English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 325-337 DOI: 10.7536/PC171232 前一篇   后一篇

• 综述 •

仿生光电催化固氮

肖瑶1, 胡文娟1, 任衍彪1, 康旭2, 刘健1*   

  1. 1. 青岛科技大学材料科学与工程学院 青岛 266042;
    2. 哈尔滨工业大学环境学院 哈尔滨 150090
  • 收稿日期:2017-12-22 修回日期:2018-01-30 出版日期:2018-04-15 发布日期:2018-02-11
  • 通讯作者: 刘健 E-mail:liujian@qust.edu.cn
  • 基金资助:
    中组部千人计划“青年项目”及山东省自然科学基金项目(No.ZR2018MB018)资助

Bioinspired Photo/Electrocatalytic N2 Fixation

Yao Xiao1, Wenjuan Hu1, Yanbiao Ren1, Xu Kang2, Jian Liu1*   

  1. 1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 26604;
    2. School of Environment, Harbin Institute of Technology, Harbin 150090, China
  • Received:2017-12-22 Revised:2018-01-30 Online:2018-04-15 Published:2018-02-11
  • Supported by:
    The work was supported by Youth Program of the National Thousand Talents Plan of China and the Shandong Provincial Natural Science Foundation,China (No.ZR2018MB018).
固氮是将游离的N2转变为生物可用形式的过程,主要包括生物固氮和工业固氮。前者通过固氮酶进行,利用ATP水解提供的能量,可以在常温常压下将N2还原成NH3,同时有H2形成。工业固氮主要指Haber-Bosch过程,在铁催化剂和促进剂的共同作用下,可以高效地将N2催化成NH3。这个100多年前发明的过程需要400~500 ℃高温和高于100 atm的反应条件,会消耗大量的能量。合成H2的甲醇水蒸气重整过程也会消耗大量能量。如果能进一步认识固氮酶的固氮机制,利用太阳能驱动实现常温常压下的固氮反应将会非常有前景。本文概述了近年来固氮酶启发的光催化固氮领域的进展,并结合了相关的电化学领域的固氮研究,对本领域作了展望。目前还没有催化剂能取代传统Haber-Bosch过程所采用的催化体系,但是通过总结过去的研究进展和经验,可为未来设计高效催化剂提供非常有益的启示。
N2 fixation, a process that transforms N2 into biologically usable forms, is mainly accomplished by biological and industrial processes, respectively. Biological N2 fixation is carried out by nitrogenase at ambient conditions. Coupled to the hydrolysis of ATP and accompanied by the formation of H2, N2 is reduced to NH3. Industrial N2 fixation is accomplished by Haber-Bosch process, in which N2 is reduced to NH3 efficiently in the presence of iron catalyst and promoter. The process invented more than a century ago is carried out at high temperature and high pressure(400~500 ℃, above 100 atm), which consumes lots of energy, in addition to the large amount of energy consumed in methanol steam reforming to produce hydrogen. Nowadays, people are looking for the next-generation industrial catalyst by taking inspiration from N2 fixation mechanism of nitrogenase. Light-driven(photocatalytic) N2 fixation is very promising especially considering that energy for N2 fixation is ultimately from photosynthesis. In this paper, the recent progress in the field of bioinspired photocatalytic N2 fixation in addition to some research on electrocatalytic N2 fixation are summarized. Last, our perspectives of this field are provided. Although currently there is still no good substitution for catalyst system used in conventional Haber-Bosch process, a review of research progress and experience will provide beneficial implications for future design of efficient catalysts.
Contents
1 Introduction
2 Biological N2 fixation and nitrogenase
2.1 Biological N2 fixation
2.2 N2 fixing mechanism and inspiration of nitrogenase
2.3 Transition metal complex for catalytic N2 fixation
3 Photocatalytic N2 fixation
3.1 Mechanism of photocatalytic N2 fixation
3.2 Synthetic N2 fixing photocatalysts
3.3 Biological hybrids and nitrogenase simulated photocatalysts
3.4 Overview of electrocatalytic N2 fixation
4 Conclusion and outlook

中图分类号: 

()
[1] Burgess B K, Lowe D J. Chem. Rev., 1996, 96:2983.
[2] Howard J B, Rees D C. Chem. Rev., 1996, 96:2965.
[3] 杨奇(Yang Q), 谢钢(Xie G), 陈三平(Chen S P), 张一凡(Zhang Y F), 郭培宇(Guo P Y), 高胜利(Gao S L). 大学化学(University Chemistry), 2015, 30:33.
[4] Jia H P, Quadrelli E A. Chem. Soc. Rev., 2014, 43:547.
[5] MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104:385.
[6] Hoffman B M, Lukoyanov D, Yang Z Y, Dean D R, Seefeldt L C. Chem. Rev., 2014, 114:4041.
[7] Appl M. Ullmann' s Encyclopedia of Industrial Chemistry, 2000, 3:139.
[8] Dos Santos P C, Fang Z, Mason S W, Setubal J C, Dixon R. BMC Genomics., 2012, 13:162.
[9] Boyd E, Peters J. Front. Microbiol., 2013, 4:1.
[10] Chatt J, Dilworth J R, Richards R L. Chem. Rev., 1978, 78:589.
[11] Cohen J D, Mylvaganam M, Fryzuk M D, Loehr T M. J. Am. Chem. Soc., 1994, 116:9529.
[12] Cri Dc I, Holland P L. J. Am. Chem. Soc., 2016, 138:7200.
[13] 陈全亮(Chen Q L), 陈洪斌(Chen H B), 曹泽星(Cao Z X), 周朝晖(Zhou Z H), 万惠霖(Wan H L), 李颖(Li Y), 李季伦(Li J L). 中国科学:化学(Science China Chemistry), 2014, 44:1849.
[14] Chen C Y, Chen M L, Chen H B, Wang H, Cramer S P, Zhou Z H. J. Inorg. Biochem., 2014, 141:114.
[15] Lowe D J, Fisher K, Thorneley R N. Biochem. J., 1993, 292(Pt 1):93.
[16] Smith B E. Science, 2002, 297:1654.
[17] Hallmen P P, Kästner J. Z. Anorg. Allg. Chem., 2015, 641:118.
[18] Hoffman B M, Dean D R, Seefeldt L C. Acc. Chem. Res., 2009, 42:609.
[19] Hoffman B M, Lukoyanov D, Dean D R, Seefeldt L C. Acc. Chem. Res., 2013, 46:587.
[20] Rees D C, Akif T F, Haynes C A, Walton M Y, Andrade S, Einsle O, Howard J B. Phil. Trans. R. Soc. A, 2005, 363:971.
[21] Lancaster K M, Roemelt M, Ettenhuber P, Hu Y L, Ribbe M W, Neese F, Bergmann U, DeBeer S. Science, 2011, 334:974.
[22] Van der Ham C J M, Cornelis J. M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43:5183.
[23] Spatzal T, Perez K A, Einsle O, Howard J B, Rees D C. Science, 2014, 345:1620.
[24] Smith J M, Lachicotte R J, Pittard K A, Cundari T R, Lukatrodgers G, Rodgers K R, Holland P L. J. Am. Chem. Soc., 2001, 123:9222.
[25] Smith J M, Sadique A R, Cundari T R, Rodgers K R, Lukat-Rodgers G, Lachicotte R J, Flaschenriem C J, Vela J, Holland P L. J. Am. Chem. Soc., 2006, 128:756.
[26] Ding K Y, Pierpont A W, Brennessel W W, Lukatrodgers G, Rodgers K R, Cundari T R, Bill E, Holland P L. J. Am. Chem. Soc., 2009, 131:9471.
[27] Cri Dc I, Mercado B Q, Bill E, Vinyard D J, Holland P L. Nature, 2015, 526:96.
[28] Stoian S A, Vela J, Smith J M, Sadique A R, Holland P L, Münck E, Bominaar E L. J. Am. Chem. Soc., 2006, 128:10181.
[29] Venkateswara R P, Holm R H. Chem. Rev., 2004, 35:527.
[30] Henderson R A. Chem. Rev., 2005, 105:2365.
[31] Lee S C, Lo W, Holm R H. Chem. Rev., 2014, 114:3579.
[32] Ogo S. Dalton Trans., 2010, 39:2963.
[33] Yandulov D V, Schrock R R. Science, 2003, 301:76.
[34] Schrock R R. Angew. Chem. Inter. Ed., 2008, 39(43):5512.
[35] Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem., 2011, 3:120.
[36] Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc., 2014, 136:9719.
[37] Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc., 2015, 137:5666.
[38] Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y. Nat. Commun., 2014, 5:3737.
[39] Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y. Chem. Sci., 2015, 6:3940.
[40] Creutz S E, Peters J C. J. Am. Chem. Soc., 2014, 136:1105.
[41] Anderson J S, Cutsail G E, Ⅲ, Rittle J, Connor B A, Gunderson W A, Zhang L M, Hoffman B M, Peters J C. J. Am. Chem. Soc., 2015, 137:7803.
[42] Creutz S E, Peters J C. J. Am. Chem. Soc., 2015, 137:7310.
[43] Castillo T J D, Thompson N B, Peters J C. J. Am. Chem. Soc., 2016, 138:5341.
[44] Anderson J S, Rittle J, Peters J C. Nature, 2013, 501:84.
[45] Li Y, Li Y, Wang B M, Luo Y, Yang D W, Tong P, Zhao J F, Luo L, Zhou Y H, Chen S, Cheng F, Qu J P. Nat. Chem., 2013, 5:320.
[46] Shima T, Hu S W, Luo G, Kang X H, Luo Y, Hou Z M. Science, 2013, 340:1549.
[47] Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Nat. Chem., 2012, 4:934.
[48] Inoue Y, Kitano M, Kishida K, Abe H, Niwa Y, Sasase M, Fujita Y, Ishikawa H, Yokoyama T, Hara M, Hosono H. ACS Catal., 2016, 6:7577.
[49] Gong Y T, Wu J Z, Kitano M, Wang J J, Ye T N, Li J, Kobayashi Y, Kishida K, Abe H, Niwa Y, Yang H S, Tada T, Hosono H. Nat. Catal., 2018, DOI:10.1038/s41929-017-0022-0
[50] Vojvodic A, Medford A J, Studt F, Abild-Pedersen F, Khan T S, Bligaard T, Nørskov J K. Chem. Phys. Lett., 2014, 598:108.
[51] Wang P K, Chang F, Gao W B, Guo J P, Wu G T, He T, Chen P. Nat. Chem., 2017, 9:64.
[52] Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qiu Q, Luo Y. J. Am. Chem. Soc., 2016, 138:8706.
[53] Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116:7159.
[54] Cao S W, Low J X, Yu J G, Jaroniec M. Adv. Mater., 2015, 27:2150.
[55] Li H J, Zhou Y, Tu W G, Ye J H, Zou Z G. Adv. Funct. Mater., 2015, 25:998.
[56] Putri L K, Ong W J, Wei S C, Chai S P. Appl. Surf. Sci., 2015, 358:2.
[57] Li X, Yu J G, Jaroniec M. Chem. Soc. Rev., 2016, 45:2603.
[58] Low J X, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29:1601694.
[59] Putri L K, Tan L L, Ong W J, Chang W S, Chai S P. Appl. Mater. Today, 2016, 4:9.
[60] Fuertes A. Mater. Horiz., 2015, 2:453.
[61] Sivula K, Krol R V D. Nat. Rev. Mater, 2016, 1:15010.
[62] Tachibana Y, Vayssieres L, Durrant J R. Nat. Photonics, 2012, 6:511.
[63] Roger I, Shipman M A, Symes M D. Nat. Rev. Chem., 2017, 1:0003.
[64] Kessler F K, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X C, Bojdys M J. Nat. Rev. Mater, 2017, 2:1.
[65] Li H, Li J, Ai Z H, Jia F L, Zhang L Z. Angew. Chem. Int. Ed., 2017, 57:122.
[66] Schrauzer G N, Guth T D. J. Am. Chem. Soc., 1977, 99(22):7189.
[67] Bourgeois S, Diakite D, Perdereau M. Reactivity of Solids, 1988, 6:95.
[68] Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. J. Am. Chem. Soc., 2017, 139:10929.
[69] Kisch H. Chemistry, 2011, 9:561.
[70] Augugliaro V, D'Alba F, Rizzuti L, Schiavello M, Sclafani A. Int. J. Hydrogen Energy, 1982, 7:851.
[71] Zhao W R, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Appl. Catal. B, 2014, 144:468.
[72] Ranjit K T, Varadarajan T K, Viswanathan B. J. Photochem. Photobiol. A, 1996, 96:181.
[73] Oshikiri T, Ueno K, Misawa H. Angew. Chem. Int. Ed., 2014, 53:9802.
[74] Oshikiri T, Ueno K, Misawa H. Angew. Chem. Int. Ed., 2016, 55:3942.
[75] Mao C L, Yu L H, Li J, Zhao J C, Zhang L Z. Appl. Catal., B, 2018, 224:612.
[76] Tennakone K, Thaminimulla C T K, Bandara J M S. J. Photochem. Photobiol. A, 1992, 68:131.
[77] Tennakone K, Ileperuma O A, Thaminimulla C T K, Bandara J M S. J. Photochem. Photobiol. A, 1992, 66:375.
[78] Endoh E, Leland J K, Bard A J. J.Phys.Chem., 1986, 90:6223.
[79] Li X M, Wang W Z, Jiang D, Sun S M, Zhang L, Sun X. Chem. Eur. J., 2016, 22:13819.
[80] Tennakone K, Wickramanayake S, Fernando C A N, Ileperuma O A, Punchihewa S. J. Chem. Soc. Chem.Commun., 1987, 14:1078.
[81] Hao Y C, Dong X L, Zhai S R, Ma H C, Wang X Y, Zhang X F. Chem. Eur. J., 2016, 22:18722.
[82] Ye L Q, Han C Q, Ma Z Y, Leng Y M, Li J, Ji X X, Bi D Q, Xie H Q, Huang Z X. Chem. Eng. J., 2017, 307:311.
[83] Miyama H, Fujii N, Nagae Y. Chem. Phys. Lett., 1980, 74:523.
[84] Khan M M T, Rao N N. J. Mol. Catal., 1990, 58:323.
[85] Khan M M T, Bhardwaj R C, Bhardwaj C. Angew. Chem. Int. Ed., 1988, 27:923.
[86] Li H, Shang J, Ai Z, Zhang L. J. Am. Chem. Soc., 2015, 137:6393.
[87] Hu S, Chen X, Li Q, Zhao Y, Mao W. Catal. Sci. Technol., 2016, 6:5884.
[88] Sun S M, Li X M, Wang W Z, Zhang L, Sun X. Appl. Catal., B, 2017, 200:323.
[89] Zhu D, Zhang L H, Ruther R E, Hamers R J. Nat. Mater., 2013, 12:836.
[90] Christianson J R, Zhu D, Hamers R J, Schmidt J R. J. Phys. Chem. B, 2014, 118:195.
[91] Bandy J A, Zhu D, Hamers R J. Diam. Relat. Mater., 2016, 64:34.
[92] Cheng C L, Flamarique I N. Nature, 2004, 428:279.
[93] Dong G H, Ho W K, Wang C Y. J. Mater. Chem. A, 2015, 3:23435.
[94] Li S J, Chen X, Hu S Z, Li Q, Bai J, Wang F. RSC Adv., 2016, 6:45931.
[95] Wu G, Gao Y, Zheng B H. Ceram. Int., 2016, 42:6985.
[96] Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Appl. Catal. B, 2017, 201:58.
[97] Lu Y H, Yang Y, Zhang T F, Ge Z, Chang H C, Xiao P S, Xie Y Y, Hua L, Li Q Y, Li H Y, Ma B, Guan N J, Ma Y F, Chen Y S. ACS Nano, 2016, 10:10507.
[98] Muataz A, Zhou F L, Chen K, Christopher K, Xiao C L, Laure B, Zhang X Y, MacFarlane D R. Nat. Commun., 2016, 7:11335.
[99] Zhao Y F, Zhao Y X, Waterhouse G I N, Zheng L R, Cao X Z, Teng F, Wu L Z, Tung C H, O'Hare D, Zhang T R. Adv. Mater., 2017, 29:1703828.
[100] Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352:448.
[101] Lane R W, Ibers J A, Frankel R B, Holm R H. Proc. Natl. Acad. Sci., 1975, 72:2868.
[102] Mayerle J J, Frankel R B, Holm R H, Ibers J A, Phillips W D, Weiher J F. Proc. Natl. Acad. Sci., 1973, 70:2429.
[103] Palermo R E, Singh R, Bashkin J K, Holm R H. J. Am. Chem. Soc.,1984,106(9):2600.
[104] Armstrong W H, Mascharak P K, Holm R H. J. Am. Chem. Soc., 1982, 104(6):4373.
[105] Demadis K D, Malinak S M, Coucouvanis D. Inorg. Chem., 1996, 35:4038.
[106] Broda H, Tuczek F. Angew. Chem. Int. Ed., 2014, 53:632.
[107] Liu J, Kelley M S, Wu W Q, Banerjee A, Douvalis A P, Wu J S, Zhang Y B, Schatz G C, Kanatzidis M G. Proc. Natl. Acad. Sci., 2016, 113:5530.
[108] Tamelen E E V, Akermark B. J. Am. Chem. Soc., 1968, 90:4492.
[109] Sclafani A, Augugliaro V, Schiavelli M. J. Electrochem. Soc., 1983, 130(3):734.
[110] Becker J Y, Avraham S, Posin B. J. Electroanal. Chem. Interfacial Electrochem., 1987, 230:143.
[111] Becker J Y, Avraham S. J. Electroanal. Chem. Interfac., 1990, 280:119.
[112] Becker J Y, Posin B. J. Electroanal. Chem. Interfac., 1988, 250:385.
[113] Kordali V, Kyriacou G, Lambrou C. Chem. Commun., 2000, 1673.
[114] Li F F, Licht S. Inorg. Chem., 2014, 53:10042.
[115] Licht S, Cui B C, Wang B H, Li F F, Lau J, Liu S Z. Science, 2014, 345:637.
[116] Lan R, Alkhazmi K A, Amar I A, Tao S W. Appl. Catal., B, 2014, s152/153:212.
[117] Lan R, Irvine J T S, Tao S W. Sci. Rep., 2013, 3:1145.
[118] Abghoui Y, Garden A L, Hlynsson V F, Bjorgvinsdottir S, Olafsdottir H, Skúlason E. Phys. Chem. Chem. Phys., 2015, 17:4909.
[119] Zhao J X, Chen Z F. J. Am. Chem. Soc., 2017, 139:12480.
[120] Shi M M, Bao D, Wulan B R, Li Y H, Zhang Y F, Yan J M, Jiang Q. Adv. Mater., 2017, 29:1606550.
[121] Milton R D, Abdellaoui S, Khadka N, Dean D R, Leech D, Seefeldt L C, Minteer S D. Energ. Environ. Sci., 2016, 9:2550.
[122] Milton R D, Cai R, Abdellaoui S, Leech D, De Lacey A L, Pita M, Minteer S D. Angew. Chem. Int. Ed., 2017, 56:2680.
[123] Paengnakorn P, Ash P A, Shaw S, Danyal K, Chen T, Dean D R, Seefeldt L C, Vincent K A. Chem. Sci., 2017, 8:1500.
[124] Marnellos G, Stoukides M. Science, 1998, 282:98.
[125] Köleli F, Röpke T. Appl. Catal. B, 2006, 62:306.
[126] Köleli F, Kayan D B. J. Electroanal. Chem., 2010, 638:119.
[127] Kim K, Yoo C Y, Kim J N, Yoon H C, Han J I. J. Electrochem. Soc., 2016, 163:1523.
[128] Ma J L, Bao D, Shi M M, Yan J M, Zhang X B. Chemistry, 2017, 2:525.
[129] Murakami T, Nishikiori T, Nohira T, Ito Y. J. Am. Chem. Soc., 2003, 125:334.
[130] Singh A R, Rohr B A, Schwalbe J A, Cargnello M, Chan K, Jaramillo T F, Chorkendorff I, Nørskov J K. ACS Catal., 2017, 7:706.
[131] Chen G F, Cao X, Wu S, Zeng X, Ding L X, Zhu M, Wang H. J. Am. Chem. Soc., 2017, 139:9771.
[132] Kim K, Lee N, Yoo C Y, Kim J N, Yoon H C, Han J I. J. Electrochem. Soc., 2016, 163:F610.
[133] Upham D C, Agarwal V, Khechfe A, Snodgrass Z R, Gordon M J, Metiu H, McFarland E W. Science, 2017, 358:917.
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[5] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[8] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[11] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[12] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[13] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[14] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[15] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
阅读次数
全文


摘要

仿生光电催化固氮