国(Ren J G), 王科(Wang K), 何向明(He X M), 姜长印(Jiang C Y), 万春荣(Wan C R), 蒲微华(Pu W H) . 化学进展(Progress In Chemistry), 2005,17:597.
[94]
Wang G X, Sun L, Bradhurst D H, Zhong S, Dou S X, Liu H K . J. Power Sources, 2000,88:278. https://linkinghub.elsevier.com/retrieve/pii/S0378775300003852

doi: 10.1016/S0378-7753(00)00385-2     URL    
[95]
Park A R, Kim J S, Kim K S, Zhang K, Park J, Park J H, Lee J K ,Yoo P J . ACS Appl. Mater. Interfaces, 2014,6:1702.
[96]
Wang P, Tong L, Wang R F, Chen A R Fang W Z, Yue K, Sun T, Yang Y. RSC Adv., 2018,8:41404.
[97]
Chae S J, Ko M S, Park S K, Kim N H, Ma J Y ,Cho J P. Energy Environ. Sci., 2016,9:1251.
[98]
Ming H, Ming J, Qiu J Y, Zhang W F, Zhang S T, Cao G P . Energy Storage Science and Technology, 2017,6:223.
[99]
Zhao J, Lu Z D, Liu N, Lee H W, McDowell M T, Cui Y. . Nat. Commun., 2014,5:5088.
[100]
Zhao J, Lu Z D, Wang H T, Liu W, Lee H W, Yan K, Zhuo D, Lin D C, Liu N, Cui Y . J. Am. Chem. Soc., 2015,137:8372. https://www.ncbi.nlm.nih.gov/pubmed/26091423

doi: 10.1021/jacs.5b04526     URL     pmid: 26091423
[101]
Ma R J, Liu Y F, He Y P, Gao M X, Pan H G . J. Phys. Chem. Lett., 2012,3:3555. https://www.ncbi.nlm.nih.gov/pubmed/26290987

doi: 10.1021/jz301762x     URL     pmid: 26290987
[102]
Obrovac M N, Christensen L . Electrochem. Solid-State Lett., 2004,7:A93.
[103]
Liu N, Hu L B, McDowell M T, Jackson A, Cui Y. ACS Nano, 2011,5:6487.
[104]
Zhao J, Zhou G M, Yan K, Xie J, Li Y Z, Liao L, Jin Y, Liu K, Hsu P C, Wang J Y, Cheng H M, Cui Y . Nature Nanotech 2017,12:993.
[105]
Liu Z H, Yu Q, Zhao Y L, He R H, Xu M, Feng S H, Li S D, Zhou L ,Mai L Q. Chem. Soc. Rev, 2019,48:285.
[106]
Chen T, Wu J, Zhang Q L, Su X . J. Power Sources, 2017,363:126.
[107]
Liu Z H, Guan D D, Yu Q, Xu L, Zhuang Z C, Zhu T, Zhao D Y, Zhou L, Mai L Q . Energy Storage Materials , DOI: 10.1016/j.ensm.2018.01.004.
[108]
Liu Z H, Zhao Y L, He R H, Luo W, Meng J S, Yu Q, Zhao D Y, Zhou L, Mai L Q . Energy Storage Materials, DOI: 10.1016/j.ensm.2018.10.011.
[109]
Xu Q, Sun J K, Yin Y X ,Guo Y G. Adv. Funct. Mater, 2018,28:1705235
[110]
Yu X H, Yang H Y, Meng H W, Sun Y L, Zheng J, Ma D Q ,Xu X H. ACS Appl. Mater. Interfaces, 2015,7:15961.
[111]
Liu Y J, Tai Z X, Zhou T F, Sencadas V, Zhang J, Zhang L, Konstantinov K, Guo Z P ,Liu H K. Adv. Mater, 2017,29:1703028.
[112]
Choi S, Kwon T W, Coskun A, Choi J W . Science, 2017,357:279.
[113]
Xu Z X, Yang J, Zhang T, Nuli Y N, Wang J L, Hirano S I . Joule, 2018,2:950.
[114]
Wei L M, Chen C X, Hou Z Y, Wei H . Scientific Reports, 2016,6:19583.
[115]
Ryou M H, Kim J, Lee I, Kim S, Jeong Y K, Hong S, Ryu J H, Kim T S, Park J K, Lee H ,Choi J W. Adv. Mater, 2013,25:1571.
[116]
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G . Science, 2011,334:75.
[117]
Chockla A M, Bogart T D, Hessel C M, Klavetter K C, Mullins C B, Korgel B A . J. Phys. Chem. C, 2012,116:18079.
[118]
Russo R, Malinconico M, Santagata G . Biomacromolecules, 2007,8:3193.
[119]
Liu J, Zhang Q, Wu Z Y, Wu J H, Li J T, Huang L ,Sun S G. Chem. Commun, 2014,50:6386.
[120]
Zhang L, Zhang L Y, Chai L L, Xue P, Hao W W, Zheng H H . J. Mater. Chem. A, 2014,2:19036.
[121]
Chen D, Yi R, Chen S R, Xu T, Gordin M L, Wang D H . Solid State Ionics, 2014,254:65.
[122]
Jeong Y K, Kwon T W, Lee I, Kim T S, Coskun A ,Choi J W. Nano Lett, 2014,14:864.
[123]
Kwon T W, Jeong Y K, Deniz E, Aiqaradawi S Y, Choi J W, Coskun A . ACS Nano, 2015,9:11317.
[124]
Magasinski A Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner C F, Fuller T F, Luzinov I, Yushin G . ACS Appl. Mater. Interfaces, 2010,2:3004.
[125]
Han Z J, Yamagiwa K, Yabuuchi N, Son J Y, Cui Y T, Oji H, Kogure A, Harada T, Ishikawa S, Aoki Y ,Komaba S. Phys. Chem. Chem. Phys., 2015,17:3783.
[126]
Han Z J, Yabuuchi N, Shimomura K, Murase M, Yui H, Komaba S . Energy Environ. Sci., 2012,5:9014.
[127]
Yim T, Choi S J, Park J H, Cho W, Jo Y N, Kim T H, Kim Y . J. Phys. Chem. Chem. Phys., 2015,17:2388. https://www.ncbi.nlm.nih.gov/pubmed/25490705

doi: 10.1039/c4cp04723k     URL     pmid: 25490705
[128]
Jeena M T, Lee J I, Kim S H, Kin C, Kim J Y, Park S ,Ryu J H. ACS Appl. Mater. Interfaces, 2015,6:18001.
[129]
Jeena M T, Bok T, Kim S H, Park S, Kim J Y, Park S, Ryu J H . Nanoscale, 2016,8:9245.
[130]
Koo B, Kim H, Cho Y, Lee K T, Choi N S ,Cho J. Angew. Chem. Int. Ed., 2012,124:8892.
[131]
Kim C, Jang J Y, Choi N S, Park S. . RSCAdv 2014,4:3070.
[132]
Jeena M T, Lee J I, Kim S H, Kim C, Kim J Y, Park S ,Ryu J H. ACS Appl. Mater. Interfaces, 2014,6:18001.
[133]
Song J X, Zhou M J, Yi R, Xu T, Gordin M L, Tang D H, Yu Z X, Regula M ,Wang D H. Adv. Funct. Mater, 2014,24:5904.
[134]
Choi J, Kim K, Jeong J, Cho K Y, Ryou M H ,Lee Y M. ACS Appl. Mater. Interfaces, 2015,7:14851.
[135]
Choi N S, Yew K H, Choi W U, Kim S S . J. Power Sources, 2008,177:590.
[136]
Yang H S, Kim S H, Kannan A G, Kim S K, Park C, Kim D W . Langmuir, 2016,32:3300.
[137]
Wang C, Wu H, Chen Z , McDowell M T, Cui Y, Bao Z N . Nat. Chem., 2013,5:1042.
[138]
Chen Z, Wang C, Lopez J, Lu Z D, Cui Y ,Bao Z N. Adv. Energy Mater, 2015,5:1401826.
[139]
Lopez J, Chen Z, Wang C, Andrews S C, Cui Y ,Bao Z N. ACS Appl. Mater. Interfaces, 2016,8:2318.
[140]
Sun Y M, Lopez J, Lee H W, Liu N, Zheng G Y, Wu C L, Sun J, Liu W, Chung J W, Bao Z N, Cui Y . Adv. Mater 2016,28:2455.
[141]
Zhao H, Wei Y, Wang C, Qiao R M, Yang W L, Messersmith P B, Liu G . ACS Appl. Mater. Interfaces, 2018, 10, 6:5440.
[142]
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G . Nat. Mater 2010,9:353.
[143]
Zhao H, Yuan W, Liu G . Nano Today, 2015,10:193.
[144]
Courtel F M, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson I J . J. Power Sources, 2011,196:2128.
[145]
Roncali J, Blanchard P, Frere P . J. Mater. Chem., 2005,15:1589.
[146]
Lipomi D J, Lee J A, Vosgueritchian M , Tee B C K, Bolander J A, Bao Z. Chem. Mater., 2012,24:373.
[147]
Higgins T M, Park S H, King P J, Zhang C F, , McEvoy N, Berner N C, Daly D, Shmeiov A, Khan U, Duesberg G, Nicolosi V, Colemanm J N . ACS Nano, 2016,10:3702.
[148]
Ling M, Qiu J X, Li S, Yan C, Kiefel M J, Liu G ,Zhang S Q. Nano Lett, 2015,15:4440.
[149]
Liu G, Xun S D, Vukmirovic N Song X Y, Olalde-Velasco P, Zheng H H, Battaglia V S, Wang L W, Yang W L. Adv. Mater., 2011,23:4679.
[150]
Wu M Y, Xiao X C, Vukmirovic N, Xun S D, Das P, Song X Y, Olalde-Velasco P, Wang D D, Weber A Z, Wang L W, Battaglia V S, Yang W L, Liu G . J. Am. Chem. Soc., 2013,135:12048. https://www.ncbi.nlm.nih.gov/pubmed/23855781

doi: 10.1021/ja4054465     URL     pmid: 23855781
[151]
Wu M Y, Song X Y, Liu X S, Battaglia V, Yang W L, Liu G . J. Mater. Chem. A, 2015,3:3651.
[152]
Zhao H, Wang Z H, Lu P, Jiang M, Shi F F, Song X Y, Zheng Z Y, Zhou X, Fu Y B, Abdelbast G, Xiao X C, Liu Z, Battaglia V S, Zaghib K, Liu G. Nano Lett, 2014,14:6704.
[153]
Park S J, Zhao H, Ai G, Wang C, Song X Y, Yuca N, Battaglia V S, Yang W L, Liu G . J. Am. Chem. Soc., 2015,137:2565. https://www.ncbi.nlm.nih.gov/pubmed/25646659

doi: 10.1021/ja511181p     URL     pmid: 25646659
[154]
Zhao H, Wei Y, Qiao R M, Zhu C H, Zheng Z Y, Ling M Jia Z, Bai Y, Fu Y B, Lei J L, Song X Y, Battaglia V S, Yang W L, Messersmith P B. Liu G. Nano Lett., 2015,15:7927.
[155]
Sethuraman V A, Kowolik K, Srinivasan V . J. Power Sources, 2011,196:393.
[156]
Lin Y M, Klavetter K C, Abel P R, Davy N C, Snider J L, Heller A ,Mullins C B. Chem. Commun, 2012,48:7268.
[157]
Etacheri V, Haik O, Goffer Y, Roberts G A, Stefan I C, Fasching R, Aurbach D . Langmuir, 2012,28:965.
[158]
Chen X L, Li X L, Mei D H, Feng J, Hu M Y, Hu J Z, Engelhard M, Zheng J M, Xu W, Xiao J, Liu J, Zhang J G . ChemSusChem, 2014,7:549.
[159]
Jin Y T, Kneusels N J H, Marbella L E, Castillo-Martínez E, Magusin P C M M, Weatherup R S, Jonsson E, Liu T, Paul S, Grey C P. J. Am. Chem. Soc., 2018,140:9854. https://www.ncbi.nlm.nih.gov/pubmed/29979869

doi: 10.1021/jacs.8b03408     URL     pmid: 29979869
[160]
Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y ,Yamin H J. Electrochem. Soc, 1995,142:2882.
[161]
Xu K, Zhuang G R V,Allen J L, Lee U, Zhang S S, Ross P N, Jow T R. J. Phys. Chem. B, 2006,110, 7708.
[162]
Jin Y T, Kneusels N J H, Magusin P C M M, Kim G, Castillo-Martinez E, Marbella L E, Kerber R N, Howe D J, Paul S, Liu T, Grey C P . J. Am. Chem. Soc., 2017,139:14992. https://www.ncbi.nlm.nih.gov/pubmed/28933161

doi: 10.1021/jacs.7b06834     URL     pmid: 28933161
[163]
Xiao Y, Hao D, Chen H X, Gong Z L, Yang Y. ACS Appl . Mater. Interfaces, 2013,5:1681.
[164]
Profatilova I A, Stock C, Schmitz A, Passerini S, Winter M . J. Power Sources, 2013,222:140.
[165]
Philippe B, Dedryvère R, Gorgoi M, Rensmo H, Gonbeau D, Edström K . J. Am. Chem. Soc., 2013,135:9829. https://www.ncbi.nlm.nih.gov/pubmed/23763546

doi: 10.1021/ja403082s     URL     pmid: 23763546
[166]
Shobukawa H, Shin J W, Alvarado J, Rustomjia C S, Meng Y S . J. Mater. Chem. A, 2016,4:15117.
[167]
Gruber T, Thomas D, Röder C, Mertens F, Kortus J . J. Raman Spectrosc., 2013,44:934.
[168]
Shimizu M, Usui H, Suzumura T, Sakaguchi H . J. Phys. Chem. C, 2015,119:2975.
[169]
Lee J K, Oh C, Kim N, Hwang J Y, Sun Y K . J. Mater. Chem. A, 2016,4:5366.
[170]
Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J ,Guo Y G. Adv. Energy Mater, 2016,7:1601481.
[171]
Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y, Cho J . Nat. Energy, 2016,1:16113.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[4] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[11] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[12] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[13] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[14] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[15] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.