English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 870-878 DOI: 10.7536/PC170520 前一篇   后一篇

• 综述 •

有机-无机杂化钙钛矿太阳电池中的钙钛矿层功能添加剂

王露1,2, 霍志鹏1*, 易锦馨1,2, Ahmed Alsaedi3, Tasawar Hayat3,4, 戴松元1,3,5*   

  1. 1. 中国科学院合肥物质科学研究院应用技术研究所 中国科学院光伏与节能材料重点实验室 合肥 230031;
    2. 中国科学技术大学 合肥 230026;
    3. 阿卜杜勒阿齐兹国王大学 自然科学学院数学系 纳姆研究组 吉达 21589;
    4. 巴基斯坦真纳大学数学系 伊斯兰堡 44000;
    5. 华北电力大学新能源电力系统国家重点实验室 北京 102206
  • 收稿日期:2017-05-09 修回日期:2017-06-28 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 霍志鹏,E-mail:zhipenghuo@163.com;戴松元,sydai@ipp.ac.cn E-mail:zhipenghuo@163.com;sydai@ipp.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.21103197)、国家高技术研究发展计划(No.2015AA050602)、中国科学院BIC国际合作局对外合作重点项目(No.GJHZ1607)和安徽省自然科学基金项目(No.1708085MB31)资助

Functional Additives for Perovskite Layer in Organic and Inorganic Hybrid Perovskite Solar Cells

Lu Wang1,2, Zhipeng Huo1*, Jinxin Yi1,2, Ahmed Alsaedi3, Tasawar Hayat3,4, Songyuan Dai1,3,5*   

  1. 1. Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. NAAM Research Group, Department of Mathematics, Faculty of Science, King Abudulaziz University, Jeddah 21589, Saudi Arabia;
    4. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan;
    5. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
  • Received:2017-05-09 Revised:2017-06-28 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21103197), the National High Technology Research and Development Program of China (No. 2015AA050602), the External Cooperation Program of BIC, Chinese Academy of Sciences (No. GJHZ1607), and the Anhui Provincial Natural Science Foundation (No. 1708085MB31).
有机-无机杂化钙钛矿太阳电池作为新一代薄膜太阳电池,自2009年Mayasaka等制备出第一块钙钛矿太阳电池后得到迅猛发展,截止目前,其认证转换效率由最初的3%达到22.1%。钙钛矿材料作为光吸收层,具有光吸收效率高、载流子迁移率高和电子扩散寿命长等特点,但是其本身对水和氧气敏感,在环境氛围中不稳定。研究表明,在钙钛矿材料中添加一些功能添加剂,通过调节钙钛矿晶体结构、结晶过程和晶体缺陷等方法,可以提高钙钛矿太阳电池的光伏性能或者环境稳定性。本文主要评述了钙钛矿太阳电池中各类功能添加剂的应用研究进展。
As a new type of thin film solar cells, organic and inorganic hybrid perovskite solar cells (PSCs) have rapidly developed since the first PSCs were fabricated by Mayasaka, and the power conversion efficiency is improved from 3% to 22.1%. As light-harvesting materials, the perovskites show excellent photovoltaic performances, such as high absorption coefficient, high carrier mobility, long carrier diffusion lifetime and direct band gap. Nevertheless, the perovskite materials have shown limited effective lifetimes because the perovskite materials are sensitive to water and oxygen. As demonstrated in previous reports, functional additives can adjust structure of perovskite crystal, progress of crystallization or defect of crystal, which can improve the photovoltaic performances or long-term stability of PSCs. The application of functional additives in PSCs is reviewed in detail and predicted.
Contents
1 Introduction
2 Application of functional additives in perovskite solar cells
2.1 Inorganic additives
2.2 Organic additives
3 Conclusion

中图分类号: 

()
[1] Lee C H, Kim D R, Cho I S, William N, Wang Q, Zheng X L. Sci. Rep., 2012, 2:1002.
[2] (a) Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. Adv. Mater., 2014, 26:1584; (b)琚成功(Ju C G), 张宝(Zhang B), 冯亚青(Feng Y Q). 化学进展(Prog. Chem.), 2016, 28(2/3):219.
[3] (a) Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131:6050; (b)王桂强(Wang G Q), 段彦栋(Duan Y D), 张娟(Zhang J),林原(Lin Y), 禚淑萍(Zhuo S P). 化学进展(Prog. Chem.), 2014, 26(7):1255.
[4] Kim B H, Hong S J, Baek S J, Jeong H Y, Park N, Lee M, Lee S W, Park M, Chu S W, Shin H S, Lim J, Lee J C, Jun Y, Park Y W. Sci. Rep., 2012, 2:1004.
[5] Liu M Z, Johnston M B, Snaith H J. Nature, 2013, 501:395.
[6] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J W, Kim E K, Noh J H, Seok S I. Science, 2017, 356:1376.
[7] (a)汤雅芸(Tang Y Y), 梅群波(Mei Q B), 徐志杰(Xu Z J), 凌启淡(Ling Q D).化学进展(Prog. Chem.), 2011, 23(9):1915; (b)Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y. Science, 2015, 350:944.
[8] Wang K, Liang Z Q, Wang X Q, Cui X D. Adv. Electron. Mater., 2015, 1:1500089.
[9] Katan C, Pedesseau L, Kepenekian M, Rolland A, Even J. J. Mater. Chem. A, 2015, 3:9232.
[10] Suarez B, Gonzalez-Pedro V, Ripolles T S, Sanchez R S, Otero L, Mora-Sero I. J. Phys. Chem. Lett., 2014, 5:1628.
[11] Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. J. Phys. Chem. Lett., 2014, 5:429.
[12] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338:643.
[13] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R. Chem. Mater., 2013, 25:4613.
[14] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Nature, 2013, 499:316.
[15] Xiao M D, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. Angew. Chem. Int. Ed., 2014, 53:9898.
[16] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. J. Am. Chem. Soc., 2014, 136:622.
[17] Li X, Bi D Q, Yi C Y, Decoppet J D, Luo J S, Zakeeruddin S M, Hagfeldt A, Grätzel M. Science, 2016, 353:58.
[18] Chen Y X, Ge Q Q, Shi Y, Liu J, Xue D J, Ma J Y, Ding J, Yang H J, Hu J S, Wan L J. J. Am. Chem. Soc., 2016, 138:16196.
[19] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M. Energ. Environ. Sci., 2016, 9:1989.
[20] Chen Y N, Zhao Y X, Liang Z Q. Chem. Mater., 2015, 27:1448.
[21] (a) Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G. J. Am. Chem. Soc., 2015, 137:8696; (b) Ren Y K, Duan B, Xu Y F, Huang Y, Li Z Q, Hu L H, Hayat T, Wang H X, Zhu J, Dai S Y. Science China Mater., 2017, 17:1.
[22] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. J. Am. Chem. Soc., 2015, 137:7843.
[23] Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015, 6:2452.
[24] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354:206.
[25] Chang J, Lin Z, Zhu H, Isikgor F H, Xu Q H, Zhang C, Hao Y, Ouyang J. J. Mater. Chem. A, 2016, 4:16546.
[26] Bag S, Durstock M F. ACS Appl. Mater. Interfaces, 2016, 8:5053.
[27] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[28] Eperon G E, Stranks S D, Menelaon C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[29] Wang F, Yu H, Xu H H, Zhao N. Adv. Funct. Mater., 2015, 25:1120.
[30] Yang L, Wang J, Leung W W F. ACS Appl. Mater. Interfaces, 2015, 7:14614.
[31] Ke W J, Xiao C X, Wang C L, Saparov B, Duan H S, Zhao D W, Xiao Z W, Schulz P, Harvey S P, Liao W Q, Meng W W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G J, Mitzi D B, Yan Y F. Adv. Mater., 2016, 28:5214.
[32] Yang S D, Liu W Q, Zuo L J, Zhang X Q, Ye T, Chen J H, Li C Z, Wu G, Chen H Z. J. Mater. Chem. A, 2016, 4:9430.
[33] (a)Dong G H, Ye T L, Pang B Y, Yang Y L, Sheng L, Shi Y, Fan R Q, Wei L Q, Su T. Phys. Chem. Chem. Phys., 2016, 18:26254; (b)Wu Q L, Zhou P C, Zhou W R, Wei X F, Chen T, Yang S F. ACS Appl. Mater. Interfaces, 2016, 8:15333.
[34] Wu C G, Chiang C H, Tseng Z L, Nazeeruddin M K, Hagfeldt A, Gätzel M. Energ. Environ. Sci., 2015, 8:2725.
[35] Gong X, Li M, Shi X B, Ma H, Wang Z K, Liao L S. Adv. Funct. Mater., 2015, 25:6671.
[36] Pan J, Mu C, Li Q, Li W, Ma D, Xu D. Adv. Mater., 2016, 28:8309.
[37] Zhang W, Pathak S, Sakai N, Stergiopoulos T, Nayak P K, Noel N K, Haghighirad A A, Burlakov V M, deQuilettes D W, Sadhanala A, Li W Z, Wang L D, Ginger D S, Friend R H, Snaith H J. Nat. Commun., 2015, 6:10030.
[38] Li F, Ma C, Wang H, Hu W J, Yu W L, Sheikh A D, Wu T. Nature Commun., 2015, 6:8238.
[39] Jo Y, Oh K S, Kim M, Kim K H, Lee H, Lee C W, Kim D S. Adv. Mater. Interfaces, 2016, 3:7.
[40] Guo Y L, Sato W, Shoyama K, Nakamura E. J. Am. Chem. Soc. 2016, 138:5410.
[41] Shi Y T, Wang X Y, Zhang H, Li B, Lu H L, Ma T L, Hao C. J. Mater. Chem. A, 2015, 3:22191.
[42] Lee J W, Kim H S, Park N G. Acc. Chem. Res., 2016, 49:311.
[43] Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J J, Jen A K Y. Adv. Mater., 2014, 26:3748.
[44] Noel N K, Abate A, Stranks S D, Parrott E S, Burlakov V M, Goriely A, Snaith H J. ACS Nano, 2014, 8:9815.
[45] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Nature Mater., 2014, 13:897.
[46] Song X, Wang W, Sun P, Ma W, Chen Z K. J. Phys. Chem. Lett., 2015, 106:033901.
[47] Li X, Dar M I, Yi C Y, Luo J S, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H W, Grätzel M. Nat. Chem., 2015,7:703.
[48] Li Y W, Meng L, Yang Y, Xu G Y, Hong Z R, Chen Q, You J B, Li G, Yang Y, Li Y F. Nat. Commun., 2016, 7:10214.
[49] Babayigit A, Ethirajan A, Muller M, Conings B. Nature Mater. 2016, 15:247.
[50] Zhao Y C, Wei J, Li H, Yan Y, Zhou W K, Yu D P, Zhao Q. Nat. Commun., 2016,7:10228.
[51] Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A, Grätzel M. Nat. Energ., 2016, 1:16142.
[52] Zhang C C, Li M, Wang Z K, Jiang Y R, Liu H R, Yang Y G, Gao X Y, Ma H. J. Mater.Chem. A, 2017, 5:2572.
[53] Li M, Chao Y H, Kang T, Wang Z K, Yang Y G, Feng S L, Hu Y, Gao X Y, Liao L S, Hsu C S. J. Mater. Chem. A, 2016, 4:15088.
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[7] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[8] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[9] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[10] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[11] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[12] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[13] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[14] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[15] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.