English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 1917-1934 DOI: 10.7536/PC200945   后一篇

• 综述 •

纳米有机半导体光催化剂

闫楚璇1, 李青璘1, 巩正奇1, 陈颖芝1,2,*(), 王鲁宁1,2,*()   

  1. 1 北京科技大学材料科学与工程学院 北京 100083
    2 北京科技大学顺德研究生院 佛山 528399
  • 收稿日期:2020-09-23 修回日期:2020-10-22 出版日期:2020-12-22 发布日期:2020-12-22
  • 通讯作者: 陈颖芝, 王鲁宁
  • 基金资助:
    国家自然科学基金资助项目(51503014); 中央高校基本科研业务费专项资金资助项目(230201818-001A3); 北京科技大学顺德研究生院科技创新专项(BK19AE027)

Organic Semiconductor Nanostructured Photocatalysts

Chuxuan Yan1, Qinglin Li1, Zhengqi Gong1, Yingzhi Chen1,2(), Luning Wang1,2()   

  1. 1 School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing 100083, China
    2 Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China
  • Received:2020-09-23 Revised:2020-10-22 Online:2020-12-22 Published:2020-12-22
  • Contact: Yingzhi Chen, Luning Wang
  • Supported by:
    National Natural Science Foundation of China(51503014); Fundamental Research Funds for the Central Universities of China(230201818-001A3); Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB(BK19AE027)

近年来,有机半导体因其独特可调的化学结构及光电性质越来越多地被应用于高效可见光催化领域。但是,有机材料本身化学键弱、载流子迁移率低,导致其催化效率低、稳定性差。因此,将有机半导体进行纳米组装及其构建异质结构,得到零维、一维、二维或多元复合纳米有机光催化剂,成为近几年的研究热点。零维粒子尺寸小、比表面积大;一维结构长程有序排列、表面缺陷密度降低;二维结构在增大表面活性位点的同时能最大限度地缩短电荷在材料内部的迁移距离而表现出更高的光生电荷利用率;纳米复合结构的异质界面可以有效促进光生电子-空穴对的分离,因此在提高光催化活性及稳定性方面具有重要意义。同时,纳米有机光催化剂种类丰富,催化机理各不相同,因此被广泛应用于分解水或空气中污染物的光催化领域。本综述中归纳了各类纳米有机光催化剂的制备方法、结构特性以及光催化应用,同时对多种光催化机制进行了介绍,并对其应用前景进行了展望。

Organic semiconductors possess various chemical structures and tailored optoelectronic properties via simple chemical modifications, so increasing use of them are found in efficient visible-light photocatalysis. However, the weak chemical bonds and the poor charge behavior(e.g. notoriously low carrier mobility, short life of charge carriers) intrinsic in them, always incur quite limited efficiency and stability. Therefore, the assembly of them into specific nanostructures or nanocomposites is usually proposed to enhance their optoelectronic properties, as well as the photocatalytic efficiency and reliability. Zero-dimensional(0D) nanoparticles are low in size and hence high in specific surface area(SSA) ; one-dimensional(1D) nanostructures are usually arranged in an orderly long range thus leading to low surface defect density and higher carrier mobility; two-dimensional(2D) structures are particularly capable of enhancing the photogenerated charge utilization because of their large reaction sites and shortened charge transport length; The heterogeneous interfaces in the nanocomposites can effectively facilitate the special charge separation. All these emphasize their importance in photocatalytic activity and stability. So far, organic nanostructures are increasingly used in the photocatalytic decomposition of pollutants, CO2 reduction, water splitting into oxygen and hydrogen, etc. In this review, the varied organic nanostructures, properties, mechanistic pathways, and the different photocatalytic applications are summarized, and moreover, the challenges and future outlook are also given.

Contents

1 Introduction

2 Physical and chemical properties of organic semiconductors

3 Photocatalytic process

4 Self-assembly of organic molecules

5 Organic nanostructured photocatalysts

5.1 Isolated nanostructures

5.2 Binary nanocomposites

5.3 Multiple nanocomposites

6 Application of organic nanostructured photocatalysts

7 Conclusions and outlook

()
图1 几种典型有机光催化剂的光吸收范围[45]
Fig. 1 Typical absorption ranges of the organic photocatalysts in the UVB-UVA-visible range[45]. Copyright 2012, John Wiley and Sons
图2 光催化过程示意图[50]
Fig. 2 Photocatalytic process diagram[50]. Copyright 2017, John Wiley and Sons
图3 典型有机分子自组装
Fig. 3 Nano-assembly of typical organic semiconductors
图4 (a)纳米晶形貌随表面活性剂浓度和pH的变化而变化;(b)锌卟啉(ZnTPP)纳米晶的光催化活性。在可见光照射下,四方纳米棒(c)、相同浓度的ZnTPP在DMF中的浓度(d)、相同浓度的ZnTPP在0.01 M的HCl中(e)、直径为80 nm的纳米颗粒(f)、长度为2 μm的六方纳米线(g)、长度为400 nm的六方棒(h)和六方多孔纳米盘(i)用于可见光照射下光降解MO分子。文中还给出了不使用锌卟啉纳米晶(a)和使用商品P25(b)的空白实验结果以供比较[64]
Fig. 4 (a) Nanocrystal morphology evolution with the surfactant concentration and pH,(b) Photocatalytic activities of Zn porphyrin(ZnTPP) nanocrystals. Tetragonal nanorods with 200 nm length(c), same concentration ZnTPP in DMF(d), same concentration ZnTPP in 0.01 M HCl(e), nanoparticles with 80 nm diameter(f), hexagonal nanowires with 2 μm length(g), hexagonal rods with 400 nm length(h), and hexagonal porous nanodisks(i) for photo degradation of MO molecules under visible light irradiation. The results from blank experiments, where no Zn Porphyrin nanocrystals were used(a) and commercial P25(b) was used are also presented for comparison[64]. Copyright 2014, American Chemical Society
图5 准球形PeNPs形成的示意图。Stage Ⅰ:成核;Stage Ⅱ:成长;Stage Ⅲ和Ⅳ:一维到三维组织[65]
Fig. 5 Schematic diagram of the formation of quasi-spherical Pe nanoparticles. Stage Ⅰ: nucleation; Stage Ⅱ: growth; Stage Ⅲ and Ⅳ: one-dimensional(1D)to three-dimensional(3D)organization[65]. Copyright 2007, American Chemical Society
图6 (a,b)PPy-NS-c的SEM图像;(c~d)PPy-NS-γ的SEM图像;(e,f)PPy-bulk的SEM图像;(g)制备的PPy样品在紫外可见光下对苯酚(初始浓度为0.5 mM)的降解率;(h)制备的PPy样品在可见光照射下对苯酚(初始浓度为0.5 mM)的降解率。P25 TiO2在紫外线下显示出高活性,Ag-TiO2在紫外光和可见光下均表现出高活性,在实验中用作对照组衡量PPy样品的催化活性[67]
Fig. 6 SEM images of PPy-NS-c(a,b), PPY-NS-γ(c~d), and PPy-bulk(e,f);(g) Degradation rate of phenol(initial concentration: 0.5 mM) under ultraviolet and visible light;(h) Degradation rate of phenol(initial concentration 0.5 mM) under visible light irradiation for the PPy sample prepared. P25 TiO2 showed high activity under ultraviolet light, while Ag-TiO2 showed high activity under ultraviolet and visible light, which was used as the control group to measure the catalytic activity of PPy samples in the experiment[67]. Copyright 2019, Elsevier
图7 BCN、CCN和HCCN的光催化机理示意图[75]
Fig. 7 Schematic of the tentative photocatalytic mechanisms of BCN, CCN, and HCCN[75]. Copyright 2020, Elsevier
图8 (a)Cu/g-C3N4的TEM图像;(b)纯g-C3N4、Cu/g-C3N4光催化的RhB的降解率;(c)可见光照射下Cu/g-C3N4在有无EDTA-2Na、BQ和TBA时对RhB的光催化活性比较研究[94]
Fig. 8 (a) TEM image of Cu/g-C3N4;(b) Photocatalytic degradation of RhB in the presence of pure g-C3N4, Cu/g-C3N4 materials;(c) Photocatalytic activities comparison of Cu/g-C3N4 materials with or without adding EDTA-2Na, BQ and TBA to degrade RhB under visible light irradiation[94]. Copyright 2020, Acta Physico-Chimica. Sinica
图9 三种不同类型的电子-空穴对分离示意图:(a)跨立型(Ⅰ型)、(b)错开型(Ⅱ型)、(c)破隙型(Ⅲ型)[97]
Fig. 9 Schematic diagram of three different types of electron-hole pair separation:(a) Straddling gap(type Ⅰ)、(b) Staggered gap(type Ⅱ)、 and(c) Broken gap(type Ⅲ)[97]. Copyright 2012, Royal Society of Chemistry
图10 (a)H2TPP(p),CH-PTCDI(n)和H2TPP-CH-PTCDI(p-n)纳米结构的荧光光谱;(b)可见光(λ > 400 nm)下不同样品对亚甲基蓝(MB)的光催化降解;(c)H2TPP-CH-PTCDI纳米复合结构的光催化原理示意图[98]
Fig. 10 (a) Fluorescence spectra of H2TPP(p), CH-PTCDI(n) and H2TPP-CH-PTCDI(p-n) nanostructures;(b) photocatalytic degradation of methyl blue(MB) by different samples under visible light(λ > 400 nm) ;(c) Schematic diagram of photocatalysis of H2TPP-CH-PTCDI nanocomposite structure[98]. Copyright 2013, Royal Society of Chemistry
图11 (a)PTCBI和MPc的分子结构;(b)PTCBI/H2Pc和PTCBI/PbPc的吸收光谱(400~1000 nm);(c) PTCBI/PbPc的长期光电解研究(ITO/PTCBI/PbPc的耐久性能是根据Pt计数器上析出的H2的量来评估的,一个周期的照射时间为1 h)[99]
Fig. 11 (a)The molecular structure of PTCBI and MPc;(b)Absorption spectra of PTCBI/H2Pc and PTCBI/PbPc (400~1000 nm);(c)A long-term optoelectronic solution study of PTCBI/PbPc(the durability of ITO/PTCBI/PbPc was assessed by the amount of H2 precipitated on the Pt counter and the exposure time for one cycle was 1 hour)[99]. Copyright 2017, Elsevier
图12 (a)CCN1.0上的活性物种捕获实验;(b)CCN1.0的光催化机理示意图[104]
Fig. 12 (a) Active species capture experiments on CCN1.0;(b) schematic diagram of photocatalytic mechanism of CCN1.0[104]. Copyright 2020, Elsevier
图13 (a)5,10,15,20-四(4-羧基苯基)卟啉(TCPP)的化学结构;(b)不同浓度的rGO(a-0 μg,b-60 μg,c-100 μg,d-150 μg和e-240 μg)时,TCPP NR-rGO复合材料的光致发光光谱;(c)TCPP NR的暗电流a和光电流c;TCPP NR-rGO复合系统的暗电流b和光电流d[105]
Fig. 13 (a) The chemical structure of 5,10,15,20-four(4-carboxyphenyl) porphyrin(TCPP) ;(b) Photoluminescence spectra of TCPP NR-rGO composites at different concentrations(a-0 μg, b-60 μg, c-100 μg, d-150 μg and e-240 μg) ;(c) Dark current a and photocurrent c of TCPP NR; Dark current b and photocurrent d of TCPP NR-rGO composite system[105]. Copyright 2016, American Chemical Society
图14 (a)使用NaBH4还原制备rGO/pCN的静电自组装流程图;(b)rGO、纯g-C3N4、pCN、15rGO/pCN和15rGO/CN光照10 h后CH4的总产量[107]
Fig. 14 (a)Schematic mechanism for fabricating rGO/pCN heterojunction via an electrostatic self-assembly strategy followed by reduction with NaBH4;(b)Total yield for CH4 production over rGO, pure g-C3N4, pCN, 15rGO/pCN, and 15rGO/CN photocatalysts after 10 h of illumination[107]. Copyright 2015, Elsevier
图15 CN的负载量为1 wt%时,不同原子比的Pt、Co和Pt-Co合金的光催化H2析出性能[112]
Fig. 15 Photocatalytic H2 evolution performance over Pt, Co and Pt-Co alloys of different atomic ratios loaded CN at 1 wt% loading amount[112]. Copyright 2020, Acta Physico-Chimica. Sinica
图16 (a)四种卟啉分子的结构;(b)纯TiO2和四种TiO2-卟啉复合光催化剂的可见光吸收光谱;(c)纯TiO2和四种TiO2-卟啉复合光催化剂在可见光照射下MB的光催化降解曲线[115]
Fig. 16 (a)The structure of the four porphyrin molecules;(b)Visible absorption spectra of pure TiO2 and four kinds of TiO2-porphyrin composite photocatalysts;(c)Photocatalytic degradation curves of MB with pure TiO2 and four kinds of TiO2-porphyrin composite photocatalysts under visible light irradiation[115]. Copyright 2019, Elsevier
图17 (a)Ag3VO4/Cu-MOF/rGO的FESEM图片;(b)在不同催化剂存在下AB92光降解率C/C0图像;(c)Ag3VO4/Cu-MOF/rGO在可见光照射下的光催化机理和电荷转移方案[126]
Fig. 17 (a) FESEM image of Ag3VO4/Cu-Mof/rGO;(b) Image of AB92 photodegradation rate C/C0 in the presence of different catalysts;(c) Photocatalytic mechanism and charge transfer scheme of Ag3VO4/Cu-Mof/rGO under visible light irradiation[126]. Copyright 2020, Elsevier
图18 (a)TiO2、4-PySH@TiO2、ZnTCPP@TiO2、PCN-222(Zn)和TP222(Zn)的紫外-可见漫反射光;(b)根据(αhv)2-Eg线计算了TiO2和PCN-222(Zn)的带隙[138]
Fig. 18 (a) UV-visible diffusive reflectance spectra of the as-prepared samples: TiO2, 4-PySH@TiO2, ZnTCPP@TiO2, PCN-222(Zn) and TP-222(Zn);(b) Calculation of the band gaps of TiO2 and PCN-222(Zn) based on the(αhv)2-Eg curves[138]. Copyright 2017, Royal Society of Chemistry
图19 (a)g-C3N4-NiFeP的TEM图像;(b)不同样品的平均析氢率;(c)TRPL谱;(d)EY敏化的g-C3N4,CN/FEP/g-C3N4和CN/FeNiP/g-C3N4复合材料的光电流响应[143]
Fig. 19 (a) TEM image of g-C3N4-NiFeP;(b) average H2 evolution rate over different samples;(c) TRPL spectra and(d) photocurrent responses of EY-sensitized g-C3N4, CN/FeP/g-C3N4, and CN/FeNiP/g-C3N4 composites[143]. Copyright 2019, Elsevier
图20 Au@SnS、Au@g-C3N4和Au@g-C3N4/SnS样品在4 h光照下的生烃率比较[150]
Fig. 20 Hydrocarbon generation rate in comparison with samples Au@SnS, Au@g-C3N4, and Au@g-C3N4/SnS for 4 h illumination[150]. Copyright 2018, American Chemical Society
表1 纳米有机光催化剂的制备、形貌及应用[24⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~35,53⇓⇓ ~56,129⇓⇓⇓⇓⇓⇓ ~136]
Table 1 Preparation, morphology and application of nano organic photocatalyst[24⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~35,53⇓⇓ ~56,129⇓⇓⇓⇓⇓⇓ ~136]
Photocatalyst Preparation method Structure and morphology* Application and efficiency ref
H-type aggregated perylenete-
tracarboxylic diimide(H-PDI);
J-type aggregated perylenete
tracarboxylic diimide(J-PDI)
pH hydrogelation
method
Nanofibers(SSA: 10.05 m2·g-1)
Nanorods( SSA: 16.02 m2·g-1)
phenol photodegradation(50%, 4 h)
phenol photodegradation(negligible)
54
perylene diimide/nanosilica(SN-PDI) covalently anchoring Nanospheres( SSA: 39.9 m2·g-1) Decabromodiphenyl ether(BDE209) photodegradation(100%, 0.5 h) 55
perylene imide/Bi2WO6 (PDI/Bi2WO6) dual transfer approach Nanosheets( SSA: 16.633 m2·g-1) BPA photodegradation(99.7%, 3 h) 56
20-tetrakis[p-(3-N-triethoxysilylpropylureido)phenyl]porphyrin(TiO2/POR-Si) Sol-gel cogelation Crystallite( SSA: 180 m2·g-1) P-nitrophenol(PNP) photodegradation(65%, 24 h) 31
Tetrahydroxyphenyl zinc porphyrin-TiO2(ZnTHPP-TiO2); Tetrahydroxyphenyl zinc porphyrin/TiO2(ZnTHPP/TiO2) Solvothermal in situ
method; Impregnation
method
Nanospheres(size: 30~40 nm) MB photodegradation(75.6%, 100 min); MB photodegradation(61.2%, 100 min) 24
Iron(Ⅲ) meso-tetra(4-carboxyphenyl) porphyrin/TiO2 nanotubes(FeTCPP-TNTs) hydrothermal and
heating reflux process
Nanospheres
(size: 18.26 nm, SSA:
309.45 m2·g-1)
MB photodegradation(90%, 2 h) 35
Tetrakis(4-carboxyphenyl)porphyrin /ZnFe2O4@polythiophene(TCPP/ZnFe@PTh) photosensitize Clusters MO photodegradation(94%, 3 h) 34
6-
5-
dicarbaldehyde(CuTAPP-CMP-OH)
Microwave-assisted Nanospheres(SSA 223.6 m2·g-1) RhB photodegradation(98%, 3 h) 26
polyphenylporphyrin benzobisoxazole
P(PPor-BBO)
polycondensation Nanospheres(size: 90 nm) RhB photodegradation(98%, 2.5 h) 30
20-meso-tetra-(para-amino)-phenyl-
porphyrin(FST-g-TAPP)
Graft modification Clusters(75.127 m2·g-1) RhB photodegradation(96.26%, 1 h) 27
Benzobisoxazole-linked porphyrin-based fully conjugated microporous polymers based on metalloporphyrin(BBO-NiPor-CMP) polycondensation reaction Sheet clusters(SSA: 238 m2·g-1) RhB photodegradation(100%, 2.5 h) 33
Carbon nitride/cobalt tetra-phenyl-porphyrin(CN/Co(Ⅲ)TPP) Self-assembled Lamellar(pore volume: 0.254 cm3·g-1) Nicotinamide cofactors(NADH)
regeneration(87.9%, 1 h)
25
cobalt metallated aminopor-phyrin(GO-Co-ATPP) Solvothermal method Nanospheres(SSA: 13.971 m2·g-1) Formic acid conversion(96.49 μmol, 2 h) 28
g-C3N4 loaded with carbon dots/tetra
(4-carboxyphenyl)porphyrin iron(Ⅲ)
(g-C3N4-Cx/FeTCPP)
mechanical mixing Nanosheets(SSA: 77.5~85.5 m2·g-1) CO evolution(28.3 mmol g-1, 6 h)
H2 evolution(71.1 mmol g-1, 6 h)
32
Zinc-porphyrin/platinum deposited hi-
erarchical porous TiO2(LG5/PHPT)
D-π-A approach Clusters H2 evolution(4196 μmol·g-1·h-1) 29
4-pyrrolopyrrole
dione(DPP-CN);
4-pyrrolopyrrole dione(DPP-CI);
4-pyrrolopyrrole dione
(DPP-PN)
Condensation reaction Strip(size: 176.8 nm)
Flake(size: 316.9 nm)
Strip(size: 285.8 nm )
H2 evolution(569.26 μmol·g-1·h-1)
H2 evolution(361.84 μmol·g-1·h-1)
H2 evolution(Almost none)
53
Pt@CeO2/three-dimensional porous g-C3N4(Pt@CeO2/3DCN) Calcination method Cubes/sheets(SSA: 61.67
m2·g-1)
CO evolution(4.69 μmol·g-1·h-1)
CH4 evolution(3.03 μmol·g-1·h-1)
129
4-
benzenedicarboxylate)/TiO2(CPO-27-Mg/TiO2)
Hydrothermal Self-assembly method Spindle/nanospheres(size:
300~500 nm)
CO evolution(40.9 μmol·g-1)
CH4 evolution(23.5 μmol·g-1)
130
Cs2AgBiBr6@g-C3N4 (CABB@g-C3N4) In situ assembly strategy Thin shell(size 2~3 nm) CO2 reduction(2.0 μmol·g-1·h-1) 131
Zr based MOFs/carbon nanotubes(UIO-66-NH2/CNTs) Hydrothermal method spheres/rods(SSA:
642.5 m2·g-1)
CO2 reduction(28.8 μmol, 4 h) 132
4'-(PO3H2)2-bipy)]Br2-TiO2-CO2-reducing enzyme(RUP-TiO2-CODH) modified with a
photosensitizer
Nanospheres(size: 21 nm) CO evolution(5 μmol, 4 h) 133
MOF-525(Zr6O4(OH)4(TCPP-H2)3)-Co(MOF-525-Co) incorporation of
coordinatively unsaturated single atoms
Nanosheets CO evolution(200.6 μmol·g-1·h-1)
CH4 evolution(36.76 μmol·g-1·h-1)
134
MIL-101=Fe-containing MOFs (NH2-MIL-101) amine-functionalized Clusters CO2 adsorption(34.0 cm3·g-1) 135
Au@PtAg/2-Methylimidazole zinc salt(Au@PtAg@ZIF-8) encapsulation approach Core/hell(SSA:
1325 m2·g-1)
CO evolution(14.5 μmol·g-1·h-1) 136
[1]
Lewis N S, Nocera D G. Proc. Natl. Acad. Sci. USA, 2006, 103(43):15729.

doi: 10.1073/pnas.0603395103     URL    
[2]
Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110(11): 6503.

doi: 10.1021/cr1001645     URL    
[3]
Maeda K, Domen K. J. Phys. Chem. C, 2007, 111(22): 7851.

doi: 10.1021/jp070911w     URL    
[4]
Bard A J, Fox M A. Acc. Chem. Res., 1995, 28(3): 141.

doi: 10.1021/ar00051a007     URL    
[5]
Li X, Yu J G, Low J, Fang Y P, Xiao J, Chen X B. J. Mater. Chem. A, 2015, 3(6): 2485.

doi: 10.1039/C4TA04461D     URL    
[6]
Roy S C, Varghese O K, Paulose M, Grimes C A, ACS Nano, 2010, 4: 1259.

doi: 10.1021/nn9015423     URL    
[7]
Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39(11): 4206.

doi: 10.1039/b921692h     URL    
[8]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

doi: 10.1039/B800489G     URL    
[9]
Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010, 4(3): 1259.

doi: 10.1021/nn9015423     URL    
[10]
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed, 2013, 52:7372.

doi: 10.1002/anie.201207199     URL    
[11]
Chen C C, Ma W H, Zhao J C, Chem. Soc. Rev., 2010, 39: 4206.

doi: 10.1039/b921692h     URL    
[12]
Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277(5698): 637.

doi: 10.1038/277637a0     URL    
[13]
Halmann M. Nature, 1978, 275(5676): 115.

doi: 10.1038/275115a0     URL    
[14]
Chen Y Z, Jiang D J, Gong Z Q, Li Q L, Shi R R, Yang Z X, Lei Z Y, Li J Y, Wang L N. J. Mater. Sci. Technol., 2020, 38: 93.

doi: 10.1016/j.jmst.2019.09.003     URL    
[15]
Zhu D D, Zhou Q X. Environ. Nanotechnol. Monit. Manag., 2019, 12: 100255.
[16]
Singh P, Shandilya P, Raizada P, Sudhaik A, Rahmani-Sani A, Hosseini-Bandegharaei A. Arab. J. Chem., 2020, 13(1): 3498.

doi: 10.1016/j.arabjc.2018.12.001     URL    
[17]
Rueda-Marquez J J, Levchuk I, Fernández Ibañez P, Sillanpää M. J. Clean. Prod., 2020, 258: 120694.
[18]
Osterloh F E. Chem. Soc. Rev., 2013, 42(6): 2294.

doi: 10.1039/c2cs35266d     pmid: 23072874
[19]
Chen Y Z, Li W H, Li L, Wang L N. Rare Metals, 2017, 37(11): 1.

doi: 10.1007/s12598-017-0953-2     URL    
[20]
Kirner J T, Finke R G. J. Mater. Chem. A, 2017, 5(37): 19560.

doi: 10.1039/C7TA05709A     URL    
[21]
Zhang T, Lin W B. Chem. Soc. Rev., 2014, 43(16): 5982.

doi: 10.1039/c4cs00103f     pmid: 24769551
[22]
Andreeva N A, Chaban V V. J. Chem. Thermodyn., 2018, 116: 1.

doi: 10.1016/j.jct.2017.08.019     URL    
[23]
Chen S, Jacobs D L, Xu J K, Li Y X, Wang C Y, Zang L. RSC Adv., 2014, 4(89): 48486.

doi: 10.1039/C4RA09258A     URL    
[24]
Niu J F, Yao B H, Yu X J, Peng C, Lu L L. J. Funct. Mater., 2013, 44(8): 1132.
(钮金芬, 姚秉华, 余晓皎, 彭超, 路蕾蕾. 功能材料, 2013, 44(8): 1132).
[25]
Singh C, Chaubey S, Singh P, Sharma K, Shambhavi, Kumar A, Yadav R K, Dwivedi D K, Baeg J O, Kumar U, Yadav B C, Pandey G. Diam. Relat. Mater., 2020, 101: 107648.
[26]
Cui X, Li Y H, Dong W Y, Liu D J, Duan Q. React. Funct. Polym., 2020, 154: 104633.
[27]
Dai Z C, Li D N, Chi L, Li Y W, Gao B, Qiu N N, Duan Q, Li Y H. Mater. Lett., 2019, 241: 239.

doi: 10.1016/j.matlet.2019.01.126     URL    
[28]
Kumar S, Yadav R K, Ram K, Aguiar A, Koh J, Sobral A J F N. J. CO2 Util., 2018, 27: 107.
[29]
Gonuguntla S, Tiwari A, Madanaboina S, Lingamallu G, Pal U. Int. J. Hydrog. Energy, 2020, 45(13): 7508.

doi: 10.1016/j.ijhydene.2019.04.268     URL    
[30]
Yu Y, Li Y W, Li Y H, Wang H G, Zuo Q H, Duan Q. React. Funct. Polym., 2019, 143: 104340.
[31]
Mahy J G, Paez C A, Carcel C, Bied C, Tatton A S, Damblon C, Heinrichs B, Wong Chi Man M, Lambert S D. J. Photochem. Photobiol. A: Chem., 2019, 373: 66.

doi: 10.1016/j.jphotochem.2019.01.001     URL    
[32]
Zhang X H, Lin L, Qu D, Yang J G, Weng Y X, Wang Z, Sun Z C, Chen Y, He T. Appl. Catal. B: Environ., 2020, 265: 118595.
[33]
Li Y W, Duan Q, Wang H G, Gao B, Qiu N N, Li Y H. J. Photochem. Photobiol. A: Chem., 2018, 356: 370.

doi: 10.1016/j.jphotochem.2018.01.016     URL    
[34]
Kharazi P, Rahimi R, Rabbani M. Mater. Res. Bull., 2018, 103: 133.

doi: 10.1016/j.materresbull.2018.03.031     URL    
[35]
Wei M, Wan J M, Hu Z W, Peng Z Q, Wang B, Wang H G. Appl. Surf. Sci., 2017, 391: 267.

doi: 10.1016/j.apsusc.2016.05.161     URL    
[36]
Naseri A, Samadi M, Pourjavadi A, Moshfegh A Z, Ramakrishna S. J. Mater. Chem. A, 2017, 5(45): 23406.

doi: 10.1039/C7TA05131J     URL    
[37]
Hatice K, Robert G, Chiara J B, Achilleos D S, Xin F, Durrant J R, Erwin R. ACS Catal., 2018, 8(8): 6914.

doi: 10.1021/acscatal.8b01969     URL    
[38]
Wang C, Xie Z G, de Krafft K E, Lin W B. J. Am. Chem. Soc., 2011, 133(34): 13445.

doi: 10.1021/ja203564w     URL    
[39]
Xiang Q J, Yu J G. J. Phys. Chem. Lett., 2013, 4(5): 753.

doi: 10.1021/jz302048d     URL    
[40]
Yu J, Bo W. Appl. Catal. B: Environ., 2010, 94:295.

doi: 10.1016/j.apcatb.2009.12.003     URL    
[41]
Yu J G, Dai G P, Cheng B. J. Phys. Chem. C, 2010, 114(45): 19378.

doi: 10.1021/jp106324x     URL    
[42]
Yu J, Wang G, Cheng B, Zhou M. Appl. Catal. B: Environ., 2007, 693-4: 171.
[43]
Yu J G, Wang Y, Xiao W. J. Mater. Chem. A, 2013, 1(36): 10727.

doi: 10.1039/c3ta12218b     URL    
[44]
Madhusudan P, Zhang J, Cheng B, Yu J G. Phys. Chem. Chem. Phys., 2015, 17(23): 15339.

doi: 10.1039/C5CP01598G     URL    
[45]
Marin M L, Santos-Juanes L, Arques A, Amat A M, Miranda M A. Chem. Rev., 2011, 112(3):1710.

doi: 10.1021/cr2000543     URL    
[46]
Sirringhaus H, Sakanoue T, Chang J F. Phys. Status Solidi B, 2012, 249(9): 1655.

doi: 10.1002/pssb.201248143     URL    
[47]
Rissner F, Natan A, Egger D A, Hofmann O T, Kronik L, Zojer E. Org. Electron., 2012, 13(12): 3165.

doi: 10.1016/j.orgel.2012.09.003     URL    
[48]
Klauk H. Wiley-VCH Verlag GmbH & Co. KGaA, E: 67.
[49]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38:253.

doi: 10.1039/B800489G     URL    
[50]
Low J X, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29:1601694.
[51]
Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Adv. Mater., 2008, 20(15): 2859.

doi: 10.1002/adma.v20:15     URL    
[52]
Zhang N, Wang L, Wang H M, Cao R H, Wang J F, Bai F, Fan H Y. Nano Lett., 2018, 18(1): 560.

doi: 10.1021/acs.nanolett.7b04701     pmid: 29277993
[53]
Xing Y T, Hu Z C, Tang H R, Huang F. Sci. Sin. Chimica, 2020, 50(8): 916(in Chinese).
(邢晔彤, 胡志诚, 唐浩然, 黄飞. 中国科学: 化学, 2020, 50(8): 916).
[54]
Wang J, Liu D, Zhu Y F, Zhou S Y, Guan S Y. Appl. Catal. B: Environ., 2018, 231: 251.

doi: 10.1016/j.apcatb.2018.03.026     URL    
[55]
Shang J T, Tang H Y, Ji H W, Ma W H, Chen C C, Zhao J C. Chin. J. Catal., 2017, 38(12): 2094.

doi: 10.1016/S1872-2067(17)62960-7     URL    
[56]
Han J, Deng Y N, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. J. Colloid Interface Sci., 2021, 582: 1021.

doi: 10.1016/j.jcis.2020.09.013     URL    
[57]
Xiang Q J, Yu J G, Jaroniec M. Chem. Commun., 2011, 47:4532.

doi: 10.1039/c1cc10501a     URL    
[58]
Liu S W, Yu J G,. Jaroniec M. J. Am. Chem. Soc. 2010, 132: 11914.

doi: 10.1021/ja105283s     URL    
[59]
Forrest S R, Thompson M E. Chem. Rev., 2007, 107(4): 923.

doi: 10.1021/cr0501590     URL    
[60]
Li X, Yu J G, Jaroniec M. Chem. Soc. Rev., 2016, 45(9): 2603.

doi: 10.1039/C5CS00838G     URL    
[61]
Kasai H, Kamatani H, Yoshikawa Y, Okada S, Oikawa H, Watanabe A, Itoh O, Nakanishi H. Chem. Lett., 1997, 26(11): 1181.

doi: 10.1246/cl.1997.1181     URL    
[62]
Auweter H, Haberkorn H, Heckmann W, Horn D, Lüddecke E, Rieger J, Weiss H. Angew. Chem. Int. Ed., 1999, 38(15): 2188.

doi: 10.1002/(ISSN)1521-3773     URL    
[63]
Oikawa H, Mitsui T, Onodera T, Kasai H, Nakanishi H, Sekiguchi T. Jpn. J. Appl. Phys., 2003, 42(Part 2, No. 2A): L111.
[64]
Zhong Y, Wang J F, Zhang R F, Wei W B, Wang H M, Lü X, Bai F, Wu H M, Haddad R, Fan H Y. Nano Lett., 2014, 14(12): 7175.

doi: 10.1021/nl503761y     pmid: 25365754
[65]
Kang L T, Wang Z C, Cao Z W, Ma Y, Fu H B, Yao J N. J. Am. Chem. Soc., 2007, 129(23): 7305.

doi: 10.1021/ja068710d     URL    
[66]
Kakhki R M, Tayebee R, Hedayat S. Appl. Organomet. Chem., 2018, 32:e4033.
[67]
Yuan X J, Floresyona D, Aubert P H, Bui T T, Remita S, Ghosh S, Brisset F, Goubard F, Remita H. Appl. Catal. B: Environ., 2019, 242: 284.

doi: 10.1016/j.apcatb.2018.10.002     URL    
[68]
Wang Z C, Medforth C J, Shelnutt J A. J. Am. Chem. Soc., 2004, 126(49): 15954.

doi: 10.1021/ja045068j     URL    
[69]
Zhao Y S, Yang W S, Xiao D B, Sheng X H, Yang X, Shuai Z G, Luo Y, Yao J N. Chem. Mater., 2005, 17(25): 6430.

doi: 10.1021/cm051949t     URL    
[70]
Ajayaghosh A, George S J. J. Am. Chem. Soc., 2001, 123(21): 5148.

pmid: 11457366
[71]
Zhao Y S, Yang W S, Yao J N. Phys. Chem. Chem. Phys., 2006, 8(28): 3300.

doi: 10.1039/b604645m     URL    
[72]
Dai Z R, Pan Z W, Wang Z L. Adv. Funct. Mater., 2003, 13(1): 9.

doi: 10.1002/adfm.200390013     URL    
[73]
Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Chem. Eur. J., 2005, 11(12): 3773.

doi: 10.1002/(ISSN)1521-3765     URL    
[74]
Wang J, Shi W, Liu D, Zhang Z J, Zhu Y F, Wang D. Appl. Catal. B: Environ., 2017, 202: 289.

doi: 10.1016/j.apcatb.2016.09.037     URL    
[75]
Li Y, Zhang D N, Feng X H, Xiang Q J. Chin. J. Catal., 2020, 41(1):21.

doi: 10.1016/S1872-2067(19)63427-3     URL    
[76]
Chen H L, Dong S H, Bai M L, Cheng N Y, Wang H, Li M L, Du H W, Hu S X, Yang Y L, Yang T Y, Zhang F, Gu L, Meng S, Hou S M, Guo X F. Adv. Mater., 2015, 27(12): 2113.

doi: 10.1002/adma.v27.12     URL    
[77]
Rigas G P, Payne M M, Anthony J E, Horton P N, Castro F A, Shkunov M. Nat. Commun., 2016, 7(1): 1.
[78]
Diao Y, Tee B C K, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T H, Xue G, Mannsfeld S C B, Bao Z N. Nat. Mater., 2013, 12(7): 665.

doi: 10.1038/nmat3650     URL    
[79]
Nguyen N N, Jo S B, Lee S K, Sin D H, Kang B, Kim H H, Lee H, Cho K. Nano Lett., 2015, 15(4): 2474.

doi: 10.1021/nl504958e     pmid: 25798655
[80]
Seidel C, Awater C, Liu X D, Ellerbrake R, Fuchs H. Surf. Sci., 1997, 371(1): 123.

doi: 10.1016/S0039-6028(96)00981-8     URL    
[81]
Kwon S, Kim J, Kim G, Yu K, Jo Y R, Kim B J, Kim J, Kang H, Park B, Lee K. Adv. Mater., 2015, 27(43): 6870.

doi: 10.1002/adma.201502980     URL    
[82]
Park K S, Baek J, Park Y, Lee L, Hyon J, Koo Lee Y E, Shrestha N K, Kang Y, Sung M M. Adv. Mater., 2017, 29(6): 1603285.
[83]
Wu J K, Li Q F, Xue G B, Chen H Z, Li H Y. Adv. Mater., 2017, 29(14): 1606101.
[84]
Patnaik S, Martha S, Parida K M. RSC Adv., 2016, 6(52): 46929.

doi: 10.1039/C5RA26702A     URL    
[85]
Niu P, Zhang L L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22(22): 4763.

doi: 10.1002/adfm.v22.22     URL    
[86]
Qiu P X, Chen H, Xu C M, Zhou N, Jiang F, Wang X, Fu Y S. J. Mater. Chem. A, 2015, 3(48): 24237.

doi: 10.1039/C5TA08406G     URL    
[87]
She X J, Xu H, Xu Y G, Yan J, Xia J X, Xu L, Song Y H, Jiang Y, Zhang Q, Li H M. J. Mater. Chem. A, 2014, 2(8): 2563.

doi: 10.1039/c3ta13768f     URL    
[88]
Xu J, Zhang L W, Shi R, Zhu Y F. J. Mater. Chem. A, 2013, 1(46): 14766.

doi: 10.1039/c3ta13188b     URL    
[89]
Lu X L, Xu K, Chen P Z, Jia K C, Liu S, Wu C Z. J. Mater. Chem. A, 2014, 2(44): 18924.

doi: 10.1039/C4TA04487H     URL    
[90]
Xu H, Yan J, She X J, Xu L, Xia J X, Xu Y G, Song Y H, Huang L Y, Li H M. Nanoscale, 2014, 6(3): 1406.

doi: 10.1039/C3NR04759H     URL    
[91]
Zhao Z W, Sun Y J, Luo Q, Dong F, Li H, Ho W K. Sci. Rep., 2015, 5(1): 1.
[92]
Xu J, Zhang L W, Shi R, Zhu Y F. J. Mater. Chem. A, 2013, 1(46): 14766.

doi: 10.1039/c3ta13188b     URL    
[93]
Chen X F, Zhang J S, Fu X Z, Markus A, Wang X C. J. Am. Chem. Soc., E, 131(33):11658.

doi: 10.1021/ja903923s     URL    
[94]
Li X WE X, Di J X, Zhu W S, Li H M. Acta Phys. -Chim. Sin., 2020, 36(3):1902001.
[95]
He T, Ni B, Zhang S M, Gong Y, Wang H Q, Gu L, Zhuang J, Hu W P, Wang X. Small, 2018, 14(16): 1703929.
[96]
Xiao Y W, Guo W X, Chen H H, Li H F, Xu X J, Wu P, Shen Y, Zheng B, Huo F W, Wei W D. Mater. Chem. Front., 2019, 3(8): 1580.

doi: 10.1039/C9QM00201D     URL    
[97]
Zhou H L, Qu Y Q, Zeid T, Duan X F. Energy Environ. Sci., 2012, 5(5): 6732.

doi: 10.1039/c2ee03447f     URL    
[98]
Chen Y Z, Zhang C Y, Zhang X J, Ou X M, Zhang X H. Chem. Commun., 2013, 49(80): 9200.

doi: 10.1039/c3cc45169k     URL    
[99]
Mendori D, Hiroya T, Ueda M, Sanyoushi M, Nagai K, Abe T. Appl. Catal. B: Environ., 2017, 205: 514.

doi: 10.1016/j.apcatb.2016.12.071     URL    
[100]
Chen Q Y, Li S J, Xu H Y, Wang G F, Qu Y, Zhu P F, Wang D S. Chin. J. Catal., 2020, 41(3): 514.

doi: 10.1016/S1872-2067(19)63497-2     URL    
[101]
Wang Z, Murugananthan M, Zhang Y R. Appl. Catal. B: Environ., 2019, 248: 349.

doi: 10.1016/j.apcatb.2019.02.041     URL    
[102]
Xiong Z W, Wang Z, Muthu M, Zhang Y R. J. Hazard. Mater., 2019, 373: 565.

doi: 10.1016/j.jhazmat.2019.03.114     URL    
[103]
Rivelino R, Mota F D B. Nano Lett., 2007, 7:1526.

pmid: 17508768
Li Q, Xu L, Luo K W, Huang W Q, Wang, L L, Li X F, Huang G F, Yu Y B. Phys. Chem. Chem. Phys, 2016, 18(48):33094-33102.

doi: 10.1039/C6CP07046A     URL    
[104]
Deng J Y, Zhu S L, Zheng J F, Nie L H. J. Colloid Interface Sci., 2020, 569: 320.

doi: 10.1016/j.jcis.2020.02.100     URL    
[105]
Bera R, Mandal S, Mondal B, Jana B, Nayak S K, Patra A. ACS Sustainable Chem. Eng., 2016, 4(3): 1562.

doi: 10.1021/acssuschemeng.5b01504     URL    
[106]
Low J X, Cao S W, Yu J G, Wageh S. Chem. Commun., 2014, 50(74): 10768-10777.

doi: 10.1039/C4CC02553A     URL    
[107]
Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R. Nano Energy, 2015, 13: 757.

doi: 10.1016/j.nanoen.2015.03.014     URL    
[108]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.

doi: 10.1021/acs.chemrev.8b00400     URL    
[109]
Jiang J Z, Zou J, Wee A T S, Zhang W J. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[110]
Khan M E, Han T H, Khan M M, Karim M R, Cho M H. ACS Appl. Nano Mater., 2018, 1(6): 2912.

doi: 10.1021/acsanm.8b00548     URL    
[111]
Tong T, Zhu B C, Jiang C J, Cheng B, Yu J G. Appl. Surf. Sci., 2018, 433: 1175.

doi: 10.1016/j.apsusc.2017.10.120     URL    
[112]
Wang L, Zhu C L, Yin L S, Huang W. Acta. Phys. Chim. Sin., 2020, 36(7): 1907001.
[113]
Liang Q, Zhang C J, Xu S, Zhou M, Zhou Y T, Li Z Y. J. Colloid Interface Sci., 2020, 577: 1.

doi: 10.1016/j.jcis.2020.05.053     URL    
[114]
Zhang P, Wang Y B, Zhou Y, Zhang H, Wei X H, Sun W H, Meng S J, Han L J. Mol. Catal., 2019, 465: 24.

doi: 10.1016/j.mcat.2018.12.023    
[115]
Min K S, Kumar R S, Lee J H, Kim K S, Lee S G, Son Y A. Dyes Pigments, 2019, 160: 37.

doi: 10.1016/j.dyepig.2018.07.045     URL    
[116]
Xu B Y, An Y, Liu Y Y, Huang B B, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. Chem. Commun., 2016, 52(92): 13507.

doi: 10.1039/C6CC07849D     URL    
[117]
Xu B Y, An Y, Liu Y Y, Qin X Y, Zhang X Y, Dai Y, Wang Z Y, Wang P, Whangbo M H, Huang B B. J. Mater. Chem. A, 2017, 5(27): 14406.

doi: 10.1039/C7TA03970K     URL    
[118]
Li J Y, Jiang X, Lin L, Zhou J J, Xu G S, Yuan Y P. J. Mol. Catal. A: Chem., 2015, 406: 46.

doi: 10.1016/j.molcata.2015.05.014     URL    
[119]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.
[120]
Yang J, Miao H, Li W L, Li H Q, Zhu Y F. J. Mater. Chem. A, 2019, 7(11): 6482.

doi: 10.1039/c9ta00580c    
[121]
Monga D, Ilager D, Shetti N P, Basu S M, Aminabhavi T M. J. Environ. Manag., 2020, 274: 111208.
[122]
Sun Y W, Qi X, Li R Q, Xie Y T, Tang Q, Ren B X. Opt. Mater., 2020, 108: 110170.
[123]
Azzam E M S, Fathy N A, El-Khouly S M, Sami R M. J. Water Process. Eng., 2019, 28: 311.

doi: 10.1016/j.jwpe.2019.02.016    
[124]
Song L M, Guo C P, Li T T, Zhang S J. Ceram. Int., 2017, 43(10): 7901.

doi: 10.1016/j.ceramint.2017.03.115     URL    
[125]
Putri L K, Ng B J, Ong W J, Lee H W, Chang W S, Mohamed A R, Chai S P. Appl. Catal. B: Environ., 2020, 265: 118592.
[126]
Akbarzadeh E, Soheili H Z, Hosseinifard M, Gholami M R. Mater. Res. Bull., 2020, 121: 110621.
[127]
Zheng X K, Yuan J J, Shen J, Liang J X, Che J F, Tang B, He G Y, Chen H Q. J. Mater. Sci.: Mater. Electron., 2019, 30(6): 5986.
[128]
Guan X M, Lin S J, Lan J W, Shang J J, Li W X, Zhan Y F, Xiao H Y, Song Q S. Cellulose, 2019, 26: 7437.

doi: 10.1007/s10570-019-02621-8     URL    
[129]
Zhao X X, Guan J R, Li J Z, Li X, Wang H Q, Huo P W, Yan Y S. Appl. Surf. Sci., 2021, 537: 147891.
[130]
Wang M T, Wang D K, Li Z H. Appl. Catal. B: Environ., 2016, 183:47.

doi: 10.1016/j.apcatb.2015.10.037     URL    
[131]
Wang Y Y, Huang H L, Zhang Z Z, Wang C, Yang Y Y, Li Q, Xu D S. Appl. Catal. B: Environ., 2021, 282: 119570.
[132]
Wang X J, Yang G R, Chai G D, Nasir M S, Wang S L, Zheng X, Wang C Y, Yan W. Int. J. Hydrog. Energy, 2020, 45(55): 30634.

doi: 10.1016/j.ijhydene.2020.08.273     URL    
[133]
Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. J. Am. Chem. Soc., 2010, 132(7): 2132.

doi: 10.1021/ja910091z     pmid: 20121138
[134]
Zhang H B, Wei J, Dong J C, Liu G G, Shi L, An P F, Zhao G X, Kong J T, Wang X J, Meng X G, Zhang J, Ye J H. Angew. Chem. Int. Ed., 2016, 55(46): 14310.

doi: 10.1002/anie.v55.46     URL    
[135]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.

doi: 10.1021/cs501169t     URL    
[136]
Su Y Q, Xu H T, Wang J J, Luo X K, Xu Z L, Wang K F, Wang W Z. Nano Res., 2019, 12(3): 625.

doi: 10.1007/s12274-018-2269-4     URL    
[137]
Huang H B. Environ. Eng. Sci., 2010, 27(8): 651.

doi: 10.1089/ees.2009.0392     URL    
[138]
Zhao Y M, Dong Y Z, Lu F T, Ju C G, Liu L, Zhang J, Zhang B, Feng Y Q. J. Mater. Chem. A, 2017, 5(29): 15380.

doi: 10.1039/C7TA03840B     URL    
[139]
Meng A N, Chaihu L X, Chen H H, Gu Z Y. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x     URL    
[140]
Shen R C, Ding Y N, Li S B, Zhang P, Xiang Q J, Ng Y H, Li X. Chin. J. Catal., 2021, 42(1): 25.

doi: 10.1016/S1872-2067(20)63600-2     URL    
[141]
Oliva J, Gomez-Solis C, Diaz-Torres L A, Martinez-Luevanos A, Martinez A I, Coutino-Gonzalez E. J. Phys. Chem. C, 2018, 122(3): 1477.

doi: 10.1021/acs.jpcc.7b10375     URL    
[142]
Chung K H, Jeong S, Kim B J, Kim J S, Park Y K, Jung S C. Int. J. Hydrog. Energy, 2018, 43(11): 5873.

doi: 10.1016/j.ijhydene.2017.09.065     URL    
[143]
Xu J X, Qi Y H, Wang C, Wang L. Appl. Catal. B: Environ., 2019, 241: 178.

doi: 10.1016/j.apcatb.2018.09.035     URL    
[144]
Ren Y J, Zeng D Q, Ong W J. Chin. J. Catal., 2019, 40(3): 289.

doi: 10.1016/S1872-2067(19)63293-6     URL    
[145]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.

doi: 10.1016/j.apsusc.2016.07.030     URL    
[146]
Kougias P G, Angelidaki I. Front. Environ. Sci. Eng., 2018, 12(3): 1.
[147]
Li X, Yu J G, Wageh S, Al-Ghamdi A A, Xie J. Small, 2016, 12(48): 6640.

doi: 10.1002/smll.v12.48     URL    
[148]
Li X, Wen J Q, Low J X, Fang Y P, Yu J G. Sci. China Mater., 2014, 55:3164.
[149]
Cao S W, Liu X F, Yuan Y P, Zhang Z Y, Liao Y S, Fang J, Loo S C J, Sum T C, Xue C. Appl. Catal. B: Environ., 2014, 147: 940.

doi: 10.1016/j.apcatb.2013.10.029     URL    
[150]
Liang M F, Borjigin T, Zhang Y H, Liu H, Liu B H, Guo H. ACS Appl. Mater. Interfaces, 2018, 10(40): 34123.

doi: 10.1021/acsami.8b09455     URL    
[1] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[2] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[3] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[4] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[5] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[6] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[7] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[10] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[11] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[12] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[13] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[14] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[15] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
阅读次数
全文


摘要