English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 421-432 DOI: 10.7536/PC221106 前一篇   后一篇

• 综述 •

基于碳纳米管的光伏电池

王龙1,2†, 周庆萍2†, 吴钊峰1†, 张延铭2, 叶小我2, 陈长鑫1,2,*()   

  1. 1.新疆大学物理科学与技术学院 乌鲁木齐 830046
    2.上海交通大学电子信息与电气工程学院微纳电子学系 微米/纳米加工技术国家级重点实验室 薄膜与微细技术教育部重点实验室 上海 200240
  • 收稿日期:2022-11-08 修回日期:2023-01-03 出版日期:2023-03-24 发布日期:2023-02-16
  • 基金资助:
    国家自然科学优秀青年科学基金项目(61622404); 国家自然科学基金面上项目(62074098); 教育部长江学者奖励计划青年学者项目(Q2017081); 浙江福莱新材料股份有限公司项目资助

Photovoltaic Cells Based on Carbon Nanotubes

Wang Long1,2†, Zhou Qingping2†, Wu Zhaofeng1†, Zhang Yanming2, Ye Xiaowo2, Chen Changxin1,2()   

  1. 1. School of Physics Science and Technology, Xinjiang University,Urumqi 830046, China
    2. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film Fabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-11-08 Revised:2023-01-03 Online:2023-03-24 Published:2023-02-16
  • Contact: *e-mail: chen.c.x@sjtu.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China for Excellent Young Scholars(61622404); National Natural Science Foundation of China(62074098); Chang Jiang (Cheung Kong) Scholars Program of Ministry of Education of China(Q2017081); Project from Zhejiang Fulai New Materials Co., Ltd.

碳纳米管具有独特的一维结构和优异的光电特性,是构建光伏电池的理想材料。本文主要综述了近年来碳纳米管基光伏电池的结构设计、制备方法以及碳纳米管在器件中的不同功能应用。首先概述了碳纳米管的结构和光电特性,重点讨论了碳纳米管作为光电转换材料、导电电极和载流子传输层等功能层时器件的原理、制作方法及优缺点,介绍了碳纳米管在微型光伏电池、碳纳米管/硅异质结光伏电池、染料敏化光伏电池、钙钛矿光伏电池、有机光伏电池以及柔性光伏电池中的应用,最后总结了碳纳米管基光伏电池的优势和挑战,以期为新型碳基光伏电池的设计和制作提供思路和参考。

Carbon nanotubes (CNTs) are ideal materials for building photovoltaic cells due to their unique one-dimensional structure and excellent photoelectric properties. In this paper, we review recent structural design, fabrication method and device performance of CNT-based photovoltaic cells and different functional roles of CNTs in these devices. Firstly, the structure and photoelectric properties of CNTs are introduced. Then, we emphatically discuss the operation principles, the fabrication methods and the advantages and shortage of the photovoltaic cells with CNTs used as the photoelectric conversion materials, conducting electrodes and carrier transport layers in the devices. The applications of carbon nanotubes in Micro photovoltaic cell,carbon nanotube/silicon heterojunction photovoltaic cells, dye sensitized photovoltaic cells, perovskite photovoltaic cells, organic photovoltaic cells and flexible photovoltaic cells are introduced. Finally, the advantages and challenges of CNT-based photovoltaic cells are summarized. This paper will provide new idea and reference for the design and fabrication of novel carbon-based photovoltaic cells.

Contents

1 Introduction

2 Structure and properties of carbon nanotubes

2.1 Structure of carbon nanotubes

2.2 Photoelectric properties of carbon nanotubes

3 Carbon nanotubes act as photoelectric conversion materials

3.1 Photovoltaic cells based on pure carbon nanotubes

3.2 Carbon nanotube/silicon heterojunction photovoltaic cells

3.3 Photovoltaic cells with carbon nanotubes as part of photosensitive materials

4 Carbon nanotubes act as conductive electrodes

4.1 Application in organic photovoltaic cells

4.2 Application in perovskite photovoltaic cells

4.3 Application in dye-sensitized photovoltaic cells

4.4 Application in flexible photovoltaic cells

5 Carbon nanotubes act as carrier transport materials

6 Conclusion and outlook

()
图1 (a)碳纳米管的螺旋矢量定义;(b)手性变化下的碳纳米管结构
Fig. 1 (a) Definition of helix vector of CNT; (b) Structure of CNT under chiral change
图2 (a)非对称接触的碳纳米管基光伏电池结构示意图;(b)非对称接触的CNTs光伏电池能带结构图[43]
Fig. 2 Structural schematic diagram (a) and energy band diagram (b) of the CNT photovoltaic cell with asymmetric contact[43]
图3 (a)选择性掺杂单根CNT光伏电池结构及掺杂后单根CNT原子力扫描图像;(b)选择性掺杂单根CNT光伏电池能带结构[44]
Fig. 3 Structural schematic diagram and AFM image (a) and energy band diagram (b) of selectively doped single CNT photovoltaic cell[44]
图4 (a)典型的碳纳米管/硅异质结太阳能电池结构[45];(b)气体掺杂结构示意图[47];(c)氧化钨掺杂的碳纳米管/硅异质结光伏电池结构[48];(d)碳纳米管/硅异质结光伏电池载流子传输途径示意图[48]
Fig. 4 (a) Typical CNT/silicon heterojunction solar cell structure[45]. (b) Schematic Diagram of gas doping Structure[47]. (c) Tungsten oxide doped CNT/silicon heterojunction photovoltaic cell structure[48]. (d) Schematic diagram of carrier transport paths of CNT/silicon heterojunction photovoltaic cells[48]
图5 (a)CNT:TiO2改性PSC结构示意图;(b)正向扫描(FS)和反向扫描(RS)下PSC的J-V曲线(w/o 无CNT:TiO2;w/ 有CNT:TiO2) [49]
Fig. 5 (a) Structural Diagram of CNT:TiO2 Modified PSC. (b) J-V curve of PSC under forward scan (FS) and reverse scan (RS) (w/o without CNT:TiO2; w/with CNT:TiO2) [49]
图6 (a)碳纳米管透明导电电极的染料敏化光伏电池结构示意图;(b)电极层表面形貌图;(c)不同电极下DSSC的J-V曲线;(d)不同对电极下DSSC的IPCE曲线[63]
Fig. 6 (a) Structure diagram of DSSC cell with CNT transparent conductive electrode. (b) Surface topography of electrode layer. (c) J-V curve of DSSC with different electrodes. (d) IPCE curve of DSSC under different pair electrodes[63]
图7 (a)使用Mo2C-CNTs@PEDOT:PSS作为 HTL的光伏电池结构;(b)使用Mo2C-CNTs@PEDOT:PSS作为 HTL的钙钛矿光伏电池的能级图;(c)碳纳米管质量分数分别为1%(紫),1.5%(绿),2.0%(蓝)PSC的J-V曲线;(d)不同组分的HTL下(HTL中未加入Mo2C-CNTs(黑)、只加入Mo2C(红)、只加入CNTs(蓝)、加入Mo2C-CNTs(绿)的),PSC的外部量子效率(EQE)谱[75]
Fig. 7 (a) PV cell structure using Mo2C-CNTs@PEDOT:PSS as HTL. (b) Energy level diagram of perovskite photovoltaic cells using Mo2C-CNTs@PEDOT:PSS as HTL. (c) J-V curve of PSC with 1% (purple), 1.5% (green) and 2.0% (blue) carbon nanotubes. (d) External quantum efficiency (EQE) spectrum of PSC under HTL with different components (no Mo2C-CNTs (black), only Mo2C (red), only CNTs (blue), and Mo2C-CNTs (green) added in HTL) [75]
[1]
Jurasz J, Canales F A, Kies A, Guezgouz M, Beluco A. Sol. Energy, 2020, 195: 703.

doi: 10.1016/j.solener.2019.11.087     URL    
[2]
Hayat M B, Ali D, Monyake K C, Alagha L, Ahmed N. Int. J. Energy Res., 2019, 43(3): 1049.

doi: 10.1002/er.v43.3     URL    
[3]
Wang J Q, Xie Z M, Yeow J T W. ECS J. Solid State Sci. Technol., 2020, 9(10): 105004.

doi: 10.1149/2162-8777/abc3cd    
[4]
Fukuda K, Yu K, Someya T. Adv. Energy Mater., 2020, 10(25): 2000765.
[5]
Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. ChemSusChem, 2019, 12(8): 1560.

doi: 10.1002/cssc.201802992     pmid: 30699237
[6]
Yun S N, Qin Y, Uhl A R, Vlachopoulos N, Yin M, Li D D, Han X G, Hagfeldt A. Energy Environ. Sci., 2018, 11(3): 476.

doi: 10.1039/C7EE03165C     URL    
[7]
Qiu L B, Deng J, Lu X, Yang Z B, Peng H S. Angew. Chem. Int. Ed., 2014, 53(39): 10425.

doi: 10.1002/anie.201404973     URL    
[8]
Kaltenbrunner M, Adam G, Daniel Głowacki E, Drack M, Schwödiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S. Nat. Mater., 2015, 14(10): 1032.

doi: 10.1038/nmat4388     pmid: 26301766
[9]
Zhang Y K, Wu Z W, Li P, Ono L K, Qi Y B, Zhou J X, Shen H, Surya C, Zheng Z J. Adv. Energy Mater., 2018, 8(1): 1701569.
[10]
Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J. Adv. Mater., 2020: 1907392.
[11]
Zhao C C, Wang J X, Zhao X Y, Du Z L, Yang R Q, Tang J G. Nanoscale, 2021, 13(4): 2181.

doi: 10.1039/D0NR07788G     URL    
[12]
Urbani M, Ragoussi M E, Nazeeruddin M K, Torres T. Coord. Chem. Rev., 2019, 381: 1.

doi: 10.1016/j.ccr.2018.10.007     URL    
[13]
Jalalvand A R, Ghobadi S, Akbari V, Goicoechea H C, Faramarzi E, Mahmoudi M. Sens. Bio Sens. Res., 2019, 25: 100297.
[14]
Zhao X, Park N G. Photonics, 2015, 2(4): 1139.

doi: 10.3390/photonics2041139     URL    
[15]
Li W J, Zheng J H, Hu B, Fu H C, Hu M W, Veyssal A, Zhao Y Z, He J H, Leo Liu T, Ho-Baillie A, Jin S. Nat. Mater., 2020, 19(12): 1326.

doi: 10.1038/s41563-020-0720-x    
[16]
Abate A, Correa-Baena J P, Saliba M, Su’ait M S, Bella F. Chem. Eur. J., 2018, 24(13): 3083.

doi: 10.1002/chem.201704507     URL    
[17]
Tumbul A, Aslan F, Gökta塂 A, Mutlu I H. J. Alloys Compd., 2019, 781: 280.

doi: 10.1016/j.jallcom.2018.12.012     URL    
[18]
Fagiolari L, Bella F. Energy Environ. Sci., 2019, 12(12): 3437.

doi: 10.1039/C9EE02115A     URL    
[19]
Li D D, Lai W Y, Zhang Y Z, Huang W. Adv. Mater., 2018, 30(10): 1704738.
[20]
Lee S K, Rana K, Ahn J H. J. Phys. Chem. Lett., 2013, 4(5): 831.

doi: 10.1021/jz400005k     URL    
[21]
De Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119): 535.

doi: 10.1126/science.1222453     URL    
[22]
Ma P C, Siddiqui N A, Marom G, Kim J K. Compos. A Appl. Sci. Manuf., 2010, 41(10): 1345.

doi: 10.1016/j.compositesa.2010.07.003     URL    
[23]
Wen L, Li F, Cheng H M. Adv. Mater., 2016, 28(22): 4306.

doi: 10.1002/adma.v28.22     URL    
[24]
Jung S, Lee J, Seo J, Kim U, Choi Y, Park H. Nano Lett., 2018, 18(2): 1337.

doi: 10.1021/acs.nanolett.7b05026     URL    
[25]
Fu X M, Xu L M, Li J X, Sun X M, Peng H S. Carbon, 2018, 139: 1063.

doi: 10.1016/j.carbon.2018.08.017     URL    
[26]
Tune D D, Flavel B S. Adv. Energy Mater., 2018, 8(15): 1703241.
[27]
Luo Q, Wu R G, Ma L T, Wang C J, Liu H, Lin H, Wang N, Chen Y, Guo Z H. Adv. Funct. Mater., 2021, 31(6): 2004765.
[28]
Batmunkh M, Biggs M J, Shapter J G. Small, 2015, 11(25): 2963.

doi: 10.1002/smll.v11.25     URL    
[29]
Yu L P, Shearer C, Shapter J. Chem. Rev., 2016, 116(22): 13413.

doi: 10.1021/acs.chemrev.6b00179     URL    
[30]
Mann D, Javey A, Kong J, Wang Q, Dai H J. Nano Lett., 2003, 3(11): 1541.

doi: 10.1021/nl034700o     URL    
[31]
Chen G H, Futaba D N, Sakurai S, Yumura M, Hata K J. Carbon, 2014, 67: 318.

doi: 10.1016/j.carbon.2013.10.001     URL    
[32]
in het Panhuis M. J. Mater. Chem., 2006, 16(36): 3598.

doi: 10.1039/b606959b     URL    
[33]
Frank S, Poncharal P, Wang Z L, de Heer W A. Science, 1998, 280(5370): 1744.

pmid: 9624050
[34]
Guo J, Lundstrom M, Datta S. Appl. Phys. Lett., 2002, 80(17): 3192.

doi: 10.1063/1.1474604     URL    
[35]
Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M, Park H. Nature, 2001, 411(6838): 665.

doi: 10.1038/35079517    
[36]
Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T. Nature, 1996, 382(6586): 54.

doi: 10.1038/382054a0    
[37]
Odom T W, Huang J L, Kim P, Lieber C M. Nature, 1998, 391(6662): 62.

doi: 10.1038/34145    
[38]
Blackburn J L, Barnes T M, Beard M C, Kim Y H, Tenent R C, McDonald T J, To B, Coutts T J, Heben M J. ACS Nano, 2008, 2(6): 1266.

doi: 10.1021/nn800200d     pmid: 19206344
[39]
Huang Q J, Zhu Y. Adv. Mater. Technol., 2019, 4(5): 1800546.
[40]
Ferguson V, Silva S R P, Zhang W. Energy Environ. Mater., 2019, 2(2): 107.

doi: 10.1002/eem2.12035     URL    
[41]
Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Adv. Mater., 2019, 31(9): 1801072.
[42]
Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, Meyyappan M. Chem. Phys. Lett., 2002, 365(1/2): 69.

doi: 10.1016/S0009-2614(02)01420-3     URL    
[43]
Chen C X, Lu Y, Kong E S, Zhang Y F, Lee S T. Small, 2008, 4(9): 1313.

doi: 10.1002/smll.v4:9     URL    
[44]
Chen C X, Song C J, Yang J R, Chen D Q, Zhu W H, Liao C H, Dong X S, Liu X D, Wei L M, Hu N T, He R, Zhang Y F. Nano Energy, 2017, 32: 280.

doi: 10.1016/j.nanoen.2016.12.048     URL    
[45]
Wei J Q, Jia Y, Shu Q K, Gu Z Y, Wang K L, Zhuang D M, Zhang G, Wang Z C, Luo J B, Cao A Y, Wu D H. Nano Lett., 2007, 7(8): 2317.

doi: 10.1021/nl070961c     URL    
[46]
Jia Y, Cao A Y, Bai X, Li Z, Zhang L H, Guo N, Wei J Q, Wang K L, Zhu H W, Wu D H, Ajayan P M. Nano Lett., 2011, 11(5): 1901.

doi: 10.1021/nl2002632     pmid: 21452837
[47]
Zhao X W, Wu H S, Yang L S, Wu Y Z, Sun Y P, Shang Y Y, Cao A Y. Carbon, 2019, 147: 164.

doi: 10.1016/j.carbon.2019.02.078     URL    
[48]
Zhao X W, Xu W J, Wu Y Z, Wu H S, Xia Z Y, Xu H Y, Shang Y Y, Wei J Q, Cao A Y. Nano Res., 2022, 15(3): 2497.

doi: 10.1007/s12274-021-3749-5    
[49]
Jin M Q, Li H L, Lou Q, Du Q, Huang Q S, Shen Z T, Li F M, Chen C. EcoMat, 2022, 4(2): e12166.
[50]
Muchuweni E, Mombeshora E T, Martincigh B S, Nyamori V O. Front. Chem., 2022, 9: 733552.
[51]
Zhu Y Y, Shu L, Fan Z Y. Chem. Res. Chin. Univ., 2020, 36(3): 366.

doi: 10.1007/s40242-020-0105-3    
[52]
Rowell M W, Topinka M A, McGehee M D, Prall H J, Dennler G, Sariciftci N S, Hu L B, Gruner G. Appl. Phys. Lett., 2006, 88(23): 233506.
[53]
Salvatierra R V, Cava C E, Roman L S, Zarbin A J G. Adv. Funct. Mater., 2013, 23(12): 1490.

doi: 10.1002/adfm.v23.12     URL    
[54]
Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Carbon, 2016, 98: 15.

doi: 10.1016/j.carbon.2015.10.079     URL    
[55]
Zhang Z X, Lv R T, Jia Y, Gan X, Zhu H W, Kang F Y. Appl. Sci., 2018, 8(2): 152.

doi: 10.3390/app8020152     URL    
[56]
Yang M K, Lee J K. Electron. Mater. Lett., 2020, 16(6): 573.

doi: 10.1007/s13391-020-00248-7    
[57]
Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P. Nano Lett., 2013, 13(6): 2365.

doi: 10.1021/nl304533j     URL    
[58]
Fan Q X, Zhang Q, Zhou W B, Xia X G, Yang F, Zhang N, Xiao S Q, Li K W, Gu X G, Xiao Z J, Chen H L, Wang Y C, Liu H P, Zhou W Y, Xie S S. Nano Energy, 2017, 33: 436.

doi: 10.1016/j.nanoen.2017.02.003     URL    
[59]
Li Z, Kulkarni S A, Boix P P, Shi E Z, Cao A Y, Fu K W, Batabyal S K, Zhang J, Xiong Q H, Wong L H, Mathews N, Mhaisalkar S G. ACS Nano, 2014, 8(7): 6797.

doi: 10.1021/nn501096h     URL    
[60]
Aitola K, Sveinbjörnsson K, Correa-Baena J P, Kaskela A, Abate A, Tian Y, Johansson E M J, Grätzel M, Kauppinen E I, Hagfeldt A, Boschloo G. Energy Environ. Sci., 2016, 9(2): 461.

doi: 10.1039/C5EE03394B     URL    
[61]
Luo Q, Ma H, Zhang Y, Yin X W, Yao Z B, Wang N, Li J B, Fan S S, Jiang K L, Lin H. J. Mater. Chem. A, 2016, 4(15): 5569.

doi: 10.1039/C6TA01715K     URL    
[62]
Amini A, Abdizadeh H, Golobostanfard M R. ACS Appl. Energy Mater., 2020, 3(7): 6195.

doi: 10.1021/acsaem.0c00200     URL    
[63]
Lee J H, Jang Y J, Kim D W, Cheruku R, Thogiti S, Ahn K S, Kim J H. Chem. Pap., 2019, 73(11): 2749.

doi: 10.1007/s11696-019-00827-5    
[64]
Dou Y Y, Yan N F, Li G R, Gao X P. J. Appl. Electrochem., 2012, 18(4): 301.
[65]
Zheng L, Bao C, Lei S J, Wang J L, Li F X, Sun P P, Huang N, Fang L, Sun X H. Carbon, 2018, 133: 423.

doi: 10.1016/j.carbon.2018.03.062     URL    
[66]
Yoon J, Kim U, Yoo Y, Byeon J, Lee S K, Nam J S, Kim K, Zhang Q, Kauppinen E I, Maruyama S, Lee P, Jeon I. Adv. Sci., 2021, 8(7): 2004092.
[67]
Jeon I, Cui K H, Chiba T, Anisimov A, Nasibulin A G, Kauppinen E I, Maruyama S, Matsuo Y. J. Am. Chem. Soc., 2015, 137(25): 7982.

doi: 10.1021/jacs.5b03739     pmid: 26091443
[68]
Yan Y, Li W, Cai J L, Chen M X, Mao Y C, Chen X L, Gurney R S, Liu D, Huang F, Wang T. Mater. Chem. Front., 2018, 2(10): 1859.

doi: 10.1039/C8QM00347E     URL    
[69]
Yan W B, He Z X, Jiang J J, Lu D, Gong Y C, Yang W S, Xia R D, Huang W, Xin H. J. Mater. Chem. C, 2020, 8(42): 14773.

doi: 10.1039/D0TC04241B     URL    
[70]
Li M Y, Zha W S, Han Y F, Liu B W, Luo Q, Ma C Q. Org. Electron., 2021, 96: 106257.

doi: 10.1016/j.orgel.2021.106257     URL    
[71]
Chaudhary J, Gupta S K, Verma A S, Negi C M S. J. Mater. Sci., 2020, 55(10): 4345.

doi: 10.1007/s10853-019-04308-8    
[72]
Bai S, Jin Y Z, Liang X Y, Ye Z Z, Wu Z W, Sun B Q, Ma Z F, Tang Z, Wang J P, Würfel U, Gao F, Zhang F L. Adv. Energy Mater., 2015, 5(5): 1401606.
[73]
Yu Z K, Fu W F, Liu W Q, Zhang Z Q, Liu Y J, Yan J L, Ye T, Yang W T, Li H Y, Chen H Z. Chin. Chemical Lett., 2017, 28(1): 13.

doi: 10.1016/j.cclet.2016.06.021     URL    
[74]
Hu W, Liu T, Yin X W, Liu H, Zhao X Y, Luo S P, Guo Y, Yao Z B, Wang J S, Wang N, Lin H, Guo Z H. J. Mater. Chem. A, 2017, 5(4): 1434.

doi: 10.1039/C6TA09174A     URL    
[75]
Hussain S, Liu H L, Vikraman D, Hussain M, Jaffery S H A, Ali A, Kim H S, Kang J, Jung J. J. Alloys Compd., 2021, 885: 161039.

doi: 10.1016/j.jallcom.2021.161039     URL    
[76]
Markose K K, Jasna M, Subha P P, Antony A, Jayaraj M K. Sol. Energy, 2020, 211: 158.

doi: 10.1016/j.solener.2020.09.024     URL    
[1] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[4] 罗杰, 李朝威, 兰竹瑶, 陈名海, 姚亚刚, 赵岳. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展, 2015, 27(9): 1158-1166.
[5] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[6] 李娜, 许林, 孙志霞. 多酸促进半导体的光电转化及其在太阳能电池中的应用[J]. 化学进展, 2015, 27(8): 1065-1073.
[7] 康怡然, 蔡锋, 陈宏源, 陈名海, 张锐, 李清文. 碳纳米管/石墨烯复合结构及其电化学电容行为[J]. 化学进展, 2014, 26(09): 1562-1569.
[8] 李昱达, 王迅昶, 吕仁亮, 汪锋. 非共价法分离光学活性单壁碳纳米管[J]. 化学进展, 2014, 26(08): 1361-1368.
[9] 李健, 官亦标, 傅凯, 苏岳锋, 包丽颖, 吴锋. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(07): 1233-1243.
[10] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.
[11] 李盼, 张锦*. 单壁碳纳米管的结构控制生长方法[J]. 化学进展, 2013, 25(0203): 167-178.
[12] 向翠丽, 邹勇进, 邱树君, 褚海亮, 孙立贤*, 徐芬*. 基于碳纳米材料载体的氢气传感器[J]. 化学进展, 2013, 25(0203): 270-275.
[13] 张金超*, 杨康宁, 张海松, 梁兴杰*. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 25(0203): 397-408.
[14] 王金业, 宋晨, 徐景坤, 丁宝全. 利用DNA折纸术构建功能纳米材料[J]. 化学进展, 2012, (10): 1936-1945.
[15] 王娟, 刘颖, 张伟德. 碳纳米管/半导体纳米复合材料的光电化学特性及其应用[J]. 化学进展, 2011, 23(8): 1583-1590.
阅读次数
全文


摘要

基于碳纳米管的光伏电池