English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1590-1599 DOI: 10.7536/PC220323 前一篇   后一篇

• 综述 •

人工光合作用

张德善1,2, 佟振合1,2, 吴骊珠1,2,*()   

  1. 1.中国科学院理化技术研究所 光化学转换与功能材料重点实验室 北京 100190
    2.中国科学院大学未来技术学院 北京 100049
  • 收稿日期:2022-03-23 修回日期:2022-04-21 出版日期:2022-07-24 发布日期:2022-06-20
  • 通讯作者: 吴骊珠
  • 基金资助:
    国家自然科学基金项目(22088102); 科技部(2017YFA0206903); 中国科学院战略重点研究项目(XDB17000000); 中国科学院前沿科学重点研究计划(QYZDY-SSW-JSC029)

Artificial Photosynthesis

Deshan Zhang1,2, Chenho Tung1,2, Lizhu Wu1,2()   

  1. 1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2. School of Future Technology, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2022-03-23 Revised:2022-04-21 Online:2022-07-24 Published:2022-06-20
  • Contact: Lizhu Wu
  • Supported by:
    National Natural Science Foundation of China(22088102); Ministry of Science and Technology of China(2017YFA0206903); Strategic Priority Research Program of the Chinese Academy of Science(XDB17000000); Key Research Program of Frontier Sciences of the Chinese Academy of Science(QYZDY-SSW-JSC029)

光合作用将太阳能储存在化学反应中,是绿色高效的能量转换途径。模拟自然光合作用系统活性中心的结构和功能,实现小分子物质(H2O、CO2、N2等)中惰性化学键的活化转化,对于解决能源和环境等问题具有重要意义。本文综述了人工光合作用在水分解、二氧化碳及氮气还原领域取得的重要进展,分析了相关光化学转换体系的设计思路和工作原理,并对人工光合作用面临的挑战和未来发展方向进行讨论。

Photosynthesis in nature stores solar energy in chemical bonds through a green and efficient way. Mimicking the structure and function of the active center of natural photosynthesis, inert chemical bonds of small molecules (H2O, CO2 and N2 etc.) can be activated and converted for energy conversion. Herein, we summarize the important progress of artificial photosynthesis in water splitting into oxygen and hydrogen, carbon dioxide and nitrogen reduction. Meanwhile, we analyze the design ideas and working principles of related photochemical conversion systems, and discuss the challenges and future development of artificial photosynthesis.

Contents

1 Introduction

2 Artificial photosynthesis

2.1 Water oxidation

2.2 Proton reduction of water

2.3 Carbon dioxide reduction

2.4 Nitrogen reduction

3 Conclusion and outlook

()
图1 自然界光合作用示意图
Fig. 1 The natural photosynthesis
图2 (a) 天然OEC结构; (b) 人工合成的Mn4CaO4结构[25]
Fig. 2 (a) Native OEC structure; (b) artificial complex Mn4CaO4 structure[25]
图3 单体Ru(bda) (N-OTEG)和氧桥连绿色二聚体[30]
Fig. 3 Monomer catalyst Ru(bda) (N-OTEG) and oxo-bridged green dimer[30]. Copyright 2020, Elsevier
图4 多金属氧酸盐分子催化剂光催化水氧化[38]
Fig. 4 Polyoxometalate molecular catalyst for photocatalytic water oxidation[38]
图5 天然[FeFe]氢化酶活性中心结构
Fig. 5 The active site of natural [FeFe]-hydrogenase
图6 PAA-g-Fe2S2的光催化析氢过程[47]
Fig. 6 PAA-g-Fe2S2 for the photocatalytic H2 production[47]
图7 (a) 含钴肟配合物的CdSe/ZnS核壳量子点光还原质子产氢; (b) 光催化剂能级图[52]
Fig. 7 (a) CdSe/ZnS core/shell QDs with cobaloxime reduce protons to produce hydrogen; (b) energetic diagram of CdSe/ZnS core/shell QDs and cobaloxime hybrid[52]. Copyright 2012, American Chemical Society
图8 (a) CdSe/CdS量子点/Pt纳米颗粒光催化产氢示意图; (b) 组装及分离体系的产氢性能对比[54]
Fig. 8 (a) Schematic illustration of the assembly of CdSe/CdS QDs/Pt nanoparticles and the corresponding solar H2 evolution process; (b) photocatalytic H2 evolution of CdSe/CdS QDs/Pt nanoparticle assembly and individually separated system using MPA-stabilized counterparts[54]. Copyright 2017, American Chemical Society
图9 一氧化碳脱氢酶修饰的TiO2纳米颗粒光还原C O 2[58]
Fig. 9 Carbon monoxide dehydrogenase-modified TiO2 nanoparticles for photocatalytic reduction of C O 2[58]. Copyright 2010, American Chemical Society
图10 切换配合物的金属中心选择性生成CO和HCOOH[60]
Fig. 10 Selective production of CO vs HCOOH by switching of the metal center[60]. Copyright 2015, American Chemical Society
图11 (a) DOR结构材料ZnSe/CdS的电荷转移过程; (b) 导带电子和价带空穴的径向分布函数[69]
Fig. 11 (a) Charge transfer process of DOR structured ZnSe/CdS; (b) conduction band (CB) electrons (red traces) and valence band (VB) holes (green lines) in ZnSe/CdS DORs[69]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图12 光还原CO2和有机转换结合[70]
Fig. 12 Efficient and selective CO2 reduction integrated with organic synthesis by solar energy[70]
图13 Fe掺杂SrMoO4光还原N2机理图[76]
Fig. 13 Mechanism illustration of Fe doped SrMoO4 for photocatalytic nitrogen reduction[76]
图14 TiO2表面氧空位光催化氮气还原[85]
Fig. 14 Photocatalytic reduction of nitrogen on surface oxygen vacancies of Ti O 2[85]. Copyright 2017, American Chemical Society
[1]
Li X B, Xin Z K, Xia S G, Gao X Y, Tung C H, Wu L Z. Chem. Soc. Rev., 2020, 49(24): 9028.

doi: 10.1039/D0CS00930J     URL    
[2]
Meng S L, Li X B, Tung C H, Wu L Z. Chem, 2021, 7(6): 1431.

doi: 10.1016/j.chempr.2020.11.002     URL    
[3]
Umena Y, Kawakami K, Shen J R, Kamiya N. Nature, 2011, 473(7345): 55.

doi: 10.1038/nature09913     URL    
[4]
Tard C, Pickett C J. Chem. Rev., 2009, 109(6): 2245.

doi: 10.1021/cr800542q     URL    
[5]
Wang X Z, Meng S L, Xiao H Y, Feng K, Wang Y, Jian J X, Li X B, Tung C H, Wu L Z. Angew. Chem., 2020, 132(42): 18558.

doi: 10.1002/ange.202006593     URL    
[6]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0     URL    
[7]
Yeung C S, Dong V M. Chem. Rev., 2011, 111(3): 1215.

doi: 10.1021/cr100280d     URL    
[8]
Sun X, Chen J T, Ritter T. Nat. Chem., 2018, 10(12): 1229.

doi: 10.1038/s41557-018-0142-4     URL    
[9]
Yang Q, Zhang L, Ye C, Luo S Z, Wu L Z, Tung C H. Angew. Chem. Int. Ed., 2017, 56(13): 3694.

doi: 10.1002/anie.201700572     pmid: 28211231
[10]
Yang X L, Guo J D, Xiao H Y, Feng K, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2020, 59(13): 5365.

doi: 10.1002/anie.201916423     URL    
[11]
Cheng Y Y, Yu J X, Lei T, Hou H Y, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2021, 60(51): 26822.

doi: 10.1002/anie.202112370     URL    
[12]
Meng Q Y, Zhong J J, Liu Q, Gao X W, Zhang H H, Lei T, Li Z J, Feng K, Chen B, Tung C H, Wu L Z. J. Am. Chem. Soc., 2013, 135(51): 19052.

doi: 10.1021/ja408486v     URL    
[13]
Zhang G T, Liu C, Yi H, Meng Q Y, Bian C L, Chen H, Jian J X, Wu L Z, Lei A W. J. Am. Chem. Soc., 2015, 137(29): 9273.

doi: 10.1021/jacs.5b05665     URL    
[14]
Zheng Y W, Chen B, Ye P, Feng K, Wang W G, Meng Q Y, Wu L Z, Tung C H. J. Am. Chem. Soc., 2016, 138(32): 10080.

doi: 10.1021/jacs.6b05498     URL    
[15]
Liu W Q, Lei T, Zhou S, Yang X L, Li J, Chen B, Sivaguru J, Tung C H, Wu L Z. J. Am. Chem. Soc., 2019, 141(35): 13941.

doi: 10.1021/jacs.9b06920     URL    
[16]
Huang C, Ci R N, Qiao J, Wang X Z, Feng K, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2021, 60(21): 11779.

doi: 10.1002/anie.202101947     URL    
[17]
Wu H L, Li X B, Tung C H, Wu L Z. Chem. Commun., 2020, 56(99): 15496.

doi: 10.1039/D0CC05870J     URL    
[18]
Berardi S, Drouet S, Francas L, Gimbert-Surinach C, Guttentag M, Richmond C, Stoll T, Llobet A. Chem. Soc. Rev., 2014, 43: 7501.

doi: 10.1039/c3cs60405e     pmid: 24473472
[19]
Wen F Y, Li C. Acc. Chem. Res., 2013, 46(11): 2355.

doi: 10.1021/ar300224u     URL    
[20]
Nocera D G. Acc. Chem. Res., 2017, 50(3): 616.

doi: 10.1021/acs.accounts.6b00615     URL    
[21]
Ng B J, Putri L K, Kong X Y, Teh Y W, Pasbakhsh P, Chai S P. Adv. Sci., 2020, 7(7): 1903171.

doi: 10.1002/advs.201903171     URL    
[22]
Qi K Z, Cheng B, Yu J G, Ho W. Chin. J. Catal., 2017, 38(12): 1936.

doi: 10.1016/S1872-2067(17)62962-0     URL    
[23]
Li H J, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 3(11): 1500389.

doi: 10.1002/advs.201500389     URL    
[24]
Umena Y, Kawakami K, Shen J R, Kamiya N. Nature, 2011, 473(7345): 55.

doi: 10.1038/nature09913     URL    
[25]
Zhang C X, Chen C H, Dong H X, Shen J R, Dau H, Zhao J Q. Science, 2015, 348(6235): 690.

doi: 10.1126/science.aaa6550     URL    
[26]
Gersten S W, Samuels G J, Meyer T J. J. Am. Chem. Soc., 1982, 104(14): 4029.

doi: 10.1021/ja00378a053     URL    
[27]
Zong R F, Thummel R P. J. Am. Chem. Soc., 2005, 127(37): 12802.

doi: 10.1021/ja054791m     URL    
[28]
Zhang B B, Li F, Zhang R, Ma C B, Chen L, Sun L C. Chem. Commun., 2016, 52(55): 8619.

doi: 10.1039/C6CC04003A     URL    
[29]
Duan L L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L C. Nat. Chem., 2012, 4(5): 418.

doi: 10.1038/nchem.1301     URL    
[30]
Yang Q Q, Jiang X, Yang B, Wang Y, Tung C H, Wu L Z. iScience, 2020, 23(3): 100969.

doi: 10.1016/j.isci.2020.100969     URL    
[31]
Ellis W C, McDaniel N D, Bernhard S, Collins T J. J. Am. Chem. Soc., 2010, 132(32): 10990.

doi: 10.1021/ja104766z     URL    
[32]
Fillol J L, Codolà Z, Garcia-Bosch I, GÓmez L, Pla J J, Costas M. Nat. Chem., 2011, 3(10): 807.

doi: 10.1038/nchem.1140     URL    
[33]
Panda C, Debgupta J, Díaz Díaz D, Singh K K, Sen Gupta S, Dhar B B. J. Am. Chem. Soc., 2014, 136(35): 12273.

doi: 10.1021/ja503753k     URL    
[34]
Evangelisti F, Güttinger R, MorÉ R, Luber S, Patzke G R. J. Am. Chem. Soc., 2013, 135(50): 18734.

doi: 10.1021/ja4098302     pmid: 24279370
[35]
Zhao Y K, Lin J Q, Liu Y D, Ma B C, Ding Y, Chen M D. Chem. Commun., 2015, 51(97): 17309.

doi: 10.1039/C5CC07448G     URL    
[36]
Xiang R J, Wang H Y, Xin Z J, Li C B, Lu Y X, Gao X W, Sun H M, Cao R. Chem. Eur. J., 2016, 22(5): 1602.

doi: 10.1002/chem.201504066     URL    
[37]
Jiang X, Yang B, Yang Q Q, Tung C H, Wu L Z. Chem. Commun., 2018, 54(38): 4794.

doi: 10.1039/C8CC02359J     URL    
[38]
Han X B, Zhang Z M, Zhang T, Li Y G, Lin W B, You W S, Su Z M, Wang E B. J. Am. Chem. Soc., 2014, 136(14): 5359.

doi: 10.1021/ja412886e     URL    
[39]
Choi Y, Jeon D, Choi Y, Ryu J, Kim B S. ACS Appl. Mater. Interfaces, 2018, 10(16): 13434.

doi: 10.1021/acsami.8b00162     URL    
[40]
Schmidt M, Contakes S M, Rauchfuss T B. J. Am. Chem. Soc., 1999, 121(41): 9736.

doi: 10.1021/ja9924187     URL    
[41]
Gloaguen F, Lawrence J D, Rauchfuss T B. J. Am. Chem. Soc., 2001, 123(38): 9476.

pmid: 11562244
[42]
Wang W G, Rauchfuss T B, Bertini L, Zampella G. J. Am. Chem. Soc., 2012, 134(10): 4525.

doi: 10.1021/ja211778j     URL    
[43]
Ott S, Borgström M, Kritikos M, Lomoth R, Bergquist J, Åkermark B, Hammarström L, Sun L C. Inorg. Chem., 2004, 43(15): 4683.

doi: 10.1021/ic0303385     URL    
[44]
Wang W G, Wang F, Wang H Y, Si G, Tung C H, Wu L Z. Chem. Asian J., 2010, 5(8): 1796.

doi: 10.1002/asia.201000087     URL    
[45]
Wang H Y, Si G, Cao W N, Wang W G, Li Z J, Wang F, Tung C H, Wu L Z. Chem. Commun., 2011, 47(29): 8406.

doi: 10.1039/c1cc12200b     URL    
[46]
Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2011, 50(14): 3193.

doi: 10.1002/anie.201006352     URL    
[47]
Wang F, Liang W J, Jian J X, Li C B, Chen B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2013, 52(31): 8134.

doi: 10.1002/anie.201303110     URL    
[48]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134(12): 5627.

doi: 10.1021/ja2116348     URL    
[49]
Li Z J, Wang J J, Li X B, Fan X B, Meng Q Y, Feng K, Chen B, Tung C H, Wu L Z. Adv. Mater., 2013, 25(45): 6613.

doi: 10.1002/adma.201302908     URL    
[50]
Li Z J, Fan X B, Li X B, Li J X, Ye C, Wang J J, Yu S, Li C B, Gao Y J, Meng Q Y, Tung C H, Wu L Z. J. Am. Chem. Soc., 2014, 136(23): 8261.

doi: 10.1021/ja5047236     URL    
[51]
Han Z J, Qiu F, Eisenberg R, Holland P L, Krauss T D. Science, 2012, 338(6112): 1321.

doi: 10.1126/science.1227775     URL    
[52]
Huang J E, Mulfort K L, Du P W, Chen L X. J. Am. Chem. Soc., 2012, 134(40): 16472.

doi: 10.1021/ja3062584     pmid: 22989083
[53]
Xie L S, Tian J, Ouyang Y, Guo X N, Zhang W A, Apfel U P, Zhang W, Cao R. Angew. Chem. Int. Ed., 2020, 59(37): 15844.

doi: 10.1002/anie.202003836     URL    
[54]
Li X B, Gao Y J, Wang Y, Zhan F, Zhang X Y, Kong Q Y, Zhao N J, Guo Q, Wu H L, Li Z J, Tao Y, Zhang J P, Chen B, Tung C H, Wu L Z. J. Am. Chem. Soc., 2017, 139(13): 4789.

doi: 10.1021/jacs.6b12976     URL    
[55]
Inoue T, Fujishima A, Konishi S, Honda K. Nature, 1979, 277(5698): 637.

doi: 10.1038/277637a0     URL    
[56]
Xu J Q, Ju Z Y, Zhang W, Pan Y, Zhu J F, Mao J W, Zheng X L, Fu H Y, Yuan M L, Chen H, Li R X. Angew. Chem. Int. Ed., 2021, 60(16): 8705.

doi: 10.1002/anie.202017041     URL    
[57]
Wang S Y, Hai X, Ding X, Jin S B, Xiang Y G, Wang P, Jiang B, Ichihara F, Oshikiri M, Meng X G, Li Y X, Matsuda W, Ma J, Seki S, Wang X P, Huang H, Wada Y, Chen H, Ye J H. Nat. Commun., 2020, 11: 1149.

doi: 10.1038/s41467-020-14851-7     URL    
[58]
Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. J. Am. Chem. Soc., 2010, 132(7): 2132.

doi: 10.1021/ja910091z     pmid: 20121138
[59]
Rao H, Bonin J, Robert M. Chem. Commun., 2017, 53(19): 2830.

doi: 10.1039/C6CC09967J     URL    
[60]
Chen L J, Guo Z G, Wei X G, Gallenkamp C, Bonin J, AnxolabÉhère-Mallart E, Lau K C, Lau T C, Robert M. J. Am. Chem. Soc., 2015, 137(34): 10918.

doi: 10.1021/jacs.5b06535     URL    
[61]
Guo Z G, Chen G, Cometto C, Ma B, Zhao H Y, Groizard T, Chen L J, Fan H B, Man W L, Yiu S M, Lau K C, Lau T C, Robert M. Nat. Catal., 2019, 2(9): 801.

doi: 10.1038/s41929-019-0331-6     URL    
[62]
Ouyang T, Wang H J, Huang H H, Wang J W, Guo S, Liu W J, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2018, 57(50): 16480.

doi: 10.1002/anie.201811010     pmid: 30362217
[63]
Ouyang T, Huang H H, Wang J W, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2017, 56(3): 738.

doi: 10.1002/anie.201610607     pmid: 27958678
[64]
Tamaki Y, Morimoto T, Koike K, Ishitani O. PNAS, 2012, 109(39): 15673.

doi: 10.1073/pnas.1118336109     URL    
[65]
Takeda H, Monma Y, Ishitani O. ACS Catal., 2021, 11(19): 11973.

doi: 10.1021/acscatal.1c03336     URL    
[66]
Lian S C, Kodaimati M S, Dolzhnikov D S, Calzada R, Weiss E A. J. Am. Chem. Soc., 2017, 139(26): 8931.

doi: 10.1021/jacs.7b03134     URL    
[67]
Arcudi F, ?orðević L, Nagasing B, Stupp S I, Weiss E A. J. Am. Chem. Soc., 2021, 143(43): 18131.

doi: 10.1021/jacs.1c06961     URL    
[68]
Jin J, Yu J G, Guo D P, Cui C, Ho W. Small, 2015, 11(39): 5262.

doi: 10.1002/smll.201500926     URL    
[69]
Xin Z K, Gao Y J, Gao Y Y, Song H W, Zhao J Q, Fan F T, Xia A D, Li X B, Tung C H, Wu L Z. Adv. Mater., 2022, 34(3): 2106662.

doi: 10.1002/adma.202106662     URL    
[70]
Guo Q, Liang F, Li X B, Gao Y J, Huang M Y, Wang Y, Xia S G, Gao X Y, Gan Q C, Lin Z S, Tung C H, Wu L Z. Chem, 2019, 5(10): 2605.

doi: 10.1016/j.chempr.2019.06.019     URL    
[71]
Seefeldt L C, Hoffman B M, Peters J W, Raugei S, Beratan D N, Antony E, Dean D R. Acc. Chem. Res., 2018, 51(9): 2179.

doi: 10.1021/acs.accounts.8b00112     URL    
[72]
Yandulov D V, Schrock R R. Science, 2003, 301(5629): 76.

pmid: 12843387
[73]
Wickramasinghe L A, Ogawa T, Schrock R R, Müller P. J. Am. Chem. Soc., 2017, 139(27): 9132.

doi: 10.1021/jacs.7b04800     pmid: 28640615
[74]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y X, Yang P D. Nat. Catal., 2020, 3(3): 245.

doi: 10.1038/s41929-020-0428-y     URL    
[75]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352(6284): 448.

doi: 10.1126/science.aaf2091     URL    
[76]
Luo J Y, Bai X X, Li Q, Yu X, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H, Liu H. Nano Energy, 2019, 66: 104187.

doi: 10.1016/j.nanoen.2019.104187     URL    
[77]
Zheng J W, Lu L L, Lebedev K, Wu S, Zhao P, McPherson I J, Wu T S, Kato R, Li Y Y, Ho P L, Li G C, Bai L L, Sun J H, Prabhakaran D, Taylor R A, Soo Y L, Suenaga K, Tsang S C E. Chem Catal., 2021, 1(1): 162.
[78]
Liu X F, Luo Y N, Ling C C, Shi Y B, Zhan G M, Li H, Gu H Y, Wei K, Guo F R, Ai Z H, Zhang L Z. Appl. Catal. B Environ., 2022, 301: 120766.

doi: 10.1016/j.apcatb.2021.120766     URL    
[79]
Cheng M, Xiao C, Xie Y. J. Mater. Chem. A, 2019, 7(34): 19616.

doi: 10.1039/c9ta06435d    
[80]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058     URL    
[81]
Shi R, Zhao Y X, Waterhouse G I N, Zhang S, Zhang T R. ACS Catal., 2019, 9(11): 9739.

doi: 10.1021/acscatal.9b03246     URL    
[82]
Xue J W, Fujitsuka M, Majima T. Chem. Commun., 2021, 57(29): 3532.

doi: 10.1039/D1CC00204J     URL    
[83]
Li H, Shang J, Ai Z H, Zhang L Z. J. Am. Chem. Soc., 2015, 137(19): 6393.

doi: 10.1021/jacs.5b03105     URL    
[84]
Li H, Shang J, Shi J G, Zhao K, Zhang L Z. Nanoscale, 2016, 8(4): 1986.

doi: 10.1039/C5NR07380D     URL    
[85]
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. J. Am. Chem. Soc., 2017, 139(31): 10929.

doi: 10.1021/jacs.7b06634     pmid: 28712297
[86]
Fu R, Pan Z Y, Mu X W, Li J Y, Zhan Q Y, Zhao Z H, Mu X Y, Li L. J. Mater. Chem. A, 2021, 9(40): 22827.

doi: 10.1039/D1TA06296D     URL    
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[3] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[6] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[7] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[8] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[9] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[10] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[11] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[12] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[13] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[14] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[15] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
阅读次数
全文


摘要

人工光合作用