English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2351-2360 DOI: 10.7536/PC220404 前一篇   后一篇

• 综述 •

仿生光(电)催化NADH再生

林刚1, 张媛媛1,2, 刘健1,2,*()   

  1. 1 青岛科技大学材料科学与工程学院 青岛 266042
    2 中国科学院青岛生物能源与过程研究所 山东能源研究院 青岛 266101
  • 收稿日期:2022-04-05 修回日期:2022-05-24 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 刘健
  • 基金资助:
    山东省自然科学重大基础研究项目(ZR2019ZD47)

Bioinspired Photo/(Electro)-Catalytic NADH Regeneration

Gang Lin1, Yuanyuan Zhang1,2, Jian Liu1,2()   

  1. 1 College of Materials Science and Engineering, Qingdao University of Science and Technology,Qingdao 266042, China
    2 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute,Qingdao 266101, China
  • Received:2022-04-05 Revised:2022-05-24 Online:2022-11-24 Published:2022-06-25
  • Contact: Jian Liu
  • About author:
    These authors contributed equally to this work
  • Supported by:
    Shandong Province Natural Science Major Basic Research Project(ZR2019ZD47)

NADH依赖的氧化还原酶广泛应用于精细化学品合成和手性药物开发等领域。NADH作为还原当量在氧化还原酶催化过程中起着关键作用。鉴于高成本NADH的计量性使用,寻求绿色、经济和高效的NADH再生策略是该领域的研究热点和难点。近年来,光(电)催化NADH再生受到了广泛的关注。本文从模拟自然界光合作用的Z机制出发,基于光(电)催化辅酶再生过程中的光诱导电子转移、空穴捕获等关键问题,总结了NADH再生领域的相关工作,为进一步设计高效的辅酶再生体系提供了研究思路。本文最后还简介了NADH依赖的光-酶协同催化的研究进展,并对仿生光催化辅酶再生体系面临的挑战和光-酶偶联的发前景展进行了讨论与展望。

Coenzyme NADH-dependent oxidoreductases are widely used in the fields of fine chemical synthesis and chiral drug development. As a reducing equivalent, NADH plays a key role in oxidoreductase catalysis. In view of the stoichiometric consumption and high cost of NADH, the search for green, feasible and efficient coenzyme regeneration strategies is an important but challenging task. In recent years, photo/(electro)-catalytic method for NADH regeneration has received extensive attention. In this paper, starting from the Z-scheme reaction that simulates natural photosynthesis, based on the photo-induced electron transfer and hole capture in the process of photo/(electro)-catalytic coenzyme regeneration, some recent works related to NADH regeneration are reviewed. The review is expected to provide ideas for further design of efficient coenzyme regeneration system. In addition, the research progress on NADH-dependent photo-enzyme synergistic catalysis in recent years is also briefly introduced, and an outlook is tentatively attempted about the challenges of the biomimetic photocatalytic coenzyme regeneration system and the future developments of photo-enzyme coupling system.

Contents

1 Introduction

2 Photoinduced electron transfer

2.1 Indirect electron transfer

2.2 Direct electron transfer

3 Hole trapping

3.1 Electron donor

3.2 Photoelectrochemistry

4 Coenzyme-dependent photo-enzyme coupling

5 Conclusion and outlook

()
图1 (a) 光合作用示意图;(b) 光催化辅酶再生体系示意图
Fig. 1 (a) Schematic diagram of photosynthesis; (b) Schematic diagram of biomimetic photocatalytic coenzyme regeneration system
图2 常见半导体光催化剂能级结构示意图
Fig. 2 Schematic diagram of the energy level structure of common semiconductor photocatalysts
图3 人工光合作用过程中电子流动与空穴利用的可能途径
Fig. 3 Possible pathways of electron flow and hole utilization during artificial photosynthesis
图4 间接电子转移过程中电子介质的变化过程
Fig. 4 The changing process of electron mediator in indirect electron transfer
图5 集成体系间接电子转移过程
Fig. 5 Integrated indirect electron transfer process
图6 直接电子转移过程:π-π堆叠作用
Fig. 6 Direct electron transfer process: π-π stacking interaction
图7 光电协同过程:(a) 光阳极与光阴极偶联体系;(b) 光阳极与钙钛矿光伏器件串联体系
Fig. 7 Photoelectric synergistic process: (a) Photocathode and photoanode coupling system; (b) cascade of system of photoanode and perovskite photovoltaic device
图8 光-酶偶联集成限域系统:(a) 仿叶绿体结构;(b) 仿酶结构
Fig. 8 Light-enzyme coupled integrated confinement system: (a) chloroplast-like structure; (b) enzyme-like structure
[1]
Kiwi J. J. Photochem., 1981, 16(2): 193.

doi: 10.1016/0047-2670(81)80029-9     URL    
[2]
Ruppert R, Herrmann S, Steckhan E. Tetrahedron Lett., 1987, 28(52): 6583.

doi: 10.1016/S0040-4039(00)96919-3     URL    
[3]
Poizat M, Arends I W C E, Hollmann F. J. Mol. Catal. B Enzym., 2010, 63(3-4): 149.

doi: 10.1016/j.molcatb.2010.01.006     URL    
[4]
Steckhan E. Electroenzymatic Synthesis. In Electrochemistry V, Steckhan, E., Ed. Springer-Verlag Berlin Heidelberg: Top. Curr. Chem., 1994, 170, 83.
[5]
Goren Z, Lapidot N, Willner I. J. Mol. Catal., 1988, 47(1): 21.

doi: 10.1016/0304-5102(88)85069-7     URL    
[6]
Mandler D, Willner I. J. Chem. Soc., Chem. Commun., 1986, (11): 851.
[7]
Wienkamp R, Steckhan E. Angew. Chem. Int. Ed., 1983, 22(6): 497.
[8]
Steckhan E, Herrmann S, Ruppert R, Dietz E, Frede M, Spika E. Organometallics, 1991, 10(5): 1568.

doi: 10.1021/om00051a056     URL    
[9]
Jiang Z Y, Lü C, Wu H. Ind. Eng. Chem. Res., 2005, 44(12): 4165.

doi: 10.1021/ie049155w     URL    
[10]
Liu J, Antonietti M. Energy Environ. Sci., 2013, 6(5): 1486.

doi: 10.1039/c3ee40696b     URL    
[11]
Huang J H, Antonietti M, Liu J. J. Mater. Chem. A, 2014, 2(21): 7686.

doi: 10.1039/C4TA00793J     URL    
[12]
Liu J, Huang J H, Zhou H, Antonietti M. ACS Appl. Mater. Interfaces, 2014, 6(11): 8434.

doi: 10.1021/am501319v     URL    
[13]
Hildebrand F, Kohlmann C, Franz A, Lütz S. Adv. Synth. Catal., 2008, 350(6): 909.

doi: 10.1002/adsc.200700505     URL    
[14]
Canivet J, Süss-Fink G, Štěpnička P. Eur. J. Inorg. Chem., 2007, 2007(30): 4736.

doi: 10.1002/ejic.200700505     URL    
[15]
Oppelt K T, Gasiorowski J, Egbe D A M, Kollender J P, Himmelsbach M, Hassel A W, Sariciftci N S, Knör G. J. Am. Chem. Soc., 2014, 136(36): 12721.

doi: 10.1021/ja506060u     URL    
[16]
Brown K A, Wilker M B, Boehm M, Hamby H, Dukovic G, King P W. ACS Catal., 2016, 6(4): 2201.

doi: 10.1021/acscatal.5b02850     URL    
[17]
Zhang S H, Zhang Y S, Chen Y, Yang D, Li S H, Wu Y Z, Sun Y Y, Cheng Y Q, Shi J F, Jiang Z Y. ACS Catal., 2021, 11(1): 476.

doi: 10.1021/acscatal.0c04462     URL    
[18]
Cheng Y Q, Shi J F, Wu Y Z, Wang X Y, Sun Y Y, Cai Z Y, Chen Y, Jiang Z Y. Research, 2021, 2021: 8175709.
[19]
Tian Y, Zhou Y N, Zong Y C, Li J S, Yang N, Zhang M, Guo Z Q, Song H. ACS Appl. Mater. Interfaces, 2020, 12(31): 34795.

doi: 10.1021/acsami.0c06684     URL    
[20]
Wu Y Z, Shi J F, Li D L, Zhang S H, Gu B, Qiu Q, Sun Y Y, Zhang Y S, Cai Z Y, Jiang Z Y. ACS Catal., 2020, 10(5): 2894.

doi: 10.1021/acscatal.9b05240     URL    
[21]
Roy S, Jain V, Kashyap R K, Rao A, Pillai P P. ACS Catal., 2020, 10(10): 5522.

doi: 10.1021/acscatal.0c01478     URL    
[22]
Zhang Y Y, Huang X H, Li J S, Lin G, Liu W G, Chen Z P, Liu J. Chem. Res. Chin. Univ., 2020, 36(6): 1076.

doi: 10.1007/s40242-020-0293-x     URL    
[23]
Zhao Y J, Liu H, Wu C Y, Zhang Z H, Pan Q Y, Hu F, Wang R M, Li P W, Huang X W, Li Z B. Angew. Chem. Int. Ed., 2019, 58(16): 5376.

doi: 10.1002/anie.201901194     URL    
[24]
Wang Y C, Liu H, Pan Q Y, Wu C Y, Hao W B, Xu J, Chen R Z, Liu J, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2020, 142(13): 5958.

doi: 10.1021/jacs.0c00923     URL    
[25]
Xu K Q, Chatzitakis A, Backe P H, Ruan Q S, Tang J W, Rise F, Bjørås M, Norby T. Appl. Catal. B Environ., 2021, 296: 120349.

doi: 10.1016/j.apcatb.2021.120349     URL    
[26]
Prasad D R, Hoffman M Z. J. Phys. Chem., 1984, 88(23): 5660.

doi: 10.1021/j150667a041     URL    
[27]
Kim Y S, McNiven S, Ikebukuro K, Karube I. Photochem. Photobiol., 1997, 66(2): 180.

doi: 10.1111/j.1751-1097.1997.tb08640.x     URL    
[28]
Teoh W Y, Scott J A, Amal R. J. Phys. Chem. Lett., 2012, 3(5): 629.
[29]
Kinastowska K, Liu J, Tobin J M, Rakovich Y, Vilela F, Xu Z T, Bartkowiak W, Grzelczak M. Appl. Catal. B Environ., 2019, 243: 686.

doi: 10.1016/j.apcatb.2018.10.077     URL    
[30]
Hammarström L. Curr. Opin. Chem. Biol., 2003, 7: 666.

pmid: 14644174
[31]
Youngblood W J, Lee S H A, Kobayashi Y, Hernandez-Pagan E A, Hoertz P G, Moore T A, Moore A L, Gust D, Mallouk T E. J. Am. Chem. Soc., 2009, 131(3): 926.

doi: 10.1021/ja809108y     pmid: 19119815
[32]
Waki M, Shirai S, Yamanaka K I, Maegawa Y, Inagaki S. RSC Adv., 2020, 10(24): 13960.

doi: 10.1039/D0RA00895H     URL    
[33]
Kanan M W, Nocera D G. Science, 2008, 321: 1072.

doi: 10.1126/science.1162018     URL    
[34]
Tilley S, Cornuz M, Sivula K, Grätzel M. Angew. Chem. Int. Ed., 2010, 49(36): 6405.

doi: 10.1002/anie.201003110     pmid: 20665613
[35]
Cao R, Lai W Z, Du P W. Energy Environ. Sci., 2012, 5(8): 8134.

doi: 10.1039/c2ee21494f     URL    
[36]
Hull J F, Balcells D, Blakemore J D, Incarvito C D, Eisenstein O, Brudvig G W, Crabtree R H. J. Am. Chem. Soc., 2009, 131(25): 8730.

doi: 10.1021/ja901270f     URL    
[37]
Zhang L, Wang W Z, Sun S M, Jiang D, Gao E P. Appl. Catal. B Environ., 2015, 162: 470.

doi: 10.1016/j.apcatb.2014.07.024     URL    
[38]
Zhang S H, Shi J F, Sun Y Y, Wu Y Z, Zhang Y S, Cai Z Y, Chen Y X, You C, Han P P, Jiang Z Y. ACS Catal., 2019, 9(5): 3913.

doi: 10.1021/acscatal.9b00255     URL    
[39]
Ji X Y, Kang Y, Fan T J, Xiong Q Q, Zhang S P, Tao W, Zhang H. J. Mater. Chem. A, 2020, 8(1): 323.

doi: 10.1039/C9TA11167K     URL    
[40]
Ju D X, Lin G, Xiao H, Zhang Y Y, Su S G, Liu J. Sol. RRL, 2020, 4(12): 2000559.

doi: 10.1002/solr.202000559     URL    
[41]
Aresta M, Dibenedetto A, Baran T, Angelini A, Łabuz P, Macyk W. Beilstein J. Org. Chem., 2014, 10: 2556.

doi: 10.3762/bjoc.10.267     URL    
[42]
Boecker M, Micheel M, Mengele A K, Neumann C, Herberger T, Marchesi D’Alvise T, Liu B, Undisz A, Rau S, Turchanin A, Synatschke C V, Wächtler M, Weil T. ACS Appl. Nano Mater., 2021, 4(12): 12913.

doi: 10.1021/acsanm.1c02994     pmid: 34977477
[43]
Nam D H, Kuk S K, Choe H, Lee S M, Ko J W, Son E J, Choi E G, Kim Y H, Park C B. Green Chem., 2016, 18(22): 5989.

doi: 10.1039/C6GC02110G     URL    
[44]
Kuk S K, Singh R K, Nam D H, Singh R, Lee J K, Park C B. Angew. Chem. Int. Ed., 2017, 56(14): 3827.

doi: 10.1002/anie.201611379     URL    
[45]
Nam D H, Ryu G M, Kuk S K, Da Som Choi, Son E J, Park C B. Appl. Catal. B Environ., 2016, 198: 311.

doi: 10.1016/j.apcatb.2016.05.077     URL    
[46]
Lee S H, Choi D S, Kuk S K, Park C B. Angew. Chem. Int. Ed., 2018, 57(27): 7958.

doi: 10.1002/anie.201710070     URL    
[47]
Du C, Yang X G, Mayer M T, Hoyt H, Xie J, McMahon G, Bischoping G, Wang D W. Angew. Chem. Int. Ed., 2013, 52(48): 12692.

doi: 10.1002/anie.201306263     URL    
[48]
Ahn H J, Kwak M J, Lee J S, Yoon K Y, Jang J H. J. Mater. Chem. A, 2014, 2(47): 19999.

doi: 10.1039/C4TA04890C     URL    
[49]
Lee Y W, Boonmongkolras P, Son E J, Kim J, Lee S H, Kuk S K, Ko J W, Shin B, Park C B. Nat. Commun., 2018, 9: 4208.

doi: 10.1038/s41467-018-06687-z     URL    
[50]
Wu X L, Ge J, Yang C, Hou M, Liu Z. Chem. Commun., 2015, 51(69): 13408.

doi: 10.1039/C5CC05136C     URL    
[51]
Lian X Z, Chen Y P, Liu T F, Zhou H C. Chem. Sci., 2016, 7(12): 6969.

doi: 10.1039/C6SC01438K     URL    
[52]
Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P. Acc. Chem. Res., 2017, 50(6): 1423.

doi: 10.1021/acs.accounts.7b00090     URL    
[53]
Li P, Chen Q S, Wang T C, Vermeulen N A, Mehdi B L, Dohnalkova A, Browning N D, Shen D K, Anderson R, Gómez-Gualdrón D A, Cetin F M, Jagiello J, Asiri A M, Stoddart J F, Farha O K. Chem, 2018, 4(5): 1022.

doi: 10.1016/j.chempr.2018.03.001     URL    
[54]
Phipps J, Chen H, Donovan C, Dominguez D, Morgan S, Weidman B, Fan C G, Beyzavi H. ACS Appl. Mater. Interfaces, 2020, 12(23): 26084.

doi: 10.1021/acsami.0c06964     URL    
[55]
Sun Y Y, Shi J F, Wang Z, Wang H, Zhang S H, Wu Y Z, Wang H J, Li S H, Jiang Z Y. J. Am. Chem. Soc., 2022, 144(9): 4168.

doi: 10.1021/jacs.1c12790     URL    
[56]
Chen Y, Li P, Zhou J, Buru C T, ÐorđevićL, Li P, Zhang X, Cetin M M, Stoddart J F, Stupp S I, Wasielewski M R, Farha O K. J. Am. Chem. Soc., 2020, 142: 1768.

doi: 10.1021/jacs.9b12828     URL    
[57]
Zhao Z F, Zheng D, Guo M L, Yu J Y, Zhang S N, Zhang Z J, Chen Y. Angew. Chem. Int. Ed., 2022, 61(12): e202200261.
[58]
Zhou J H, Yu S S, Kang H L, He R, Ning Y X, Yu Y Y, Wang M, Chen B Q. Renewable Energy, 2020, 156: 107.
[59]
Zhang S H, Liu S S, Sun Y Y, Li S H, Shi J F, Jiang Z Y. Chem. Soc. Rev., 2021, 50(24): 13449.

doi: 10.1039/D1CS00392E     URL    
[60]
Burek B O, De Boer S R, Tieves F, Zhang W Y, Van Schie M, Bormann S, Alcalde M, Holtmann D, Hollmann F, Bahnemann D W, Bloh J Z. ChemCatChem, 2019, 11(13): 3093.

doi: 10.1002/cctc.201900610     URL    
[61]
Yang D, Zhang Y S, Zhang S H, Cheng Y Q, Wu Y Z, Cai Z Y, Wang X D, Shi J F, Jiang Z Y. ACS Catal., 2019, 9(12): 11492.

doi: 10.1021/acscatal.9b03462     URL    
[62]
Zhang Y Y, Kan X N, Zou Y T, Liu J. Chem. Commun., 2022, 58: 10997.

doi: 10.1039/D2CC04276B     URL    
[63]
Li A, Cao Q, Zhou G Y, Schmidt B V K J, Zhu W J, Yuan X T, Huo H L, Gong J L, Antonietti M. Angew. Chem. Int. Ed., 2019, 58(41): 14549.

doi: 10.1002/anie.201908058     pmid: 31418998
[64]
Lin G, Zhang Y Y, Hua Y T, Zhang C H, Jia C C, Ju D X, Yu C M, Li P, Liu J. Angew. Chem. Int. Ed., 2022, 61: e202206283.
[65]
Zhang Y Y, Liu J. Chem. Eur. J., 2022, 28: e202201430.
[1] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[2] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[3] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[4] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[5] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[6] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[7] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[8] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[9] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[10] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[11] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[12] 张瑞璞, 张润泽, 罗三中. 仿生邻醌催化[J]. 化学进展, 2020, 32(11): 1753-1765.
[13] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[14] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[15] 吴媛媛, 潘海华, 唐睿康. 胶原矿化与仿生修复[J]. 化学进展, 2018, 30(10): 1503-1510.
阅读次数
全文


摘要

仿生光(电)催化NADH再生