English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 338-348 DOI: 10.7536/PC170811 前一篇   后一篇

• 综述 •

一维聚合物-无机纳米复合材料的制备

李勃天1,2, 温幸1,3, 唐黎明1*   

  1. 1. 清华大学化工系 先进材料教育部重点实验室 北京 100084;
    2. 中国石油大学(北京)理学院 北京 102249;
    3. 太原理工大学化学化工学院 太原 030024
  • 收稿日期:2017-08-11 修回日期:2017-11-09 出版日期:2018-04-15 发布日期:2018-01-30
  • 通讯作者: 唐黎明 E-mail:tanglm@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21174079)、国家重点基础研究发展计划(973)项目(No.2014CB932202)和教育部先进材料重点实验室基金项目(No.2017AML08)资助

Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials

Botian Li1,2, Xing Wen1,3, Liming Tang1*   

  1. 1. Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
    2. College of Science, China University of Petroleum(Beijing), Beijing 102249, China;
    3. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2017-08-11 Revised:2017-11-09 Online:2018-04-15 Published:2018-01-30
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21174079), the National Basic Research Program of China (No. 2014CB932202), and the Fund of Key Laboratory of Advanced Materials of Ministry of Education (No.2017AML08).
近年来,一维聚合物-无机纳米复合材料因其独特的结构、优异的性能及广泛的应用前景而得到极大关注。由于无机相和聚合物相在纳米尺度的复合可显著提高材料的内在特性和功能,许多一维纳米复合材料在电子传输、光学特性、力学性能等方面表现优异,相关材料在电子器件、储能器件、光化学传感器、催化等领域具有潜在应用价值。本文基于一维聚合物-无机纳米复合材料多种不同的结构形式,综述了三种最常用的制备方法,即模板合成法、静电纺丝法和一维组装法,分别介绍了各种制备方法的原理,并对其特点和发展趋势进行了评述和展望。
In recent years, one-dimensional (1D) polymer-inorganic nanocomposites have attracted considerable attention due to their unique structures, excellent properties and tremendous application prospects. Since the composite of the inorganic phase and polymer phase in the nanoscale could remarkably promote the intrinsic properties and the functions, the corresponding materials exhibit outstanding performances in electron transmission, optical properties, mechanical properties and so on. Many of them possess application potentials in the fields of electronic devices, energy storage devices, photochemical sensors, catalysts and other fields. By enumerating several different 1D polymer-inorganic composite nanostructures, three commonly used strategies, including template synthesis method, electrospinning method and 1D assembly method are summarized herein. The principles and the characteristics of various preparation methods are introduced. Finally, the outlook for future development is prospected.
Contents
1 Introduction
2 Preparation of 1D polymer-inorganic composite nanomaterials by template synthesis
2.1 Hard templates
2.2 Soft templates
2.3 1D inorganic templates
3 Preparation of 1D polymer-inorganic composite nanomaterials by electrospinning
4 Preparation of 1D polymer-inorganic composite nanomaterials by 1D assembly method
5 Conclusion

中图分类号: 

()
[1] Pan L J, Qiu H, Dou C, Li Y, Pu L, Xu J B, Shi Y. Int. J. Mol. Sci., 2010, 11:2636.
[2] Persano L, Camposeo A, Pisignano D. Prog. Poly. Sci., 2015, 43:48.
[3] Choi Y, Choo H, Chong Y, Lee S, Olgen S, Schinazi R F, Chu C K. Org. Lett., 2002, 4:305.
[4] Feng J J, Zhang P P, Wang A J, Liao Q C, Xi J L, Chen J R. New J. Chem., 2012, 36:148.
[5] Yuan J Y, Müller A H. Polymer, 2010, 51:4015.
[6] Yuan J Y, Xu Y Y, Müller A H. Chem. Soc. Rev., 2011, 40:640.
[7] Mijangos C, Hernández R, Martín J. Prog. Poly. Sci., 2016, 54:148.
[8] Martín J, Maiz J, Sacristan J, Mijangos C. Polymer, 2012, 53:1149.
[9] Lorcy J M, Massuyeau F, Moreau P, Chauvet O, Faulques E, Wéry J, Duvail J L. Nanotechnology, 2009, 20:405601.
[10] He Q, Tian Y, Cui Y, Möhwald H, Li J B. J. Mater. Chem., 2008, 18:748.
[11] Kobayakawa S, Nakai Y, Akiyama M, Komatsu T. Chem. Eur. J., 2017, 23:5044.
[12] Callegari V, Demoustier-Champagne S. Macromol. Rapid Commun., 2011, 32:25.
[13] Park S, Lim J H, Chung S W, Mirkin C A. Science, 2004, 303:348.
[14] Bangar M A, Hangarter C M, Yoo B, Rheem Y, Chen W, Mulchandani A, Myung N V. Electroanalysis, 2009, 21:61.
[15] Martín J, Mijangos C. Langmuir, 2009, 25:1181.
[16] Martín J, Hernández-Vélez M, de Abril O, Luna C, Munoz-Martin A, Vázquez M, Mijangos C. Eur. Polym. J., 2012, 48:712.
[17] Martín J, Vázquez M, Hernández-Vélez M, Mijangos C. Nanotechnology, 2008, 19:175304.
[18] Han X J, Maiz J, Mijangos C, Zaldo C. Nanotechnology, 2014, 25:205302.
[19] Drury A, Chaure S, Kröll M, Nicolosi V, Chaure N, Blau W J. Chem. Mater., 2007, 19:4252.
[20] Maiz J, Schäfer H, Trichy R G, Hartmann-Azanza B, Eickmeier H, Haase M, Mijangos C, Steinhart M. Macromolecules, 2013, 46:403.
[21] Müllner M, Müller A H E. Polymer, 2016, 98:389.
[22] Yan X H, Liu G J, Liu F T, Tang B Z, Peng H Z, Pakhomov A B, Wong C Y. Angew. Chem. Int. Ed., 2001, 40:3593.
[23] Yan X H, Liu G J, Haeussler M, Tang B Z. Chem. Mater., 2005, 17:6053.
[24] Walther A, Yuan J Y, Abetz V, Müller A H E. Nano Lett., 2009, 9:2026.
[25] Wang H, Wang X S, Winnik M A, Manners I. J. Am. Chem. Soc., 2008, 130:12921.
[26] Wang H, Patil A J, Liu K, Petrov S, Mann S, Winnik M A, Manners I. Adv. Mater., 2009, 21:1805.
[27] Xu J P, Zhu Y T, Zhu J T, Jiang W. Nanoscale, 2013, 5:6344.
[28] Xu Y Y, Yuan J Y, Fang B, Drechsler M, Müllner M, Bolisetty S, Ballauff M, Müller A H E. Adv. Funct. Mater., 2010, 20:4182.
[29] Zhang M F, Müller A H. J. Polym. Sci. Part A, 2005, 43:3461.
[30] Müllner M, Yuan J, Weiss S, Walther A, Förtsch M, Drechsler M, Müller A H E. J. Am. Chem. Soc., 2010, 132:16587.
[31] Müllner M, Lunkenbein T, Schieder M, Gröschel A H, Miyajima N, Förtsch M, Breu J, Caruso F, Müller A H E. Macromolecules, 2012, 45:6981.
[32] Zheng Z C, Daniel A, Yu W, Weber B, Ling J, Müller A H E. Chem. Mater., 2013, 25:4585.
[33] Xie G J, Ding H J, Daniel W F, Wang Z Y, Pietrasik J, Sheiko S S, Matyjaszewski K. Polymer, 2016, 98:481.
[34] Song J Y, Kang H Y, Lee C H, Hwang S H, Jang J S. ACS Appl. Mater. Interfaces, 2012, 4:460.
[35] Kang H Y, Jang J S. Langmuir, 2008, 24:2051.
[36] Feng X M, Sun Z Z, Hou W H, Zhu J J. Nanotechnology, 2007, 18:95603.
[37] Xu J J, Hu J C, Quan B G, Wei Z X, Macromol. Rapid Commun., 2009, 30:936.
[38] Chen K, Tang L M, Xia Y, Wang Y J. Langmuir, 2008, 24:13838.
[39] Li B T, Tang L M, Qiang L, Chen K. Soft Matter, 2011, 7:963.
[40] Wen X, Tang L M, Qiang L. Soft Matter, 2014, 10:3960.
[41] 温幸(Wen X), 唐黎明(Tang L M), 林晚心(Lin W X). 高等学校化学学报(Chemical Research in Chinese Universities), 2015, 36(1):180.
[42] Wen X, Tang L M, Li B T. Chem. Asian J., 2014, 9:2975.
[43] Wen X, Tang L M. J. Mol. Catal. A:Chem., 2015, 399:86.
[44] Yin Z G, Zheng Q D. Adv. Energy Mater., 2012, 2:179.
[45] Chen A H, Wang H Q, Li X Y. Chem. Commun., 2005, 14:1863.
[46] Chen A H, Xie H X, Wang H Q, Li H Y, Li X. Synthet. Met., 2006, 156:346.
[47] Xu J, Li X L, Liu J F, Wang X, Peng Q, Li Y D. J. Polym. Sci. Polym. Chem., 2005, 43:2892.
[48] Wang Q S, Lei Z Y, Chen Y J, Ouyang Q Y, Gao P, Qi L H, Zhu C L, Zhang J Z. J. Mater. Chem. A, 2013, 38:11795.
[49] Zhang W X, Wen X G, Yang S H. Langmuir, 2003, 19:4420.
[50] Zhang X Y, Manohar S K. J. Am. Chem. Soc., 2005, 127:14156.
[51] Lu X F, Mao H, Zhang W J. Nanotechnology, 2006, 18:025604.
[52] Yin Z G, Fan W B, Ding Y H, Li J X, Guan L H, Zheng Q D. ACS Sustainable Chem. Eng., 2015, 3:507.
[53] Xia X H, Chao D L, Qi X Y, Xiong Q Q, Zhang Y Q, Tu J P, Zhang H, Fan H J. Nano Lett., 2013, 13:4562.
[54] Wang Z L, Guo R, Ding L X, Tong Y X, Li G R. Scientific Reports, 2013, 3:1204.
[55] Xia C, Xie Y B, Wang W, Dong H X. Synthet. Met., 2014, 192:93.
[56] Kateb M, Safarian S, Kolahdouz M, Fathipour M, Ahamdi V. Sol. Energy Mater. Sol. Cells, 2016, 145:200.
[57] Gao M X, Huang S M, Dai L M, Wallace G G, Gao R P, Wang Z L. Angew. Chem. Int. Ed., 2000, 39:3664.
[58] Wei Z X, Wan M X, Lin T, Dai L M. Adv. Mater., 2003, 15:136.
[59] Zhang X Y, Goux W J, Manohar S K. J. Am. Chem. Soc., 2004, 126:4502.
[60] Karim M R, Yeum J H, Lee M S, Lim K T. Mater. Chem. Phys., 2008, 112:779.
[61] Gao C, Muthukrishnan S, Li W W, Yuan J Y, Xu Y Y, Müller A H E. Macromolecules, 2007, 40:1803.
[62] Jiang K, Eitan A, Schadler L S, Ajayan P M, Siegel R W. Nano. Lett., 2003, 3:275.
[63] Mayya K S, Gittins D I, Dibaj A M, Caruso F. Nano. Lett., 2001, 1:727.
[64] Wang Z X, Liu J Y, Zhang K, Cai H B, Zhang G H, Wu Y K, Kong T, Wang X P, Chen J, Hou J G. J. Phys. Chem. C, 2009, 113:5428.
[65] Chen S L, Liu K H, Luo Y F, Wei Y, Li F C, Liu L. Mater. Lett., 2015, 147:109.
[66] Gerasopoulos K, Chen X L, Culver J, Wang C S, Ghodssi R. Chem. Commun., 2010, 46:7349.
[67] Li S B, Dharmarwardana M, Welch R P, Ren Y X, Thompson C M, Smaldone R A, Gassensmith J J. Angew. Chem. Int. Ed., 2016, 128:10849.
[68] Djalali R, Chen Y F, Matsui H. J. Am. Chem. Soc., 2002, 124:13660.
[69] Huang K, Zhang Y J, Long Y Z, Yuan J H, Han D X, Wang Z J, Niu L, Chen Z J. Chem. Eur. J., 2006, 12:5314.
[70] Lu G W, Li C, Shen J Y, Chen Z J, Shi G Q. J. Phys. Chem. C, 2007, 111:5926.
[71] Muñoz-Rojas D, Oró-Solé J, Ayyad O, Gómez-Romero P. Small, 2008, 4:1301.
[72] Faridi-Majidi R, Sharifi-Sanjani N. J. Appl. Polym. Sci., 2007, 105:1351.
[73] Tong Y, Lu X F, Sun W N, Nie G D, Yang L, Wang C. J. Power Sources, 2014, 261:221.
[74] Zhang D, Karki A B, Rutman D, Young D P, Wang A, Cocke D, Ho T H, Guo Z H. Polymer, 2009, 50:4189.
[75] Müller K, Quinn J F, Johnston A P R, Becker M, Greiner A, Caruso F. Chem. Mater., 2006, 18:2397.
[76] Fang X, Ma H, Xiao S L, Shen M W, Guo R, Cao X Y, Shi X Y. J. Mater. Chem., 2011, 21:4493.
[77] Lu X F, Zhao Q D, Liu X, Wang D, Zhang W J, Wang C W, Wei Y. Macromol. Rapid Commun., 2006, 27:430.
[78] Song T, Zhang Y Z, Zhou T. J. Magn. Magn. Mater., 2006, 303:286.
[79] Li D, Xia Y N. Nano Lett., 2004, 4:933.
[80] Chang H C, Liu C L, Chen W C. Adv. Funct. Mater., 2013, 23:4960.
[81] Kalra V, Lee J, Lee J H, Lee S G, Marquez M, Wiesner U, Joo Y L. Small, 2008, 4:2067.
[82] Hou Z Y, Li G G, Lian H Z, Lin J. J. Mater. Chem., 2012, 22:5254.
[83] Lu X F, Wang C, Wei Y. Small, 2009, 5:2349.
[84] Peng S J, Jin G R, Li L L, Li K, Srinivasan M, Ramakrishna S, Chen J. Chem. Soc. Rev., 2016, 45:1225.
[85] Keng P Y, Shim I, Korth B D, Douglas J F, Pyun J. ACS Nano, 2007, 1:279.
[86] Korth B D, Keng P, Shim I, Bowles S E, Tang C, Kowalewski T, Nebesny K W, Pyun J. J. Am. Chem. Soc., 2006, 128:6562.
[87] DeVries G A, Brunnbauer M, Hu Y, Jackson A M, Long B, Neltner B T, Uzun O, Wunsch B H, Stellacci F. Science, 2007, 315:358.
[88] Jian X, Li J G, Yang H M, Cao L L, Zhang E H, Liang Z H. Carbon, 2017, 114:533.
[89] Xiong Y, Chen Q W, Tao N, Ye J, Tang Y, Feng J S, Gu X Y. Nanotechnology, 2007, 18:345301.
[90] Sheparovych R, Sahoo Y, Motornov M, Wang S M, Luo H, Prasad P N, Sokolov I, Minko S. Chem. Mater., 2006, 18:591.
[91] Nie Z H, Fava D, Kumacheva E, Zou S, Walker C C, Rubinstein M. Nat. Mater., 2007, 6:609.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[12] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[13] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[14] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[15] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.