English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 210-222 DOI: 10.7536/PC180434 前一篇   

• 综述 •

钠基固体电解质及其在能源上的应用

张庆凯, 梁风*(), 姚耀春, 马文会, 杨斌, 戴永年   

  1. 昆明理工大学冶金与能源工程学院 昆明理工大学真空冶金国家工程实验室 昆明理工大学复杂有色金属资源清洁利用国家重点实验室 昆明 650093
  • 收稿日期:2018-04-20 修回日期:2018-06-29 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 梁风
  • 基金资助:
    国家自然科学基金项目(51704136); 国家自然科学基金项目(11765010); 云南省应用基础研究面上项目(2016FB087); 云南省院士自由探索基金资助(2017HA006)

Sodium-Based Solid-State Electrolyte and Its Applications in Energy

Qingkai Zhang, Feng Liang*(), Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai   

  1. Faculty of Metallurgy and Energy Engineering, National Engineering Laboratory for Vacuum Metallurgy, National Key Laboratory for Clean Application of Complex Non-ferrous Metal Resources, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2018-04-20 Revised:2018-06-29 Online:2019-01-15 Published:2018-12-07
  • Contact: Feng Liang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(51704136); The work was supported by the National Natural Science Foundation of China(11765010); The Application of Basic Research Projects of Yunnan Province(2016FB087); The Free Exploration Foundation of Yunnan Province(2017HA006)

由于以钠基固体电解质为核心的新型钠电池体系具有低成本和高安全性,在能源领域应用潜力巨大。高离子电导率和稳定性是钠基固体电解质应用于新型钠电池体系的前提。近年来,人们通过对制备方法改进和掺杂改性等方面的研究显著提高了钠基固体电解质的离子电导率和稳定性。此外,新型钠电池体系亟需解决固体电解质与电极间的界面接触性差和界面稳定性差等问题。本文首先总结了β″-Al2O3、NASICON型、硫化物类和聚合物类钠基固体电解质的研究进展,然后介绍了钠基固体电解质在以钠-硫电池,有机/水混合系钠-空气电池和全固态钠离子电池为代表的新型钠电池体系中的应用情况,并对界面问题和采取的解决策略进行系统论述。基于固体电解质的新型钠电池体系在能源上的大规模应用还需要电池材料、界面和电池设计等多方面的研究同时突破。

Due to the low cost and high safety of the new sodium battery system using sodium-based solid electrolyte, the new sodium battery system has great potential for its applications in energy storage field. High ionic conductivity and stability of sodium-based solid electrolytes are prerequisites for its applications in new sodium battery systems. In recent years, people have significantly improved the ionic conductivity and stability of sodium-based solid electrolytes by improving preparation methods and doping modifications. In addition, the new sodium battery system needs to solve the interface problems such as poor interface contact and poor interface stability between the solid state electrolyte and the electrode. In this paper, we firstly summarize the research progress in ionic conductivity and stability of β″-Al2O3, NASICON, sulfides, and polymer of sodium-based solid electrolytes. Then the applications of sodium-based solid electrolytes in sodium-sulfur batteries, hybrid sodium-air batteries, and all-solid-state sodium-ion batteries are introduced. In view of the interface problems, the solving strategies are systematically discussed. The future large-scale applications in energy of the new sodium battery system based on solid state electrolytes need breakthroughs in many aspects such as battery materials, interfaces, and battery design.

()
钠基固体电解质及其电池体系简图[36]
Fig.1 Sodium-based solid-state electrolytes and related battery system diagram[36]
不同钠基固体电解质的性能对比
Table 1 Performance comparison of different sodium-based solid electrolytes
理想化结构示意图:(a)β-Al2O3;(b)β″-Al2O3[3]
Fig.2 Idealized structure diagram: (a) β-Al2O3; (b) β″-Al2O3[3]
NASICON单胞:(a)菱形结构;(b)单斜结构[4]
Fig.3 NASICON cell: (a) diamond structure; (b) monoclinic structure[4]
Na11Sn2PS12晶体结构图[33]
Fig.4 Crystal structure of Na11Sn2PPS12[33]
PEO中无定形区域钠离子传输示意图[40]
Fig.5 Schematic diagram of amorphous sodium ion transport in PEO[40]
钠基固体电解质离子电导率的总结
Fig.6 Summary of ionic conductivity of sodium-based solid-state electrolytes
(a)钠-硫电池结构图[6];(b)电流密度0.25 mA/cm2下电池循环性能图[73]
Fig.7 (a) Structure of sodium-sulfur battery[6]; (b) Battery cycling performance at current densities of 0.25 mA/cm2[73]
(a) 有机/水混合系钠-空气电池结构示意图;(b) 电池I-V曲线(实线)及能量密度-电压曲线(虚线)[76]
Fig.8 (a) Organic/water mixed metal-air battery structure diagram; (b) I-V curve (solid line) and energy density-voltage curve (dotted line) of the battery[76]
(a)全固态钠电池结构图;(b)固态电池NVP|IL|SE|Na超长的循环性能图(10 C,25 ℃)[27]
Fig.9 (a) The structure of all-solid-state battery; (b) cycling performance and columbic efficiency of the NVP/IL/SE/Na solid-state battery (10 C, 25 ℃) [27]
[1]
方铮 (Fang Z), 曹余良 (Cao Y L), 胡勇胜 (Hu Y S), 陈立泉 (Chen L Q), 黄学杰 (Huang X J) . 储能科学与技术( Energy Storage Science and Technology), 2016,5(2):149.
[2]
刘丽露 (Liu L L), 戚兴国 (Qi X G), 邵元骏 (Shao Y J), 潘都 (Pan D), 白莹 (Bai Y), 胡勇胜 (Hu Y S), 李泓 (Li H), 陈立泉 (Chen L Q) . 储能科学与技术( Energy Storage Science and Technology), 2017,6(5):961.
[3]
Lee D H, Lee S T, Kim J S, Lim S K . Materials Research Bulletin, 2017,96:143.
[4]
Samiee M, Radhakrishnan B, Rice Z, Deng Z, Meng Y S, Ong S P, Luo J . Journal of Power Sources, 2017,347:229.
[5]
Chu I H, Kompella C S, Nguyen H, Zhu Z, Hy S, Deng Z, Meng Y S , Ong Scientific Reports, 2016,6:33733.
[6]
Min J K, Stackpool M, Shin C H, Lee C H . Journal of Power Sources, 2015,293(3):835.
[7]
林祖纕 (Lin Z X), 郭祝崑 (Guo Z K), 孙成文 (Sun W C), 李世椿 (Li S C), 陈昆刚 (Chen K G), 田顺宝 (Tian S B), 严冬生 (Yang D S). 快离子导体 (Fast Ion Conductor). 上海: 上海科学技术出版社 (Shanghai: Shanghai Scientific Technology Press), 1983. 141.
[8]
Tel’nova G B, Solntsev K A . Inorganic Materials, 2015,51(3):257.
[9]
Shan S J, Yang L P, Liu X M, Wei X L, Yang H, Shen X D . Journal of Alloys and Compounds, 2013,563:176.
[10]
Liang F, Hayashi K . Journal of the Electrochemical Society, 2015,162(7):A1215.
[11]
Chen G Y, Lu J C, Zhou X H, Chen L X, Jiang X B . Ceramics International, 2016,42(14):16055.
[12]
Zhang G X, Wen Z Y, Wu X W, Zhang J C, Ma G Q, Jin J . Journal of Alloys and Compounds, 2014,613(1):80.
[13]
Wei X L, Xia Y, Liu X M, Yang H, Shen X D . Electrochimica Acta, 2014,136:250.
[14]
Xu D, Jiang H, Li Y, Li L, Li M, Hai O . European Physical Journal Applied Physics, 2016,74(1):250.
[15]
Yang L P, Shan S J, Wei X L, Liu X M, Yang H, Shen X D . Ceramics International, 2014,40(7):9055.
[16]
Wenzel S, Leichtweiss T, Weber D A, Sann J, Zeier W G, Janek J . ACS Applied Materials and Interfaces, 2016,8(41):28216.
[17]
Kim Y, Kim H, Park S, Seo I, Kim Y . Electrochimica Acta, 2016,191:1.
[18]
Goodenough J B, Hong Y P, Kafalas J A . Materials Research Bulletin, 1976,11(2):203.
[19]
Kang H B, Cho N H . Journal of Materials Science, 1999,34(20):5005.
[20]
Park H, Jung K, Nezafati M, Kim C S, Kang B . ACS Applied Materials and Interfaces, 2016,8(41):27814.
[21]
Ma Q, Guin M, Naqash S, Tsai C L, Tietz F . Chemistry Materials, 2016,28:4821.
[22]
Guin M, Tietz F . Journal of Power Sources, 2015,273:1056.
[23]
Jolley A G, Taylor D D, Schreiber N J, Wachsman E D . Journal of the American Ceramic Society, 2015,98(9):185.
[24]
Jolley A G, Cohn G, Hitz G T, Wachsman E D . Ionics, 2015,21(11):3031.
[25]
Ruan Y, Song S, Liu J, Liu P, Cheng B, Song X, Battaglia V . Ceramics International, 2017,43:7810.
[26]
Khakpour Z . Electrochimica Acta, 2016,196:337.
[27]
Zhang Z, Zhang Q, Shi J, Chu Y S, Yu X, Xu K, Ge M, Yan H, Li W, Gu L, Hu Y S, Li H, Yang X Q, Chen L, Huang X . Advanced Energy Materials, 2017,7:1601196.
[28]
Fuentes R O, Figueiredo F, Marques F M B, Franco J I . Solid State Ionics, 2001,139(3/4):309.
[29]
Jung J I, Kim D, Kim H, Jo Y N, Park J S, Kim Y . ACS Applied Materials and Interfaces, 2017,9(1):304.
[30]
Zhang L, Yang K, Mi J, Lu L, Zhao L, Wang L, Li Y, Zeng H . Advanced Energy Materials, 2016,5(24):39.
[31]
Zhang L, Zhang D, Yang K, Yan X, Wang L, Mi J, Xu B, Li Y . Advanced Science, 2016,3(10):1600089.
[32]
Richards W D, Tsujimura T, Miara L J, Wang Y, Kim J C, Ong S P, Uechi I, Suzuki N, Ceder G . Nature Communications, 2016,7:11009.
[33]
Duchardt M, Ruschewitz U, Adams S, Dehnen S, Roling B, Dehnen S, Roling B . Angewandte Chemie, 2018,130:1365.
[34]
Hayashi A, Noi K, Sakuda A, Tatsumisago M . Nature Communications, 2012,3(3):856.
[35]
Hayashi A, Noi K, Tanibata N, Nagao M, Tatsumisago M . Journal of Power Sources, 2014,258(14):420.
[36]
Martin S W, Bischoff C, Schuller K . Journal of Physical Chemistry B, 2015,119(51):15738.
[37]
Yu Z, Shang S, Seo J, Wang D, Luo X, Huang Q, Chen S, Lu J, Li X, Liu Z K, Wang D . Advanced Materials, 2017,29:1605561.
[38]
Wang H, Chen Y, Hood Z D, Sahu G, Pandian A S, Keum J K, An K, Liang C . Angewandte Chemie International Edition, 2016,128(30):8551.
[39]
Armand M B, Chabagno J M, Duclot M . Scotland: Second International Meeting on Solid Electrolytes, 1978. 20.
[40]
Aobing D U, Chai J, Zhang J, Liu Z, Cui G . Energy Storage Science and Technology, 2016,6:627.
[41]
Chandra A . Indian Journal of Pure and Applied Physics, 2016,54(9):583.
[42]
Anantha P S, Hariharan K . Solid State Ionics, 2005,176(1/2):155.
[43]
Qi X, Ma Q, Liu L, Hu Y S, Li H, Zhou Z, Huang X, Chen L . ChemElectroChem, 2016,3(11):1741.
[44]
Moreno J S, Armand M, Berman M B, Greenbaum S C, Scrosati B, Panero S . Journal of Power Sources, 2014,248(4):695.
[45]
Chandra A . Indian Journal of Pure and Applied Physics, 2016,54(10):676.
[46]
Ni'Mah Y L, Cheng M Y, Cheng J H, Rick J, Hwang B J . Journal of Power Sources, 2015,278:375.
[47]
Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu Y S, Li H, Zhou Z, Huang X, Chen L . Journal of Materials Chemistry A, 2016,4:15823.
[48]
Reddy M J, Sreekanth T, Rao U V S . Solid State Ionics, 1999,126(1):55.
[49]
Chandrasekaran R, Selladurai S . Journal of Solid State Electrochemistry, 2001,5(5):355.
[50]
Colò F, Bella F, Nair J R, Destro M, Gerbaldi C . Electrochimica Acta, 2015,174:185.
[51]
Song S, Kotobuki M, Zheng F, Xu C, Savilov S V, Hu N, Lu L, Wang Y, Li W D Z . Journal of Materials Chemistry A, 2017,5:6424.
[52]
Lee S, Park S J, Kim S . Res Chem Intermed, 2017,43:5403.
[53]
Reddy M J, Sreekanth T, Chandrashekar M, Rao U V S . Journal of Materials Science, 2000,35(11):2841.
[54]
Kumar K N, Sreekanth T, Reddy M J, Rao U V S . Journal of Power Sources, 2001,101(1):130.
[55]
Aziz S B, Abdullah O G, Rasheed M A . Journal of Materials Science Materials in Electronics, 2017,28(17):12873.
[56]
Bhargav P B, Mohan V M, Sharma A K, Rao V R . Journal of Applied Polymer Science, 2008,108(1):510.
[57]
Bhargav P B, Mohan V M, Sharma A K, Rao V R . International Journal of Polymeric Materials, 2007,56(6):579.
[58]
Bhargav P B, Mohan V M, Sharma A K, Rao V R . Current Applied Physics, 2009,9(1):165.
[59]
Jyothi N K, Kumar K V, Sundari G S, Murthy P N . Indian Journal of Physics, 2015,90(3):1.
[60]
Yang Y Q, Chang Z, Li M X, Wang X W, Wu Y P . Solid State Ionics, 2015,269:1.
[61]
Badr S, Sheha E, Bayomi R M, Shaarawy M G E . Ionics, 2010,16(3):269.
[62]
Vignarooban K, Badami P, Dissanayake M A K L, Ravirajan P, Kanan AM . Ionics, 2017,23:2817.
[63]
Wang F, Wang X, Chang Z, Wu X, Liu X, Fu L, Zhu Y, Wu Y, Huang W . Advanced Materials, 2015,27:6962.
[64]
温兆银 (Wen Z Y), 俞国勤 (Yu G Q), 顾中华 (Gu Z H), 何维国 (He W G), 韩金铎 (Han J D), 张宇 (Zhang Y), 刘宇 (Liu Y), 楼晓东 (Lou X D). 供用电( Distribution and Utilization), 2010,27(6):25.
[65]
胡英瑛 (Hu Y Y), 温兆银 (Wen Z Y), 芮琨 (Rui K), 吴相伟 (Wu X W) . 储能科学与技术( Energy Storage Science and Technology), 2013,2(2):81.
[66]
Jung K, Colker J P, Cao Y, Kim G, Park Y C, Kim C S . Journal of Power Sources, 2016,324:665.
[67]
Kim I, Kim C H, Choi S, Ahn J P, Ahn J H, Kim K W, Cairns E J, Ahn H J . Journal of Power Sources, 2016,307:31.
[68]
Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer L . Nature Communications, 2016,7:11722.
[69]
Tanibata N, Deguchi M, Hayashi A, Tatsumisago M . Chemistry of Materials, 2017,29:5232.
[70]
Kim I, Park J Y, Kim C H, Park J W, Ahn J P, Ahn J H, Kim K W, Ahn H J . Journal of the Electrochemical Society, 2016,163(5):A611.
[71]
Wenzel S, Metelmann H, Raiß C, Dürr A K, Janek J, Adelhelm P . Journal of Power Sources, 2013,243(6):758.
[72]
Lu X, Kirby B W, Xu W, Li G, Kim J Y, Lemmon J P, Sprenkle V L, Yang Z . Energy and Environmental Science, 2012,6(1):299.
[73]
Luo W, Lin C, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L . Advanced Energy Materials, 2017,7:1601526.
[74]
Kohl M, Borrmann F, Althues H, Kaskel S . Advanced Energy Materials, 2016,6:1.
[75]
Song J, Jeong G, AhJung Lee, Park J H, Kim H, Kim Y J . ACS Applied Materials and Interfaces, 2015,7(49):27206.
[76]
Hayashi K, Shima K, Sugiyama F . Journal of the Electrochemical Society, 2013,160(9):A1467.
[77]
Yao K, Feng L, Hayashi K . Electrochimica Acta, 2016,218:119.
[78]
Tian Y, Shi T, Richards W D, Li J, Kim J C, Bo S H, Ceder G . Energy andEnvironmental Sci., 2017,10:1150.
[79]
Rao R P, Chen H, Wong L, Adams S . Journal of Materials Chemistry A, 2017,5:3377.
[80]
Yubuchi S, Hayashi A, Tatsumisago M . Chemistry Letters, 2015,44(47):884.
[81]
Zhu Y S, Li L L, Li C Y, Zhou L, Wu Y P . Solid State Ionics, 2016,289:113.
[82]
Zhou W, Gao H, Goodenough J B . Advanced Energy Materials, 2016,6:1501802.
[83]
Gao H, Xin S, Xue L, Goodenough J B . Chem. 4:833.
[84]
Zhou W, Li Y, Xin S, Goodenough J B . ACS Cent.Sci., 2017,3:52.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[6] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[7] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[8] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[11] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[12] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[13] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[14] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[15] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.